$$
\mu_{n}(I) \text { his trese csupponents: }
$$

a) - lattice scattening
b) - impurity scattering
c) - casier carrierscattering
d) - interface scottering
(2) Band Diagram "a"

This is a band diagram of the transistor in inversion. $i \phi_{s}$, the surface potential, is equal to 2 pt

$$
\begin{aligned}
& \phi_{s}=2 \phi_{f}=.72 \mathrm{~V} \\
& \begin{aligned}
q V_{o x} & =V_{\text {oltage dropped across oxide }} \\
& =V_{g}-\phi_{s}=5 \mathrm{~V}-.72 \mathrm{~V} \\
q V_{\text {ot }} & =4.28 \mathrm{~V}
\end{aligned}
\end{aligned}
$$

b.) Find Id

Frit we seed to find the threshold voltages and channel length tor the transistor,
i)

$$
\begin{aligned}
& t_{\text {tox }}=4008 \quad L_{\text {eff, }}=10_{\text {rn }}-3 \mathrm{ren} \\
& =97 \mathrm{mn}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{V_{T_{1}}}=1.300 \mathrm{~V}
\end{aligned}
$$

ii.)

$$
\begin{aligned}
& \text { tote }_{2}=800 \mathrm{~A} \quad \mathrm{Leff}_{2}=10 \mathrm{~mm}-3 / \mathrm{mm} \\
&=8.7 \mathrm{~mm} \\
& V_{T_{2}}=1.86 \mathrm{~V}
\end{aligned}
$$

Since \bar{L} is long $+V_{0} \ll V_{\text {os it }}$, the square law can be applied with reasonable accuracy. The currents in each half of the chanel must be equal. Therefore

$$
I_{o_{1}}=I_{D_{2}}
$$

We will introduce an intermediate voltage, $V d y$, as the voltage at the border between the two transistor halves.

$$
\begin{aligned}
& I_{D_{1}}=\frac{I_{I_{1}} C_{0 x_{1}}}{L_{\text {eff }}}\left[\left(V_{G}-V_{T_{1}}\right) V_{d_{y}}-\frac{V_{a_{1}}^{2}}{2}\right] \\
& I_{D_{2}}=\frac{I_{I_{n}} C_{t_{2}}}{L_{\text {eff }}}\left[\left(V_{G}-V_{T_{2}}\right)\left(V_{0}-V_{a_{y}}\right)-\frac{\left(V_{0}-V_{a_{2}}\right)^{2}}{2}\right]
\end{aligned}
$$

letting Z, r_{1} be equal in both halves of the transistor,

$$
\begin{aligned}
& \left.\frac{C_{x_{1}}}{\text { ref }_{1}}\left[V_{G}-V_{T_{1}}\right) V_{d_{1}}-\frac{V_{a_{1}^{2}}^{2}}{2}\right]=\frac{\operatorname{Cox}_{2}}{L_{\text {eft }}}\left[\left(V_{G}-V_{T_{2}}\right) V_{0}-\left(V_{G}-V_{T_{2}}\right) V_{d_{y}}\right. \\
& \left.-\frac{V_{0}^{2}}{2}+V_{d_{y}} V_{0}-\frac{V_{d_{x}}^{2}}{2}\right]
\end{aligned}
$$

Plugging in the appropriate values, we get

$$
8.1 \mathrm{Vd}_{y}^{2}-204 \mathrm{~V} d_{y}+9.1=0
$$

$$
V_{d y}=.045 \mathrm{~V}
$$

Now we cans plug Val in to either equation $I_{0,}$ or $I_{O_{2}}$ to find I_{0}. For simplicity, Let's use I_{0}.

$$
\begin{gathered}
I_{0}=\frac{I_{F_{1}} C_{01}}{L_{1}}\left[\left(V_{a}-V_{1}\right) V_{a_{y}}-\frac{V_{a_{x}}^{2}}{2}\right] \\
I_{0}=\left(1.25 \times 10^{-4}\right)(.165 \mathrm{~V}) \\
I_{0}=21 \mu \mathrm{~A}
\end{gathered}
$$

