ar) $R=\frac{\rho L}{A}$

$$
\begin{aligned}
\rho=\frac{1}{\sigma} & =\frac{1}{q \mu_{1} n+q \operatorname{trp} p} \\
n & =p=n_{1}=1.1+10^{10} \mathrm{cos}^{-3}
\end{aligned}
$$

$$
\mu n \approx 1358 \frac{\mathrm{cn}^{2}}{\mathrm{v}-\mathrm{s}}
$$

$$
H p \approx 461 \frac{\cos ^{2}}{k-s}
$$

No Fermi Level is associated with this diagram because it is not in equilibrium, (There is an applied field)
b.)

$$
\begin{aligned}
& G_{L}=10^{18} \mathrm{cn}^{-3} s_{c}-1 \\
& p=A_{p}+p_{0} \quad n=A_{n}+n_{0} \\
& A_{p}=A_{n}=G_{L} \tau_{n}=G_{L} \tau_{p} \\
&=\left(10^{18}\right)\left(10^{-6}\right) \\
&=10^{12} \mathrm{~cm}^{-3} \\
& \text { since } A_{p}=A_{n} \gg n_{i}
\end{aligned}
$$

then prov $10^{12} \mathrm{~cm}^{-3}$

$$
\rho=\frac{1}{\sigma}=\frac{1}{q \mu_{n} n+q \mu_{p} p}
$$

There are no additional scattering centers, if fir ${ }^{\prime}$, stay the same:

$$
\rho=3.4 \times 10^{3} \Omega-\mathrm{cm}
$$

Note that the slope of $E_{\text {, }}$ is greatly reduced here because the lower ρ means lowe voltage.
c.) If N_{T} were reduced by a factor of 2 in the first half of the slab, then

$$
-c_{p} N_{T} \Delta_{p}=\left.\frac{\partial p}{\partial t}\right|_{R-\sigma} \quad-c_{n} N_{T} A_{n}=\left.\frac{\partial_{n}}{\partial t}\right|_{R-\sigma}
$$

If N_{T} decreases then the recombination rate will be reduced. This means more carriers will exist in the fit halt of the sample where Nr hos decreased.

$$
\begin{aligned}
& \tau_{\rho}=\frac{1}{c_{p} N_{T}} \Rightarrow \frac{1}{c_{p} \frac{1}{2} N_{T}} \\
& \Delta_{p}=G_{L} \tau_{p} \Rightarrow G_{L} 2+\theta^{-6} \\
& \Delta_{p}=2+10^{12} \quad \alpha \text { similarly } \\
& \quad A_{n}=2+c o^{\prime 2}
\end{aligned}
$$

$\therefore \rho$ is cut in halt in first part of sample!
(2.) Highly n-type \Rightarrow free hole currents are negligible

$$
\text { Total } \begin{aligned}
\ell^{-} \text {current } & =d \text { rift }+d_{i f f o s i n} \\
J_{1} & =q n \mu_{1} \varepsilon+q D_{1} \frac{d_{n}}{d t} \\
0 & =q n \neq m_{n} \varepsilon+q D_{1} \frac{d_{n}}{d x} \\
\varepsilon & =-\frac{1}{n} \frac{d_{n}}{d x} \frac{D_{n}}{\mu_{n}} \\
& =-\frac{1}{n} \frac{d_{n}}{d x} \frac{\frac{k T}{q}}{v_{n}} \\
\varepsilon & =-\frac{k T}{q} \frac{1}{n} \frac{d n}{d x}
\end{aligned}
$$

if ε is instant, then $\frac{1}{n} \frac{d n}{d x}$ mast be constant with x as well

$$
\Longrightarrow \quad \frac{d n}{d x}=(\text { canst }) n
$$

n must be exponential

$$
n=n_{0} e^{-a x}
$$

1.) If n is exponential then this implies that the doping concantration is exponential as well.
2.) In the presence of a nonuniform concentration, the electron distribution diffuses towards regions of lower concentration,
3.) Since the electron distribution has moved awry from the dopant concentration, the negative changes have partially moved away from the positive charges, thus breaking local charge neutrality.
4.) In response to this an electric field develops trying to move the negative charges back. This results in a drift current.
5.) At equilibrium, the drift and diffusion currents cancel one another to leave $J_{n}=0$
$\ln N_{d}(x)=$
$\ln n(x) \cdots$

region of net positive charge

$$
\text { sum of charge }=0
$$

