(1) ai. $=\frac{E}{W}$ small signal diode capacitance ($\mathrm{F} / \mathrm{Cm}^{2}$)

Leftmost diode

$$
W=\sqrt{\frac{2 \epsilon}{2}\left(V_{b} \cdot-V_{0}\right) \frac{N_{a}+N_{d}}{N_{a} N_{d}}}
$$

$W \sim 8.0 \mathrm{\mu m}$
Middle diode

$$
W \sim 2.6 \mu \mathrm{~m}
$$

Rightmost Diode

$$
W>3 \mathrm{~mm}
$$

\therefore Middle doode has smallest depletion width and thus highest capacitance.

* Since $N_{a}=10^{19} \mathrm{~cm}^{-3}$ is a degenerate doping, this equation is not precisely accurate, but still gives relative widths.
b) The dominant reverse bias current for real diodes is generation current from depletion region.

$$
\begin{aligned}
I_{a_{n}} & =-q \frac{n_{-}}{2 \tau_{0}} W \mathrm{~A} \\
n_{i} & =1.1 \times 10^{10 \mathrm{~cm}^{-3}} \\
\tau_{0} & =10^{-6} \mathrm{soc} \\
A & =1 \mathrm{mn}^{2}=101 \mathrm{cn}^{2} \\
W & \approx 2.6 \mathrm{\mu n} \text { at } \mathrm{Vm}=-5 \mathrm{~V} \\
q & =1.6 \times 10^{-19} \mathrm{conl} \\
I_{\text {gen }} & =2.3 \mathrm{nA}
\end{aligned}
$$

(2.) a.) Thermal equilibrium

($\left.E_{c}-E_{f}\right)$ for $n t$ material in emitter is smaller than (E dEf) for maternal in collector
b.)

C.)

Inverse Active

$\varepsilon(x)$

d) β for forward $\rightarrow \beta$ for inverse active

A small amount of base current in forward active will leverage a very large amount of emitter current due to the large ratio of $\left(\begin{array}{c}\text { electrons injected } \\ \text { to base } \\ \text { holes injected to } \\ \text { emitter }\end{array}\right)$
for an $n+p$ diode,
In inverse active, the patio is much smaller, and a large base current is necessary to leverage the same "emitter" current.

