1

A Generalized lterative Water-filling Algorithm
for Distributed Power Control in the Presence

of a Jammer

Ramy H. Gohary, Yao Huang, Zhi-Quan Lud and Jong-Shi Parig
* Department of Electrical and Computer Engineering
University of Minnesota, Minneapolis, MN 55455
I Department of Industrial and Enterprise Systems Engingeri

University of Illinois, Urbana Champaign, IL 61801

Abstract

Consider a scenario in whick™ users and a jammer share a common spectrunV ajrthogonal
tones. Both the users and the jammer have limited power lisidflee goal of each user is to allocate its
power across théV tones in such a way that maximizes the total sum rate thah&e@n achieve, while
treating the interference of other users and the jammaegisasias additive Gaussian noise. The jammer,
on the other hand, wishes to allocate its power in such a watyrttinimizes the utility of the whole
system; that being the total sum of the rates communicated thee network. For this non-cooperative
game, we propose a generalized version of the existingiiteraater-filling algorithm whereby the users
and the jammer update their power allocations in a greedyneraie study the existence of a Nash
equilibrium of this non-cooperative game as well as coodgi under which the generalized iterative
water-filling algorithm converges to a Nash equilibrium b&tgame. The conditions that we derive in
this paper depend only on the system parameters, and hemd® aheckeda priori. Simulations show
that when the convergence conditions are violated, theepoesof a jammer can cause the, otherwise

convergent, iterative water-filling algorithm to oscitat
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. INTRODUCTION

The wireless communications spectrum is a scarce and \leluggpurce that is currently underutilized
due to the usage of conventional static tone-assignmeitiggl This inherent drawback has been a
fundamental reason behind the emergence of unlicensedsgastrum communication systems [1], [2].
In these systems the spectrum is typically partitioned Mtoarrowband orthogonal tones and all users are
allowed toaccess all the tones simultaneously and frelelycomparison with the fixed tone-assignment
policies, this setup offers significantly greater freedamuiilizing the spectrum. However, this freedom
comes at the expense of a number of challenges that oughttakée into consideration by the system
designer. In particular, the inherent overlafthe users’ spectra in these systeghgs rise to the so-called
multi-user interference, which iskey limiting factor of open-spectrum communication® mitigate the
effect of multi-user interference, the users may employs#ributed power allocation mechanisvwhereby
each user measures the interference level on each tone d3lktates its power dynamically across
tones in such a way that maximizes its own utility.

With the increasing popularity of open-spectrum commuicasystems, it is conceivable that these
systems will play an important role in future military comnications. However, a major concern for
these communications is the reliability with which the datn be transferred. For instance, open-
spectrum communications may Beasceptible to antagonistic behaviour of potential janmtieat may
be interested in reducing the utility of the entire systejammer may be able to ‘listen’ to the users’
transmissions, antb subsequently update its power allocation across tonesderdo reduce the total
sum-rate communicated over the network. As such, the pueeaf both the users and the jammer can
be cast asa non-cooperative game [4] in whic¢he players are interested in maximizing their individual
utilities in a selfish fashion.

In addition to open-spectrum communications, non-codperaggames arise in Digital Subscriber
Line (DSL) systems in which the users compete to maximize tven utilities. For instance, in (jammer-
free) DSL systems, the users may use the iterative watiegfilllgorithm (IWFA) [5] to allocate their
powers across tones in such a way that maximizes their ohaiidata rates. Being decentralized and
relatively easy to implement, IWFA and variants thereoféhéaeen extended to scenarios in which the
users may collaborate to maximize a common utility [6]—[8].order to gain insight into the inherent

features of IWFA, several studies have focused on its cgevee behaviour in both synchronous [9],

1In this paper, the sum rate of each user across tones willfeered to as the utility of the user, and the sum of utilitiés o

all users will be referred to as the system utility.
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[10] and asynchronous [11] scenarios. It is worth mentigrtimat while in IWFA the users compete to
maximize their rate utilities, in other decentralized &gges the users may compete to maximize alternate
jammer-free communication utilities; see e.g., [12]-[1B] addition to jammer-free communication
scenarios, the impact of malicious jamming has been coreside several studies. For instance, single-
user systems in which the jammer’s goal is to minimize theualuinformation of the ‘legitimate’ user
were considered in [16], [17], whereas multi-user singleetcommunication systems in which the users’
utilities are not directly related to rate utilities werensidered in [18], [19].

Unlike these scenario®) this paper we consider a communication system in whichusers and a
jammer sharéV orthogonal tones. Both the users and the jammer have limpib@cer budgets. The goal
of each user is to allocate its power across Mhe¢ones in such a way that maximizes the total sum rate
that he/she can reliably communicate. The jammer, on ther didind, wishes to allocate its power in such
a way that minimizes the utility of the whole system; thatrigeihe total sum of the rates communicated
over the network. This scenario is analogous {@aexo-sum hon-cooperative game. In this paper we show
that at least one Nash equilibrium exists for this game. ldoee wedevelopa generalized version of the
iterative water-filling algorithm (GIWFA) whereby userscathe jammer update their power allocations
in a greedy mannen orderto maximize their respective utilities. The users and timenjeer may update
their power loads sequentially according to some presdritreler or they may update these loads in
a totally asynchronous fashion at arbitrary time instamid asing possibly outdated information about
the interference from other users. We derive sufficient @mms under which GIWFA converges to a
unique Nash equilibrium of this non-cooperative gamedwe present numerical results that illustrate
the impact of the jammer on the system utility and on the cayamce of the users’ iterates. In particular
we show that the presence of a strong jammer can not only eethgctotal utility of the system, but
also cause the otherwise convergent IWFA algorithm to laseil

The paper is organized as follows. Section Il provides thstesy model, problem formulation, and the
necessary definitions that will be used in subsequent secti®ection Il contains the main results of the
paper, including Nash equilibrium existence results arfficgent conditions for uniqueness. In Section IV
we present some numerical experiments, and in Section V weide some concluding remarks. For

clarity of exposition, most of our proofs are relegated te #ppendices.

