CMOS Inverter:
Power Dissipation and Sizing
Professor Chris H. Kim
University of Minnesota Dept. of ECE chriskim@umn.edu

- Switching power
- Charging capacitors
- Leakage power
- Transistors are imperfect switches
- Short-circuit power
- Both pull-up and pull-down on during transition
- Static currents
- Biasing currents, in e.g. memory

Dynamic Power Consumption

$E_{0 \rightarrow 1}=\int_{0}^{T} P_{D D}(t) d t=V_{D D} \int_{0}^{T} i_{D D}(t) d t=V_{D D} \int_{0}^{V_{D D}} C_{L} d v_{\text {out }}=C_{L} V_{D D}^{2}$
$E_{C}=\int_{0}^{T} P_{C}(t) d t=\int_{0}^{T} v_{\text {out }} i_{L}(t) d t=\int_{0}^{V_{\text {DD }}} C_{L} v_{\text {out }} d v_{\text {out }}=\frac{1}{2} C_{L} v_{D D}^{2}$

Dynamic Power Consumption

One half of the energy from the supply is consumed in the pull-up network and one half is stored on C_{L}
Energy from C_{L} is dumped during the $1 \rightarrow 0$ transition

Circuits with Reduced Swing

$$
E_{0 \rightarrow 1}=C_{L} V_{D D}\left(V_{D D}-V_{T h}\right)
$$

Dynamic Power Consumption

Power = Energyltransition • Transition rate

$$
\begin{aligned}
& =C_{L} V_{D D}^{2} \cdot f_{0 \rightarrow 1} \\
& =C_{L} V_{D D}^{2} \cdot f \cdot P_{0 \rightarrow 1} \\
& =C_{\text {switched }} V_{D D}^{2} \cdot f
\end{aligned}
$$

- Power dissipation is data dependent depends on the switching probability
- Switched capacitance $C_{\text {switched }}=C_{L} \cdot P_{0 \rightarrow 1}$

Transition Activity and Power

- Energy consumed in N cycles, E_{N} :

$$
E_{N}=C_{L} \cdot V_{D D}^{2} \cdot n_{0 \rightarrow 1}
$$

$n_{0 \rightarrow 1^{-}}$number of $0 \rightarrow 1$ transitions in N cycles

$$
\begin{gathered}
P_{\text {avg }}=\lim _{N \rightarrow \infty} \frac{E_{N}}{N} \cdot f=\left(\lim _{N \rightarrow \infty} \frac{n_{0 \rightarrow 1}}{N}\right) \cdot C_{L} \cdot V_{D D}^{2} \cdot f \\
\alpha_{0 \rightarrow 1}=\lim _{N \rightarrow \infty} \frac{n_{0 \rightarrow 1}}{N} \cdot f \\
P_{\text {avg }}=\alpha_{0 \rightarrow 1} \cdot C_{L} \cdot V_{D D}{ }^{2} \cdot f
\end{gathered}
$$

- Short circuit current is usually well controlled

$J S=10-100 \mathrm{pA} / \mathrm{mm} 2$ at 25 deg C for 0.25 um CMOS JS doubles for every 9 deg C!
Much smaller than transistor leakage in deep submicron

Transistor Leakage

- Transistors that are supposed to be off - leak

Input at $V_{D D}$

Input at 0

Inverter Chain

In

If C_{L} is given:

- How many stages are needed to minimize the delay?
- How to size the inverters?

May need some additional constraints.

Inverter Delay

- Minimum length devices, $L=0.25 \mathrm{um}$
- Assume that for $W_{P}=2 W_{N}=2 W$
- same pull-up and pull-down currents
- approx. equal resistances $R_{N}=R_{P}$
- approx. equal rise $t_{p L H}$ and fall $t_{p H L}$ delays
- Analyze as an RC network

$$
R_{P}=R_{\text {unit }}\left(\frac{W_{P}}{W_{\text {unit }}}\right)^{-1} \approx R_{\text {unit }}\left(\frac{W_{N}}{W_{\text {unit }}}\right)^{-1}=R_{N}=R_{W}
$$

Delay (D): $t_{p H L}=(\ln 2) R_{N} C_{L} \quad t_{p L H}=(\ln 2) R_{P} C_{L}$
Load for the next stage: $C_{g i n}=3 \frac{W}{W_{u n i t}} C_{u n i t}$


```
unverivgem insona
```


Delay Formula

```
\[
\text { Delay } \sim R_{W}\left(C_{i n t}+C_{L}\right)
\]
\[
t_{p}=k R_{W} C_{\mathrm{int}}\left(1+C_{L} / C_{\text {int }}\right)=t_{p 0}(1+f / \gamma)
\]
\[
c_{\text {int }}=\gamma C_{\text {gin }} \text { with } \gamma \approx 1
\]
\[
f=C_{L} / C_{\text {gin }}-\text { effective fanout }
\]
\[
R=R_{\text {unit }} / W ; C_{\text {int }}=W C_{\text {unit }}
\]
\[
t_{p 0}=0.69 R_{u n i t} C_{u n i t}
\]
```


Apply to Inverter Chain

In

$$
t_{p}=t_{p 1}+t_{p 2}+\ldots+t_{p N}
$$

$$
t_{p j} \sim R_{u n i t} C_{u n i t}\left(1+\frac{C_{g i n, j+1}}{C_{g i n, j}}\right)
$$

$$
\gamma=1
$$

$$
t_{p}=\sum_{j=1}^{N} t_{p, j}=t_{p 0} \sum_{i=1}^{N}\left(1+\frac{C_{g i n, j+1}}{C_{g i n, j}}\right), C_{g i n, N+1}=C_{L}
$$

NVERSITYOEMIMNISOTA
 Optimal Tapering for Given \mathbf{N}

Optimum Delay and Number of Stages

When each stage is sized by f and has same eff. fanout f :

$$
f^{N}=F=C_{L} / C_{g i n, 1}
$$

Effective fanout of each stage:

$$
f=\sqrt[N]{F}
$$

Minimum path delay

$$
t_{p}=N t_{p 0}(1+\sqrt[N]{F})
$$

Optimum Number of Stages

For a given load, C_{L} and given input capacitance $C_{i n}$ Find optimal number of stages, N, and optimal sizing, f

$$
C_{L}=F \cdot C_{i n}=f^{N} C_{i n} \text { with } N=\frac{\ln F}{\ln f}
$$

$$
t_{p}=N t_{p 0}\left(F^{1 / N} / \gamma+1\right)=\frac{t_{p 0} \ln F}{\gamma}\left(\frac{f}{\ln f}+\frac{\gamma}{\ln f}\right)
$$

$$
\frac{\partial t_{p}}{\partial f}=\frac{t_{p 0} \ln F}{\gamma} \cdot \frac{\ln f-1-\gamma / f}{\ln ^{2} f}=0
$$

```
For \(\gamma=\mathbf{0}, \boldsymbol{f}=\mathbf{e}, \boldsymbol{N}=\ln F\)
\(f=\exp (1+\gamma / f)\)
```


Impact of Loading on tp

UNIVERSITY OF MINNESOTA			
Normalized Delay Function of $F$$\begin{gathered} t_{p}=N t_{p 0}(1+\sqrt[N]{F} / \gamma) \\ t_{p}=N t_{p 0}(1+\sqrt[N]{F}), \text { with } \gamma=1 \end{gathered}$			
F	Unbuffered	Two Stage	Inverter Chain
10	11	8.3	8.3
100	101	22	16.5
1000	1001	65	24.8
10,000	10,001	202	33.1

UNIVERSITY OF MINNESOTA

