(1.)

$$
\begin{array}{ll}
p+: N_{n}=5 \times 10^{17} \mathrm{~cm}^{-3} & \tau_{B}=10^{-6} \mathrm{sec} \\
n: N_{d}=3 \times 10^{16} \mathrm{~cm}^{-3} & \tau_{n}=10^{-6} \mathrm{sec} \\
p: N_{a}=6 \times 10^{15} \mathrm{~cm}^{-3} &
\end{array}
$$

Preliminaries:

$$
\begin{aligned}
& D_{E}=10.9 \frac{\mathrm{~cm}^{2}}{\mathrm{~s}} \\
& D_{B}=\frac{4 T}{2} \mu_{p}\left(3_{1} D^{16}\right)=(.026)(350) \\
& D_{3}=5.1 \frac{\mathrm{ma}^{2}}{\mathrm{~s}} \\
& L_{E}=\sqrt{D E \tau_{n}}=33 \mu m
\end{aligned}
$$

at $V_{E B}=0$

$$
\begin{aligned}
& X_{D_{E}}=\sqrt{\frac{2 \epsilon}{2} V_{b i} \frac{N_{a}}{N_{d a}\left(N_{a}+N a\right)}} \\
& V_{V_{i}}=\frac{\eta}{2} \operatorname{lm}_{\frac{N_{a}}{} \frac{N_{d}}{n_{i}^{2}}=.84}^{X_{D_{E}}=.185 \mathrm{pm}}
\end{aligned}
$$

at $\quad V_{C B}=0$

$$
\begin{aligned}
& x_{n c}=\sqrt{\frac{2 t}{q} V_{b i} \frac{N_{a}}{N d(N a+N d)}} \\
& V_{B_{i}}=\frac{k T}{g} \ln \frac{N_{\text {all }}}{N_{i}^{-2}} \\
& V_{i j}=, 73 \\
& X_{n c}=.073 \\
& W=0,5-.185-.073 \\
& W=W_{\text {n-pregim }}-X_{n E}-X_{n c} \\
& W=.24 \mu \mathrm{~m}
\end{aligned}
$$

$\alpha_{T} \equiv$ base trasport factor α_{T} is resio of:

$$
\alpha_{T}=\frac{\text { holes fram enitien to colleten }}{\text { totol holes from emitter }}
$$

\Rightarrow it is a measuse of base recombintion

$$
\begin{aligned}
I_{C} \approx & q^{n-2 A}\left[\frac{D_{B}}{W N_{B}}-\frac{W}{2 \tau_{B}} \frac{1}{N_{B}}\right]\left(e^{\left.\frac{q V_{B B}}{M T}-1\right)}\right. \\
& + \text { terms } \propto\left(l^{\left.\frac{q K_{B}}{M T}-1\right)}\right.
\end{aligned}
$$

Now since α_{T}, γ, p are detrsed tor fommed actice operstron, $V_{c B}<0$ and thes terms propationsl to $e^{\frac{Y U}{V T}}$ cas be neslected

$$
\begin{aligned}
& I_{E} \approx q n^{2} A\left[\frac{D_{E}}{L_{E} N_{E}}+\frac{D_{B}}{W N_{B}}\right]\left(e^{\frac{q V_{E B}}{T r}}-1\right) \\
& + \text { tloms } \alpha\left(e^{\frac{q l_{d a}^{m}}{m}}-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{T}=\frac{I_{B}}{I_{E_{B}}}=\frac{\frac{D_{B}}{W N_{B}}-\frac{W}{\partial I_{B}} \frac{1}{N_{B}}}{\frac{D_{B}}{W N_{B}}} \\
& \alpha_{T}=, 99997 \text { very high! }
\end{aligned}
$$

$$
\begin{gathered}
\gamma=\operatorname{dnitle\text {injectionefficiency}}=\frac{I_{E_{p}}}{I_{E_{n}}+I_{E_{p}}} \\
\gamma=\frac{\frac{D_{B}}{W N_{B}}}{\frac{D_{E}}{L_{E N}}+\frac{D_{B}}{W N_{B}}}=.9995 \\
\beta=\frac{\alpha_{d c}}{1-\alpha_{c}}=\frac{\alpha_{T} \gamma}{1-\alpha_{T} \gamma} \\
\quad \beta=1885
\end{gathered}
$$