Il. SYSTEM MODEL AND DEFINITIONS

Consider a communication system in whightones are shared bl user pairs and one jammer. In

this paper we refer to a transmitter-receiver pair as one, asel we consider the case in which each
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user has one transmit and one receive antennah;tketﬂenote the gain between the transmitter of User
and the receiver of Uset at the n-th tones, forj,k € K andn € N, where K 2 {1,...,K} and
N 2 {1,...,N}. Furthermore, let} and s be the power allocated by Usérand the jammer to the
n-th tone, respectively. Throughout this paper, the jammiérbe denoted as Useb. If both the users
and the jammer transmit Gaussian signals, then the ratedmabe achieved by Usérc K on then-th
tone is given by [20]

A ) W
NP+ 3 (P27 + gy s/

whereN;' denotes the noise variance observed by Useam then-th tone. By dividing both the numerator

RM(sT,..., %) = log<1 +

and the denominator by.7, |, the achievable rate of Usére K on then-th tone can be expressed as

). 2)

Sn
RI(st,...,s%) =1o <1+ k
1 (s1 %) g U,Z“‘Zj;ék aﬁS?—l-@&SQ

where we definexy, = |hy|?/[hi > > 0, ofy = |h5?/|h > > 0, andop = N'/|hiy|* > 0, for

J,k € K, n € N. Suppose that Uset € K, (k # 0) is interested in maximizing its own sum-rate, so

its utility is given by

N N n
s
Uk(so,S1, - ,SK) = Ry (st,...,s%) = log(l + k >, (3)
nz_:l nz_:l Ok + 225k ST + QG0

while the utility of the jammer is

K K N sn
Uo(SQ,Sl,---,SK)Z—ZUkZ—ZZIOg(l—i- k >, (4)
k=1

n n n n n
k=1n=1 O + zjs«ék QiS5+ QgrSo

where we usey, to denote the vectds;, - -, si]7.
Given a limited power budget, and a maximum power consti@néach tone, the goal of Usgr is

to maximizeUy; that is, Userk wishes to solve the following optimization problem,

max Ui(s0,S1, " ,SK),
N
subjectto > sp < B, (5a)
n=1
0 < sp < Shax ks (5b)

where, P, denotes the total power budget of UseS] . denotes the maximum signal power that User
can use on the-th tone, and in order for (5a) not to be redundant, we asstate?, < > 57

We will denote the feasible set of Uskras P;; that is,

N
A
P = {sk = [shy st 1Y sk < P, 0 < s < St} 6)

n=1
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Since individual users do not collaborate among themseleeslo they collaborate with the jammer,
and both users and the jammer selfishly maximizes their oilitiast, this communication scenario can be
modelled as a non-cooperative game [4]. In this game indalidsers and the jammer are non-cooperative
players, and the power allocations of any Ukemcluding the jammer, that lie i, (cf., (6)) represent
the set of admissible strategies of this user. A Nash equifibb of this game [4] is a tuple of power

strategies{s; }=*_,, such that for any: € {0} UK
Uk(SS,ST,"' 752—1752752—%17"' 7S*K) > Uk(Sé,ST,’” asl:—lﬁslmsz—i-l?”' 7S*K)7 vsk Epk' (7)

In other words, a Nash equilibrium of the game is a locallyiropt strategy for each player that no
player has an incentive to unilaterally change [4]. In thgtrsection, we will show that, for this game,
a Nash equilibrium always exists. Moreover, we will propaséecentralized algorithm for updating the
jammer and the users’ power allocations. By analyzing thvemence of this algorithm, we also derive

sufficient conditions under which the Nash equilibrium isqure.

[Il. EXISTENCE AND UNIQUENESS OF ANASH EQUILIBRIUM

Since, for everyk = 1,--- , K, Ug(so,S1, " ,Sk—1,9, Sk+1,SK) IS @ continuously differentiable
concave function, and so (e, s, - ,sk), and since eaclP; is a compact convex set, it follows
readily from [21, Proposition 2.2.9] that a Nash equililnitexists. Such an equilibrium can be found

using a standard fixed-point algorithm, an instance of wigchiven in the next section.

A. A generalized iterative water-filling algorithm (GIWFABynchronous Version

In the jammer-free case, it can be shown that a certain wamstion [10] can be invoked to expose an
inherent equivalence between standard IWFA and the fixéa-pdgorithm [21], [22]. Drawing on this
observation, we devise a generalized water-filling alpani{GIWFA) whereby the users and the jammer
update their power allocations using fixed-point iteragioim particular/et s} be the power allocation
of User k on then-th tone at iterations, andsy, be the vectors,”,--- ,s,""]”. For the time being
consider synchronous operation, whereby the users upugitepower allocations sequentially. Assume,
without loss of generality, that the users are ordered solbar1 updates its power allocation first then
User2 and so on, and that the jammer (Usgmupdates its power allocation last. Hence, in each itamatio

Userk € K updates its power allocations in order to solve

(8)

v+l _ v+1 v _v+1 v+1 v v
s}, —|:Sk + Vs, Ui(sg,87 -+, 80 1,8k, Spyqs " »SK)

)
Sk:SZ+1:| Py
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whereas the jammer solves

(9)

v+l _ v+1 v+1 v+1
so —[SO + Vs, Uo(sg, 87", -+ ,s%)

SOZSS+1:|'P07
where we usé-|p, to denote the projection operator onto the polyhedron defin€6). That is, for any
vectorz € RV

— - 10
[z]p, arg;gg}c\\y || (10)

Using (3) and (4), we can compute the gradieWits U, explicitly. In particular, then-th entry of
Vs, Ui for k € {0} UK, [Vs, Ukln, can be expressed as

v v+1 v+1 v v
[VSkUk(SO7sl st 98 _15SksSE4q1y 7SK) Vﬂ]
Sp=S] n
! Vk e K (11)
T n k n nwv+l K n v n n,u’ ’
Op + D51 0S; T2 k1 OS5+ afySg
v+1 v+1
[VSOUO(S()?S:[ y s SK ) _ ,/+1:|
So=s, n
K n nwv+1
- Z K n,v+1 aOk;j]f/ K n,v+1 n,vy’ (12)
mn ) n mn ) n ) n n )
o Ooimn, e OGSy, Fop tagesy ) jm oSy Fop +agseT)

where, in (11) and (12), we have used thgf, = 1 for all £ € K.

From (11) and (12) we observe that for Usee K to update its power allocation, it is sufficient to
measure its own noise-plus-interference level on each twwhereas for the jammer to update its power
allocation, it needs, not only to know the power transmittgdeach user, but also to know the noise-
plus-interference level experienced by each user on ewery. One way for the jammer to acquire this
information is to use standard means to estimate the pHysaztions of users. Using these locations and
the tone frequencies, relatively accurate estimates ofahsolute) channel gains can be obtained using
(empirical) frequency-dependent path-loss formulae &ious propagation environments [23, Chapter 2].
(Channel phase information is not required for GIWFA.) Rinaby estimating the users’ transmitted
powers, the jammer can use the channel gain estimates thesyre the interference patterns observed
by the users.

It is worth noting that in the situations in which the jammered not have full knowledge about the
interference patterns observed by the users, the scermrgidered in this work can be considered as a
worst case scenario. Indeed, the jammer’s impact on thersyastility is more severe when it has full
access to the interference patterns than if it has part@dssconly. This is because by having full access
to the interference patterns, the jammer can determine aepallocations that minimize the overall

system utility at each iteration of the algorithm.
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B. Convergence Analysis—Synchronous Version

We now present sufficient conditions under which this alponi converges to the unique Nash equi-
librium of the game. Applying [22, Proposition 11.13] it che seen that a tuple of power strategies

{s;}<_, achieves equilibrium if and only if

s; = [s}; + 0V, Ur(S0,815 "+ »Sk_1:Sk, k415" »SK) kel (13a)

)
Sk =SJ Pre

sé::FS+QV%UM&bﬁV'WS%) (130)

.
so=s3d Po
for somef > 0. Since our generalized iterative water-filling algorith®)(9) corresponds to settirdig= 1
in (13), then if this algorithm converges to a power strat@gy},fzo, then it must be a Nash equilibrium
of the game (7). We now present sufficient conditions unddachvthe generalized IWFA converges to
a unigue Nash equilibrium pointn order to do that, we will use the contraction mapping mdtiogy
that was invoked in [10] to study the convergence of stantidfféA. However, a fundamental difference
between the jammer-free case in [10] and the case considetbd current work is that using a certain
transformation, it has been possible in [10] to cast thenigtition problem solved in each IWFA iteration
as a linear variational inequality (VI). However, when a jaar is present, which is the case considered
in this paper, such a transformation is not available, anevaswill show below, this will result in a
non-linear VI that will require significant manipulation arder to be amenable to applying contraction

mapping. In order to proceed with convergence analysis, let

- 7 0 a1 a3 aK1
1 0 0
0 0 asz QK2 Qo1
—Q12 1 0
A= , B= , and g=| @ |, (14)
0 0 0 O K—1 QoK
_alK _a2K ... 1
- - 0 0 0 0|
where we definey, 2 |y, - adil]], for all j € {0} UK, k € K, j # k. Furthermore, for every

ke K, let F;, be aN x NK block-diagonal matrix whose-th 1 x K diagonal block isf;’. That is,
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where thei-th entry of £, [f/'];, i =1,..., K, be defined as follows.
K
[fk] (Sglax 0)2 + Zj:l,j;ﬁk a?ksglax,j
(dg’un k) ( min,k + Smax 0) (Z]K:I,j;ék a?ksr?lax,j + ng)c&in,kd&in,k

maxO 1 1 Sglaxk
16
L o )(d“ R YT )>’ (16)

min, k( min, k max,0 min, k min, k max,k
n 2 n
[fn] o ( max k) dmm k + 2Smax kcmln k(QOkcmm Smax,k) al
dmm k( mm,k) (aOkam k + Smax k)
257 oS”
max,0~ max,k n - ;
+ oG, 1#£k, i€, a7
n n .n o n
Cmin,k(aOkain,k + Smax,k)dmin,k( min,k + Smax 0)
where
1 K
n n,n n
Cmin,k = o < Z Qg + Uk>7 (18)
Ok Nj=1,j#k
1
n _.n n
min,k — Cmin,k + 7 ks (19)
ok,

with 7} being a lower bound or;"”. That is, for every iteration, i} < s;"", Vk € K,n € N. In

Appendix B we show that; is given by

K
Te(n +
= |: Pk + ZO’ — — 1) Z Oé?ksglaXJ — 0L ( )] 5 (20)
7=0,j#k
wheremy, is the largest integer for which
mk—l
(m —1)(o + Z a ;’;(il_P+Zak,

1=0,1#k

is satisfied for all; < my. For each Usek € K we usea,(f) to denote the noise variance that satisfies

a,(f) < USH), foralli=1,...,N — 1. We also user,(-) to denote the tone permutation that satisfy
7r;c 1 7Tk
Ve Z Sy < Y s
Jj=0,j#k
J#k

Theorem 1 (Convergence of GIWFASuppose there exists a scatae (0, 1) such that the following

conditions are satisfied

(1+ H%_ilﬂu) |4~ BI3 + 44 81B) < (21)
K n 4 Dmaxk maxk
max Z max, k mln k ozo,C <741, (22)

mln k) ( mmk+ mdx’c)z
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K
. (O‘gk)?’??l?
m,%nz<( K 7K

k=1

Zj:l,j;ék: a?ksg’lax,j + agksrrrllax,o + JIZL) (ijl,j;ék: a?ksglaXJ + 771? + agksr?lax,o + Jl?)
K K 2 ) = ’
(zjzl,jyﬁk a?ksr?lax,j + agksglax,O + O-IZL) (Zj:Lj;ék: a;}ksrrrllax,j + 77]? + agksglax,O + Ul?)
(23)

+

Then the noncooperative game (7) has a unique Nash equifibrand the iterates generated by the
GIWFA algorithm converges to this unique equilibrium linga
Proof: Fix any equilibrium solution and any starting power alldcat We define the error vector

at each iteration to be the difference between the currewepallocation and the power allocation at
equilibrium. In Appendix A, we show that the conditions (2@3) imply the error vectors converge
to zero at a geometric rate. Since the choice of equilibriwtut®n is arbitrary, it follows that the
noncooperative game (7) has a unique Nash equilibrium. |

Notice that the conditions (21)—(23) only depend on the polmelget of each user, its maximum
allowable power on each tone and the cross-talk coefficietesce, these conditions can be used to draw
insights into the impact that each of these parameters cea tra the system and the users’ utilities.
In Section IV we will present numerical results that showt tfeat scenarios in which the conditions of
Theorem 1 are met, both the users and the jammer convergelsé&/@mvide instances showing that
the violation of these conditions may cause the algorithnodoillate. Before we do that, we provide
some engineering insights into the convergence condiiioii®1)—(23). For instance, let us compare the
condition in (21) with the convergence condition of stamdBA/FA. In order to do that, recall that for

IWFA to converge, it is sufficient for the matrices and B in (14) to satisfy [10]
A7 Bz < 1. (24)
Now, let us assume that (21) is satisfied for some (0, 1), then this condition can be expressed as
1
AT'BI3< —— —c<1 25
A BI < 7o —e< L, (25)

wherea = ”2%71?'@ andc = ||A=1g]3. It can be seen that (25) implies (24), which indicates that t

(1-7)
convergence conditions of GIWFA are, in fact, more stririgban those of standard IWFA.

In order to provide an engineering interpretation of theditbon in (22), we observe that each term

in the summand on the left hand side of this condition is a rtmmioally increasing function of} ;.

This implies that for (22) to be satisfie(ﬂsglam} have to be relatively small. Now, for given power

budgets{ P}, this condition implies that for GIWFA to be guaranteed towerge, each user must not
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10

concentrate its power in a small subset of tones, but rathelistribute its power across many tones. As
we will now see, a similar insight can be drawn from the cdoditin (23).