Panchthroush (PT)

$$
\left(x_{c}(T=0)+w\right)
$$

PT occurs when $X_{1 C}=, \quad \prod_{13}$

$$
\begin{aligned}
& X_{C}=\sqrt{\frac{2 \epsilon}{q}\left(V_{b i}-V_{A}\right) \frac{N_{c}}{N_{B}\left(N_{C}+N_{B}\right)}} \\
& (100 \mathrm{pm})^{2}=\frac{2 \epsilon}{q}\left(V_{b i}-V_{A}\right) \frac{N_{C}}{N_{B}\left(N_{C}+N_{B}\right)} \\
& V_{b_{i}}-V_{A}=\frac{q}{2 t}\left(.1313 m_{m}\right)^{2} \frac{N_{B}\left(N_{C}+N_{B}\right)}{N_{C}} \\
& V_{A} \approx 13.6 \mathrm{~V} \text { at punch through }
\end{aligned}
$$

Avalanche BD of B junction

$$
\begin{aligned}
\varepsilon_{c r}=\varepsilon(0)= & \frac{q N_{d} x_{n}}{\varepsilon} \\
& \frac{\epsilon^{2}}{q^{2} N_{B}^{2}} \varepsilon_{c_{r}}^{2}=\frac{2 \epsilon}{q}\left(V_{i}-V_{B D}\right) \frac{N_{B C}}{N_{B}\left(N_{B}+N_{C}\right)} \\
V_{b-}-V_{B D} & =\frac{\epsilon}{2 q} \frac{N_{B}+N_{c}}{N_{B} N_{C}} \varepsilon_{C_{n}}^{2}
\end{aligned}
$$

for silicon $\varepsilon_{i_{n}}=4+10^{5} \frac{\mathrm{~V}}{\mathrm{~cm}}$

$$
V_{B O} \approx 103 \mathrm{~V}
$$

$$
\begin{aligned}
V_{C F_{0}} & =\frac{V_{C B_{0}}}{(\beta+1)^{1 / m}} \\
& =\frac{103}{(1886)^{1 / 4}} \\
V_{C E_{0}} & =15.6 \mathrm{~V}
\end{aligned}
$$

(2)

$$
t_{\text {rise }}=\tau_{B} \ln \left(\frac{1}{1-\frac{I_{c s e t} \tau_{t}}{I_{B, n} \tau_{B}}}\right)
$$

Note: At edge of saturation (edge of forward active) $I_{\text {sat }}=\beta I_{B_{\text {sat }}}$ where $I_{\text {Bat is }}$ the nimum base current necessary to bring the transistor to the edge of saturation, Therefore, if $I_{\text {Bor }}<I_{\text {boat }}$ then trise is cendelined.
Thus $I_{\text {Bon }}$ must be $>I_{\text {Bat }}$

$$
\begin{aligned}
& I_{B}=0 \\
& t_{s d}=\tau_{B} \ln \left[\frac{I_{B} \tau_{B}}{I_{C_{s a t}} \tau_{t}}\right]
\end{aligned}
$$

$t_{5 d}=.23 \mathrm{us}$ very long!
switch by setting $I_{B}=-I_{B O n}$

$$
\begin{aligned}
& t_{s d}=\tau_{B} \ln \frac{I_{B} \tau_{B}}{I_{C s t t} \tau_{t}\left[\frac{1}{2}+\frac{1}{2} \frac{I_{B} \tau_{B}}{I_{C s \text { st }} \tau_{t}}\right]} \\
& t_{s d}=, O G_{C S}
\end{aligned}
$$