Condition (23) implies that

N N
min Z sp¥ > min ZnZ’V > 0. (26)
" k=1 " k=1
Thus if SZ’* =lim, SZ’V, then
N
min Z gt > 0. (27)
n
k=1

In words, this says thdbr guaranteed convergene®jery tonen is used by at least one usker Another
insight offered by Theorem 1 is that if the jammer’s maximugmal powerS},.. , on tonen is sufficiently
large so thaty; = 0 for all k, then (23) cannot be satisfied and the convergence of the Gli&/n
jeopardy.In order to gain some intuition into this condition, let uss@er the scenario in which there
is one user, one jammer and two tones, and for ease of expodit us ignore the spectral mask. Now,
assume that the user allocates all its power on the first tanerder to minimize the system utility, the
jammer updates its power so that it allocates all its powehéotone occupied by the user. Now, if the
jammer’'s power is sufficiently high, the presence of the janmill force the user to abandon the first
tone and to allocate all its power to the second tone (thatpsagously abandoned). The jammer again
updates its power in order to jam the user’s signal on thersktme. The user reverts to its initial power
allocation, and so on. Hence, one can see that if the userrdesccupy all the tones at any iteration,
GIWFA may oscillate.

It is worth noting that, based on this insight (which agredathwour numerical experiments), the
oscillation mechanism arises because of the jammer’s tayd® track the tones on which the users
allocate their transmission powers. Now, in standard IVWiR&,users compete to increase their individual
utilities, but they are not particularly interested in mirizing the overall system utility. That is, while
the tracking mechanism is an inherent feature of GIWFA, itdas an inherent feature of standard IWFA.
This observation is reflected in the fact that the conditloat £ach tone be occupied by at least one user
arises naturally in the case in which a jammer exists, wisesaah a condition does not arise in studying

the convergence of standard IWFA for scenarios in which manjar exists; cf. (24).

C. Extension to Asynchronous GIWFA

In Sections IlI-A and IlI-B we considered the case in whick tisers and the jammer update their

power allocations sequentially in a predetermined ordeowting to a common clock. However, in many
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practical scenarios a common clock may not be availableHerusers and the jammer to operate in
such a synchronous fashion. Moreover, even if such a cloakagable, due to practical implementation
issues, either the users or the jammer may not have accdss todst recent multi-user interference. In
this case an asynchronous version of the GIWFA algorithm bwynore desirable and more robust to
implement than a synchronous one.

In a totally asynchronous scheme, the users and the jamndetaifheir power allocations at arbitrary
time instants using possibly outdated multi-user interiee [24]. Under certain mild conditions a
fundamental resulin [24, Proposition 2.1, Chapter &nsures that the asynchronous scheme converges
to a unigue Nash equilibrium of the game (7) if: 1) each usat #re jammer update their power
allocations at least once within any sufficiently large, finite, time interval, and; 2) the iterates contract
with respect to some norm. This contraction condition iscjzely the same as the set of conditions
given in Theorem 1; see also Appendix?An other words, the conditions given in Theorem 1 ensure

convergence of both the synchronous and the asynchronesisng of the GIWFA algorithm.

IV. NUMERICAL RESULTS

In this section we provide a numerical example that illussahe sufficiency of the conditions given in
Theorem 1 for the convergence of the decentralized GIWFAralgn. We also provide an example that
shows that when the conditions in Theorem 1 are violated sieesuand the jammer may fail to converge
and the behaviour of the GIWFA becomes dependent on thalipitint. For the numerical examples in
this section, the number of usefs, = 4, and the number of tone¥ = 10, and the maximum allowable
power per tone is set to be constant across tones for eachasiseell as for the jammer; i.e., we set

o,k = Smax ks n=1,...,10 for k=0,...,4.

Example 1:In this example, the system parameters (icéj?k,ag,Pk,Smax,k,Vj %k k=0,...,4)
are selected at random so as to satisfy the conditions inréhed. The users and the jammer update
their power allocations using the GIWFA algorithm descdiie Section IlI-A. For this scenario, in
Figures 1(a) and 1(b) we plot the power allocations of Useend 2 versus the iteration number for
all the tones. For the same scenario, in Figure 1(c) we pbipthwer allocations of the jammer versus
the iteration number. In each of the plots, three randomlyseh allocations were used to initialize the

fixed-point algorithm. Since the system parameters wersamdo meet the conditions of Theorem 1,

%For the asynchronous scheme the iteration indicesd ~ + 1 in Appendix A ought to be interpreted as the time instants

within which each user and the jammer will have updated theiver allocations at least once.
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Fig. 1. The power allocations of Users 1 and 2 are marked banadl ‘A’, respectively, whereas the power allocations of the

jammer is marked by!’. The GIWFA iterates converge to a unique Nash equilibriurespective of the initial power allocation.

the algorithm converges to a unique Nash equilibrium, reesive of the initial power allocations. In
order to quantify the jammer’s impact on the overall systerfggmance, the sum rate of all the users
over the ten tones is plotted versus the iteration numbeigarg 1(d).

Example 2:In this example, we retain the channel gains of the users a&x@mmple 1. (Since, in
Example 1 the gains were selected to meet the conditionseofém 1, these gains also meet the IWFA
convergence condition (24).) However, the channel gaitisefammer are chosen such that the conditions

in Theorem 1 are violated. In this example, we consider twwloan instances of this scenario. For the
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Fig. 2. The power allocations of User 1 do not converge on thfferent tones.

first instance, we show the power allocations of one of thesuse some of the tones. As can be seen
from Figure 2, on these tones the user’s allocations do noterge, and, in fact, they keep fluctuating.
In the second instance of this example we initialize the GA\Veélgorithm using three different randomly
chosen power allocations. In Figure 3 we plot the sum ratsugethe iteration number in this case. It

can be seen from that the sum rate fluctuates and no equitiisueached.

V. CONCLUSION

In this paper we considered a communication scenario in lwlkicusers and a jammer sharné
orthogonal tones. We modelled this scenario as a non-catipergame, and considered an extension
of the IWFA algorithm to this problem. We derived sufficierdnditions under which the iterates of
both synchronous and totally asynchronous decentraliz8¢F& algorithms converge to a unique Nash

equilibrium. Our theoretical analysis and numerical s@mtiohs show that the presence of a strong jammer
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Fig. 3. By changing the initial power allocation, the itemimay oscillate.

can not only reduce the total network throughout, but alseseaan otherwise convergent IWFA to

oscillate.

Recall that we use;"”

APPENDIXA

PROOF OFTHEOREM 1

and s;”" to denote the power allocated by Userc {0} U K to the n-th

tone at thev-th iteration and at equilibrium, respectively. For the afs$ of Userk € K, it was shown

in [10] that each iteration of the IWFA algorithm in (8) is é@galent to solving the following fixed-point

equation.
1,v 1,v 1 k 1 1w K 1 1lrv—1 1 lv-—-1
Ch 5, —ak—zjzl 1S, —Zj:kH 1S, — Q550
N,v N,v N k N N,v K N N,v—1 N Ny—1
Sk s, — oy, _ijl 1.S; —Zj:kﬂ 5] — oS R
i 1 k-1 1 1w K 1 1lw-1 1 1wp—1
Ok — Zj:l QS — Zj:k—i—l O S; — QxS0
= : : (28)
N k—1 N N,v K N N,yv—1 N N,y—1
|~ 0k — Zj:l QRS — Zj:k—i-l QS5 — Qoo 5,
DRAFT
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where in (28) we have used thaf, = 1 for all n € N, and Hﬁk to denote the projection onto the
polyhedron
N
Pro={(sh s0<sp <SPopn=1....N.> sp =P} (29)
n=1
Note that, in contrast with the polyhedron in (6), in the pagron in (29), the power constraint is

satisfied with equality.
Now, in a similar fashion, the jammer’s can update its poweorider to solve

1 [ sl,z/ + ZK O‘(I)ksi’y |
SO’V 0 h=1 ( I a;ks;yu‘“’}c) ( i1 a;ks},v_i_aéks[l),u_,’_g}c)
Sév’y Sév’y + 30 oty
i ( =1, i aﬁcsf’u"'gi\l) ( =1 aﬁcsjym"‘ar]xcs(])v'u"'”l]cv) 17,

where the seP, is defined in a fashion similar to (29).

Let sZ’* be the power allocation at equilibrium of Uskre K, at tonen € A. Furthermore, let
=50 — s, VkeK, and ™ =" — s (32)

At equilibrium we have
1,% 1 k=1 1 1% K 1 1 1 1=
Sk Ok — ijl XSy — Zj:k—l—l QS — QorSo
: (32)

N * N k=1 N _N,x K N Nx N N
Sk — 0% _ijl OS5 _Zj:k—l—lajksj ~QokSo ] p,

and - T
K I

1+ s - 0k°k

54 0"+ 2k ( K a}ks;,*w}c)( lea;ks;,uragkséﬁra;)

J=1, j#k

(33)

N, * N,* K O‘rz)\;csk

So’ $o. D k=1

= K N, * K N, * N, *

( =1, gk kS +lecv)( jo1 QGks; T Hagyso +Uljcv)

N
We now subtract (32) from (28), and (33) from (30). Using thten+expansiveness property of the

projection operator [10], one can write

1,v i 1 o dp-1 k=1 1 ,1wv K 1 ,1w—1
th — QT =2 =1 Yty = Dk @it
< .
N,v N ,.N,y—1 k—1 N, N, K N Ny—1
b | — QT =i Oty = D ik Gkt
[ 1 -1 1 41y 1 4lr-1
k" ko1 | Ykl k| Ykl
< + E : + E
Jj=1 Jj=k+1 _
N ,.Nv—1 N N,v N N,v—1
| ok ozjktj ozjktj
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k-1 K
< aoullr D aglitl+ D agullty (34)
j=1 j=h+1
where in (34) we have usetf and+” to denote the vector,”,--- ,t; |7 and [r'¥, - ,rNV]T,
respectively, andy;;, to denote|[aj,, -, afi]|,-

Using a technique similar to the one in [10] we can expressirikgualities in (34) for all users

simultaneously in the following matrix form.

¢
Gl |
al s =B g (35)
1%
I -
Nl
where
_ - 0 asn azp - K1
1 0 - 0
0 0 azg --- K2 Qo1
—Q12 1 0
A= , B= , and g = , (36)
0 0 0 - agk-1 Q0K
_alK _a2K .« e 1
- - 0o 0 0 0

and the inequality in (35) is to be interpreted element-wikatice thatA is a non-singulag matrix with
(entry-wise) non-negative inverse. The matixand the vectopf; are also non-negative. Hence using [25,

Property 2.5.3.18], we have that (35) imply that

Ll
I |
<|aB Al e (37)
1#5 ]
[ "
el
If we uset” to denote the vectoht (- H] then (37) implies that
, » IRl
10 < [14-1 Bl 1461 ety | (38)
T

We now turn our attention to the jammer’'s updates; cf. (3@)oider to simplify our exposition, we

will use the following notation.

n _N,* o,’j
B C“mc Z a]ks a(T)Lk’
J=1,j#k

October 1, 2008 DRAFT



17

aok Z a]ks Oégk ) (39)
J=1,j#k
nyx  mok s
dy” =67 + S
n,y __ nuv sp

Using a technique similar to the one used for the users’ @sdahd employing the non-expansiveness

property of the projection operator, we use (30) to write

1,v

1,%
1v PG Sy’ Sy’
" * Zk Lep sy ) dp +sy™)  (ep 450 ) (" +s57)
< : . (41)
N,v N, *
N,v rNv Sk Sk
rr‘ ) - 7 ) - * * * *
+ i L Fsg )dy " +s5) (e "+sg T)(d s ")

Using partial fraction expansion, theth entry of the vector on the right hand side of (41) can be

written as

K n n
U - Z Aok o Aok
(2 + 557" + s +rmv)  (dp + sy ) (dy + sg )

k=1

T, % SZ: sV >
- % n,k\ /U n,V n,* . (42)
Z( T+ sy’ )(d +s57) (" +sp) (" 4 sp7)
Let T¥ be anN x N diagonal matrix with thea-th diagonal entry given by

- Ak 0k
1- o - - - - . 43
;(( Yt sg ) e 4 sgt ) (dp 4 sg )Y + sy + r"ﬂ/)) (43)
Furthermore, lety; be anN-dimensional vector whose-th entry is given by
S n,* STLV
n,v k k
= * % BN ENLE 44
W@ ) G R ) )
Now, (41) can be bounded as follows
K
Il < e+ D
k=1
K
< Il + | 32 |
k=1
Assuming that|Y"[|> < 1, then we have
) K
Il < (1= els) ™ [ k- (45)
k=1

In order to analyze the matriX” and the vector§~;}, we will need a lower bound ogm,””. In

Appendix B we provide a lower boung’ such thatd < n}? < s;"", for all iterationsv, k € K, n € N.
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Using this value ofj;, we can readily derive a lower bound eft”. In particular, if we letcy,; , denote

this bound, then it follows from (39) that

o 1 A
b S e (S ) 2. @9

J 1, j#k W J=1,j#k
Similarly, a lower bound or/,"” can be derived from (40)

I 1
mink = Cmink T a—nm? : (47)
Ok
Now that we have a lower bound aii”, ¢, andd;”” , we can proceed to analyzg™” in (44).

fnl/

From (44), we have Our goal is to boufigl,””'} as a linear combination q K . This requires some

detailed computation which we present below. By definitioe, have
o R SR ) — S s+ s
(cp™ 4507 )(d," + sy’ )( a8 )dy +507)
= (0 Plsr” = sl so s (e + ) — s (e + )|
T N S )

n,*x n,v 'I’l nl/ n*dn*
4 | Sk Ck k Cr 9 |
% R % % n,v ¥
(ck +80 )(d +30 )( C +30 Md," +s07)
- (sg’*)2]s"’* — 52" + ‘s e YY) = syt (et + dy )‘
> dZ’VdZ*( +30 *)(cz,l/ +387*) n7*dn,*dn,u( n,v +3() )

|77/* n,v nl/_ n,v n*dn*|
S € Oy Sk Ck

G+ + G+ NG+ 55) “o
c ShadPIET Shels O ) — (G )
= TTETG S+ ) T S
|Sn * QY Y GV *dn’*|
+ k Yk Yk k k Yk (49)
(" + 80" )(dn Tt s ") (e +sg ) (A +sg77)
(Sgax,O)2‘tZ’y‘ Sglax O|S * + dnﬂ/) B Z’V( Z’* + dZ’*)‘
B ( gﬂn,k)2(cgin,k + SrrrLlax,O)z Z *dZ’*dZ’V( ot Srrrllax 0)
s* nu n,v nucn*dn*|
Sk k Sk Cg
L Zudn 5%

where in (49) we have used the fact that both the first and thenskterm of (48) are monotone increasing
in sg™
Next we bound the third and second term in (50) separatelya| € denote the third term of (50).

Then, using the definition of;"” in (40), we obtain

‘Sn* n,v nu_snucn*dn,*‘
n,v k k k k k
ak n,* N,V jn,v

k Ck
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‘SZ *czu(cz,l/ + Z;;l:) . SZ ch*(cz,* + Z;;L;)
- n,* N,V m,v
k Ck O
sn*snu N2 #\2
P ) o
ok MU .U
k Ck g
S; 5;"‘0 ’_’_ ’Sn *( nl/)2 _( Z,* +tZ7I/)(CZ7*)2’
< nk MU _gn,v
k Ck O
_ L S I G (oA R A I A (G
- ck dZ *CZVdZV
e R e I S
— T, * LU T, * *
P T o L A R
( glax,k) [ CZ*’ Sl + e ey — el tp e
< 5 mdxk 5 ok v, SN 4V VY Y (52)
G (Chin,e)* (Chainye + —05) o e (o + =at)dy k Tk Tk
. (Sglax,k) |Ck _Ck | maxk|c _CZ’*| maxk|c C?*|
- Sr’,;ax Smax 5 Smax, )
O (i)l + —am)2 (™ + =) d)” (e + Sat)dy”
|tnu n,x
b S 9
(" —I—OC"—gk)cZ rdrY
(S Sl — i
- Sr’,:lax, S;Llax ) S
agk(cglin,k)2(cgin,k agkk)2 c&ln kdmm k( min,k + a%k) (CZ* + ofgk )Cg’lin,kdgﬂn,k
(53)
2 K
< < ( g’lax k) + 251?1an > Z a”k\t"’l’]
- lnax Smax J j
(agk)2(cgin,k)2( min, k + kk)2 aOkcmm kdmm k(cgunk + onkk) J=1,j#k

Ity |Zj—1 ok QS max,j

K
(Zg 1, j#k a]kSmaxj + Sk ) mln kdrnle k

)

(54)
2 K
( ryrllax k) dzlin k + 2Srrrllax kc?nin k(agkcglin k + Sryrllax k) Z am |tn,u|
= Lt
d?mn k( ?nln,k)2(a0kcm1n k + Srrrllax k) j=1,j#k T
K n qn
> oS )
+ Z]—Lﬁék jk*~ max,j Z’V|’ (55)

K n qn ny.n n
(Zj:l,j;ék ajksmax,j + nk)cmin,k min, k

where in (52), we have used that the first term in (51) is mamiogdly increasing in botfs;"* ands}"”,

and that the second term in (51) is monotonically increaging*. Similarly, in (54) we have used the

fact that in (53), the last term is monotonically increasing;,”*
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We now consider the second term in (50). Denoting this ternd, 3% we have,
Sglaxo‘sn*( Z,V_’_dn,u) ZV( % dn*)|

bTL,l/ —
g *dZv*dZvV( i + SI?laX7O)
Sl (Y 4 ) — (517 + ) )
¢, dy "R (e + Shhaxo)
_ maxo‘sn*( Z,V_’_dz,u n* dn*) tz,l/( n*_’_dn*)‘
oy dy ”( 1+ Shaxo)
Sglax Osk |C + dZJ/ o CZ* o dZ’*| max O|t |( T+ dn’*)
n*dn*dnu(cz,u_‘_sglax’o) Cz*dn*dnzx( nzx_‘_sgl )

- Sn Osk |C + dzﬂl - C?* - dz7*| max 0|t | max 0|t |

T TG S | AR S | A+ S

9 K 9 9 b b
< Sﬁlaxosz*(2 Zj:l,j;ﬁk a?k|t?l/| + |tZV|) n 0|tnu| + n 0|t7H/|
- % 5k k) 5k k)
o e (e + Sofgk )" (" + Stk o) dy " dy; V( r T Shaxo) o dy V( i T Sthaxo)
(56)
K b b 9 9
Sglax SrrrLlaxk(2Z] 1,j7éka?k‘tﬂ1j’+‘tn1j’) + rrrllax0|tny| rrrllax0|tny|
627 (agkck + Smax k)d;cwj( i + SrrrLl ) dZ’*dZ’V( i + Smax 0) CZ’*dZ’V( i + Sr?lax,(])
(57)
S oS (2505 am ] 1)) n . .
max,0~ max,k 7=1,j#k “5k1%j k max,0 ( + )|tn,1/

= k

Cglin,k(agkcglin,k + Sr?lax k)dg’lin,k(cglin,k + Sr?lax,o) dg’lin,k(cg’lin,k + Sryrllax 0) g’lin,k Cg’lin,k

K

o Smax OSmaxk Z am |tn,u|
= Bt

Czlin,k(OZOkam Srrrllax k)d?nin,k( min,k + Smax 0) j=1,j#k T

n n

0 1 1 max,k n,v

+ max, < + + ) )’tk7 ‘7 (58)
dglin,k (C&in,k + Sr?lax,O) d Cglin,k Cﬁlin,k(agkcgin,k + Sglax k)

glin,k
where in (57), we have used that the first term in (56) is mamogdly increasing ins;”

Using the bounds on}”” andb,"” in (55) and (58), respectively, the scatgl” in (50) can be now
bounded by a linear combination {)rft" ”|} " .. In particular, letf} be al x K row vector whose entries

are defined as,

n 2 K n qQn
mink)” (Cninge + Shasx,0 (22521, ok Qi Smmax,s 70 ) Cnin i Tmin
Tax,0 ( 1 N 1 N max,k ) (59)
dgun Rk T Shaxo) \dimingk  Cmingk  Cmink Q0 ming T Sax) /)
0 = ( rrrllax,k)2dm1n gkt 28 kCmin & (Q0kCmin & T Sthax.k) ol
A 1 (Cin 1) (G Cnin & + St )
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257 oS”
max,0~ max,k n .
+ v (a8 dr (et 4 ST )aik’ i#k, (60)
min,k\""0k “min,k max,k/ " min,k \“min,k max,0

and let
in’y = Ht?’l/‘? ) ‘t?(’l/ ]T' (61)

Using (59) and (60);,"” can be now bounded by
< . (62)

Hence, the vectory/ can be element-wise bounded by the product ofharx N K block-diagonal

matrix, F, and aK N x 1 vector whose entries aqey’”|,n =1,...,N,k=1,..., K. In particular, we
define ) )
fl% 0O --- 0
0 2 .00
et ay (63)
KU y
and write
Tk < Fit”, (64)
wheret” is defined as ~
tl,l/
= (65)
tN,I/
Substituting from (64) into (45), we obtain
K
Il < (=)~ [0 B e (66)
k=1
Now using (38), we have
, il ) o
Il < = 1) | S A (1Al nas] || (67)
k=1 [l
Writing (66) along with (38) in a vector form yields
= _ 0 A" Blla A8l | |l

1 - v -1 K -1 1 v—1 ) (68)
e I o Pt D o oY | I [ 7 0 TP T B

where the inequality is to be interpreted element-wise. #ligent condition for convergence is to have

1 0 A= B2 [[A7'5]

N < 1L (69)
0 (=TS B, ] (14 tBl2 1A

2
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In Appendix C, we show that the condition in (69) is equivalemthe condition that

(1+0- ur”Hz)—?Hfj Fl) (1A Bl + 14751) < 1. (70)
k=1

Now, || T"||2 is the only iteration-dependent entry in (70). Observe thatleft hand side of (70) is a

monotone increasing function ¢ff”||,. Hence, for (70) to hold, it is sufficient to have
2 <, (71)

wherer is an iteration-independent constant, that satisfies

(1+0- ﬂ*(\f Fl) (147 Bl +1475)) <1 (72)
k=1

We now consider the diagonal matrik”; cf. (43). The spectral norm of this matrix is given by the

maximum absolute value of its diagonal entries. Hence, dteioto satisfy (71), we must have

S gy, gy,
max| 1 — * + - * ¥ <, 73
2 ;((CZ’V—FSS’ O T ) (@t s @+ sy +7“"7V)> (73)

- Ok Ok
min| 1 — - - — - - >—7. (74
n Z((CZ7V + ng )(CZ’V + ng + Tnﬂ/) (dZvV + ng )(dZvV + ng + Tn,l/)) ( )

k=1

We begin by considering the condition in (74). This conditaan be written as

- Ak Ak
max = = — = = <7+1 75
i ;((CZ’V—FSS’ & s 1) @ @ e +rw)> (75)

Let x; denote the term on the left hand side of (75). We first note ¢lagh term in the summand is a

monotonically decreasing function of-”. Sinces(™ + r™" = s(** > 0, x1 can be bounded as follows.

= Qo o
< max > —
X Z((a“wsg“ Yo T (d 4 sy )d"”>

- maxza de")? = () + 85" (d” — )
0k + sq *) n, V(dz,y + sg,*)dz,u

Sn,u(2cz,u +86L,* + sz:)

_maxz L AT (76)
o1 (0 F s )e (e + s + ) (e + )

One can check that each term in the summand in (76) is a madpatigndecreasing function of}"”.

Hence, we have

sn
2ck + sg’* + tmaxk)

Qo

S

maxk(

X1 <maxz o (77)

Sn' Snv .
i1 (Y 55 )t (et + sp™ 4 ek (oY 4 ek

n n
A0k QAo
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Similarly, each term in the summand in (77) is a monotonycdécreasing function of,"”. Hence,

K
X1 = my?xz

Sihax Sthax.k )
k=1 (ann,k + 887*)C&in,k(cglin,k + 887* + agk’k )( mm k + e k)

Finally, one can check that each term in the summand in (78)nmsnotonically decreasing function of

STL
n n % max, k
Smax,k(QCmin,k + S0 + n )

Qo

(78)

sy”". Therefore, we can write

X1 < maxf: l’rrllax k(2 mln k + md:k)

k=1 ( gln k)z( mlnk + mz);k)2

Therefore, a sufficient condition for (74) to be satlsfled is

K Sn 26 + mdx k)
tmax Z mohCming G5 (79)
) ( + max k )2
mm k Chin k

We now proceed to provide a suff|C|ent condition for (73) toshésfied at all iterations. This condition

can be written as

i Xk aly
= min n,* * — * - Z 1 - 80
" ;< sy ) e o sg ) (dyY 4 sy ) (dRY sy A ) (80)

Noting that each term in the summand is monotonically destngain ™", we have

o «
e g< TS Spg) @ B F Spoaeg)

sy () + 5 ’"< Y S0 + )

ag, oy
= mln Oé
Z Ok n Y + SO )(CZW + Sglax O)( + SO )(d?l/ + SI?laX,O)
K Sn v 1
: k
= min ¥ (81)
n ; (ch” + Sthax0)(dy” + Sihax0) ( RN >
K Sn v 1
> min k ( + >, (82)
n ; (CZJ/ + Sg’lax,O)(dZW + Sglax 0 maX,O d;cw/ + Sglax,O

=

3
>m (o) SZV

in E (
~n K n qn n qQn n 2 K n Qn n
PN O D O Shhaxj T X0k Smax,0 + ar)” (X5 ik kS max ; T s+ St 0+ o))

(g )5

K K 2>’
(201, e O St + QS0 +01) (5, jok OSinanj + 51 + A Sthaxo + o7)
(83)
where (82) follows from observing that each term in the sumaniaa (81) is monotonically decreasing

+

in sy Since (83) is a monotone increasing functionsgf’, we can use the lower boung < s;"”
(cf. (101)) to write

al 3,’7n
2>m1nz< (2%) Kk

(Zy 1, j#k a]kSmax] + CYOkSmaX 0 + Uk) (ZjZI,j;ék a?ksr?lax,j + nl? + agksg’lax,o + O-l?)
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(agk)gni? )
K K 5 |-

(3071, 2k VSt + QS0 + 01 ) (1, jozk VSt + 1 + 0k Sthax0 + 0F)
(84)

_l’_

Now, a sufficient condition for (80) to be satisfied is to have
n \3,,n
mm Z( (C;Ok) 17(7;3
(ZJ 1, j#k a]k:SmaXJ + aOkSmax 0 + Uk) (Zj:Lj;ék a?ksglax,j + 771? + agksglax,O + O-l?)
(o) i > >1—7
K K 2 ] =
(zjzl,jyﬁk a?ksglax,j + agksrrrllax,o + o-lrcl) (Zj:l,j;ék a?ksg’lax,j + nlrcl + agksrrrllax,o + O-I?)
(85)
In summary, if conditions (72), (79), and (85) are simultangy satisfied, the GIWFA iterations

_|_

are guaranteed to converge to a unique Nash equilibriumt pairthe non-cooperative game (7). This

completes the proof of Theorem 1.

APPENDIX B

A LOWER BOUND ONs;"”

Denote the interference level observed by Uker K on then-th tone at thev-th iteration byI,”,

where
= Za;‘ksn R Z a;‘ks” vl + agpsy” ' (86)
j= j=k+1
Since
V< Sl ks YMEN (87)

an upper bound oi,”” can be expressed as

K
IIZLW < I:ILlax,k = Z SITILIaX] (88)
§=0,j#k

For everyk € K, let the permutationr,(-) be defined such that

7Tfc(l) k(1) mc(?)

Wk(N)
ax k k

I (89)

max,k *

axk

+ 17

Before we proceed with our analysis, we provide a brief dismn regarding the IWFA algorithm.
Userk’s v-th iteration of this algorithm is depicted in Figure 4. Instfigure, we denote the water-level
by . Now, at each iteration, one can categorize Meones into three classes; tones on which User

allocates powes; tones on which Usek performs standard water-filling, and tones on which User

ax,k’

puts no power. It is clear from Figure 4 that while the powéoadted by Usek on the first class of tones

is not affected by the increase in water-level, if that exisea certain level, the power allocated on the
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n,v
Ik
n
Tk
v
M/C _______________ I
Srnax,k l
Smax,k
1 N

Fig. 4. At thev-th iteration, Userk uses powes; " to water-fill over noiseg;, and interferencd,”.

remaining tones can only increasguf increases. Furthermore, we note that the constraints ns@ve

to increase to the water-level. In other words, if the caists in (87) were not enforced, the water-level
would decrease in order to bring the power level in the redmetones up to the water-level. Since in
this section we are considering a lower bounds@’f, a worst-case scenario would be to assume that

none of the constraints in (87) is active. In this case we have
m(n)y v Iﬂk(n),l/ T (n)\14 v N 90
S, = [uy, — (I +o )T neknN, (90)

where[-]* denotes the projection onto the non-negative real line.

Assuming, for simplicity of exposition, that at theth iteration the noise plus interference assumes
distinct values on each tone, it is possible to ideniifywater-level intervals. In particular, the water-level
within a certain interval would only cover a certain subdfetomes. Let the number of tones covered by
water at thev-th iteration bem and let these tones be denotediayl), ..., 74 (m}), where, unlike (89),
7r(+) is an iteration-dependent permutation of tones such that

oW | iy ¢ G@) | @y o RN N (91)

Our goal is to find a lower bound om}, and to identify the tones that Usgre K is guaranteed to

activate at every iteration of the GIWFA. For the tongg1), ..., 7, (my), the term inside the square
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brackets (90) is non-negative, and this term is strictlyatieg for all remaining tones. Using this notation,

we can express the water level explicitly as

v L A i, el
= (P + ;(Ik + o). (92)
Substituting from (92) into (90), and noting that the choaden is such the term inside the square

brackets (90) is non-negative for glifor which
e () € {7k(1), ..., Tr(my)} (93)
s mi (pk + 3 a;jk(“)) — (19 1 6T9) ) for which (93) holds (94)
k i=1

Observe that if for ther;(j)-th tone (93) does not hold, then the definitiomaf implies thatszk(j)”’ =0,

and this tone is not used by Uskrat thevth iteration, and hence is not in the set of interest.

Let my € {1,...,N} be the desired lower bound on}. Furthermore, Iei'a,(f) denote the noise
variance of Usek € K that satisfiew,(f) < 0,(:+1) fori =1,...,N — 1. We will show that ifm,, is

defined to be the largest integer for which

(mp = DoV + 1) < P+ Y o), (95)
=1
is satisfied for allj < my, thenm;, < mj, Vv. Sincem,, satisfies (95), them, also satisfies
(me = V(oD + 1y < por Y0 (oD 4 0, (96)
(i) 5)

where7(-) is the permutation of tones defined in (91). This is becauseitht hand side of (96) is at
least as great as the right hand side of (95) and the left higiedis less than or equal to the left hand
side of (95).

Now, (96) is equivalent to writing

mik (P+ i(z}jk“’” + o) = (O 4 o) = 0, (97)

We now compare (97) with (94). Since by definition}, is the largest integer for which the right hand
side of (94) is greater than or equal to zero, we concluderthais less than or equal tox;. However,
from (95), we note that the definition of;, does not depend on the iterations. Hence, from (95), we

know that the tones(1),...,mx(my) are going to be activated by Uskrin each iteration.
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Using the fact thatn,, is a lower bound on the number of tones that are going to beatetl, we can
write a lower bound on the water level; at thev-th iteration. In particular, using (92) and (93), it is

easy to see that
v 1 s Tl 7 Tl 7 sV
#kZN(Pk+Z(Uk()+Ik() ))- (98)

Now, substituting from (98) into (90), we have

T > % (P + Z o) - (1- %)I}jk(")’” - Uzk(n)]+, YneN, (99)
> % (Ps + Z o) - (1- %)Iggﬁjj; — o] T Vmew, (100)
r1 LA 1\ — +
= [T EAY ) - (1-5) X eRsi —op ™, vmen. o)
- i=1 J=0, 37k

Finally, we definen; as

mp K
n A 1 (7 1 n qn n +
2R ) (51D X S — o] (102)
i—1 =0, j#k

wherem,, is the largest integer for which (95) is satisfied, and theetparmutationsr,(-) are defined

in (89) for all k € K. Hence, from (101) we have thaf is an iteration-independent lower bound on
Sk’ .
APPENDIXC

PROVING THE EQUIVALENCE OF(69) AND (70)

In order to show that the condition in (69) is equivalent tattim (70), we notice that the x 2 matrix

on the right hand side of (69) is rank 1. Let us denote thisimaly 7; i.e.,

|A='Bll2 [|AT'B
|A='Bll2 [|A7'B

1 0
0 (L= 1" ll2) M IS0y Fille

The condition in (69) is equivalent tpZZ7 || < 1. However, becaus# is rank 1, thenZZ7 is also

7 = (103)

rank 1, and we have
K
1227 s = Te(227) = (14 (L= 1T 2) 720 Y BlB) (AT BI3 + 147812 <1, (104)

k=1
which is the condition given in (70).
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