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Spectrum Management for Interference-limited
Multiuser Communication Systems

Shunsuke Hayashi‡ and Zhi-Quan Luo†

Abstract—Consider a multiuser communication system in a
frequency selective environment whereby users share a common
spectrum and can interfere with each other. Assuming Gaussian
signaling and no interference cancelation, we study optimal
spectrum sharing strategies for the maximization of sum-rate
under separate power constraints for individual users. Since the
sum-rate function is non-concave in terms of the users’ power
allocations, there can be multiple local maxima for the sum-
rate maximization problem in general. In this paper, we show
that, if the normalized crosstalk coefficients are larger than a
given threshold (roughly equal to1/2), then the optimal spectrum
sharing strategy is frequency division multiple access (FDMA).
In case of arbitrary positive crosstalk coefficients, if each user’s
power budget exceeds a given threshold, then FDMA is again
sum-rate optimal, at least in a local sense. In addition, we
show that the problem of finding the optimal FDMA spectrum
allocation is NP-hard, implying that the general problem of
maximizing sum-rate is also NP-hard, even in the case of two
users. We also propose several simple distributed spectrum al-
location algorithms that can approximately maximize sum-rates.
Numerical results indicate that these algorithms are efficient
and can achieve substantially larger sum-rates than the existing
Iterative Waterfilling solutions, either in an interference-rich
environment or when the users’ power budgets are sufficiently
high.

Index Terms—FDMA optimality, multiuser communication
system, spectrum management, sum-rate maximization

I. I NTRODUCTION

I N a multiuser communication system, interference mit-
igation is a major design and management objective.

A popular approach to minimize multiuser interference is
Frequency Division Multiple Access (FDMA) whereby the
available spectrum is divided into multiple tones (or bands)
and shared by all the users on a non-overlapping basis. Such
‘orthogonal channelization’ approach is well-suited for high
speed structured communication in which quality of service is
a major concern. However, FDMA also has major drawbacks
such as high system overhead and low bandwidth utilization.
The latter is due to the fact that a frequency tone, once
assigned to a user, cannot be used by any other users even
if it is not fully utilized.

With the proliferation of various radio devices and services,
multiple wireless systems sharing a common spectrum must
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coexist [1]. In such scenarios, system-enforced FDMA so-
lution may no longer be feasible or desirable, and we are
naturally led to a situation whereby users can communicate
simultaneously over a common spectrum, potentially causing
significant interference to each other. For such a multiuser sys-
tem, each user’s performance depends on not only the power
allocation (across spectrum) of his own, but also those of other
users in the system. Thus, proper spectrum management (i.e.,
power control) is needed for the maximization of the overall
system performance. Spectrum management problem of this
type also arises in a digital subscriber line (DSL) system where
multiple users communicate with a central office through
separate telephone lines over a common spectrum. Due to
electro-magnetic coupling, signals transmitted over different
telephone wires bundled in close proximity may interfere
with each other, resulting in significant signal distortion. In
fact, such crosstalk is known to be the major source of
signal distortion in a high speed DSL system [2]. Hence,
for both wireless and wireline (DSL) applications, judicious
management of spectrum among users can have a major impact
on the overall system performance.

For many communication systems, a reasonable measure of
overall system performance is the sum of achievable rates of
all users in the system. The maximum achievable sum-rate
(subject to individual power constraints) corresponds to the
social optimumof the system. Ideally, we would like to enable
the users in the system to reach the social optimum through
a distributed mechanism whereby the users’ power levels are
adjusted only locally. Unfortunately, in a frequency selective
environment and assuming Gaussian signalling, the sum-rate
(in the sense of Shannon) turns out to be a non-concave
function of individual user’s power allocations. Consequently,
the problem of maximizing the sum-rate has multiple local
maxima, which in turn makes the computation of a globally
optimal spectrum sharing solution difficult (indeed, NP-hard as
shown in this paper). Obviously, the distributed maximization
of sum-rate constitutes an even more formidable computational
challenge.

Recently, some researchers proposed several spectrum man-
agement algorithms based on duality theory [3], [4], [5], [6]. In
these algorithms, the authors aim to solve the Lagrangian dual
relaxation problem instead of the original sum-rate maximiza-
tion problem. Although the dual problem can be decomposed
to lower dimensional problems and their objective functions
are convex, it is difficult to solve it exactly since the evalu-
ation of the dual objective function involves a non-concave
maximization. Moreover, the duality gap can still be positive
for any finite number of tones, so the optimal dual solution
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can only provide an upper bound on the social optimum.
In other words, the dual decomposition based algorithms as
prescribed in [3], [6] cannot solve the original primal spectrum
management problem due to the existence of a positive duality
gap1. Another class of spectrum management methods (first
proposed by Cioffi and Yu [2] and later studied in [8], [9],
[10], [11], [12], [13]) are based on game theoretical concepts
whereby users maximize their individual rates in a distributed
manner using the well-known water-filling strategy. In this
framework, the spectrum management problem is viewed as
a non-cooperative Nash game in which each player’s payoff
function is his data rate, and every user greedily updates its
power spectrum by treating other users’ signals as Gaussian
noise. When crosstalk interference is small, the resulting
distributed algorithm (called iterative water-filling algorithm,
or IWFA herein) is known to generate a sequence of power
allocations converging to a unique Nash equilibrium point of
the non-cooperative game [12], [13], [11]. When the crosstalk
interference is strong, there may be multiple Nash equilibrium
points and the convergence of IWFA is unknown, though
empirical evidence suggests the algorithm still converges.
Despite its distributed nature and simplicity, the sum-rate
achieved by IWFA can be far from the social optimum; see
the simulation results in Section VI.

How should users in an interference-limited communication
system share spectrum in order to achieve the social optimum?
The answer depends on the communication environment. In-
tuitively, if the crosstalk interference is absent or low, then all
users should utilize the entire spectrum simultaneously. On the
other hand, when the crosstalk interference is significant, the
users may be much better off if no spectrum is shared, there-
fore giving rise to a self-induced (rather than system-enforced)
FDMA solution. Our interest in FDMA type solutions is two
fold. First, it is of practical interest to characterize how strong
the crosstalk interference has to be before FDMA strategy
becomes sum-rate optimal. The answer to this question will
not only provide valuable insight into the structural property
of optimal power allocation strategies, but also help simplify
the spectrum management problem since it allows the users to
narrow their search to FDMA type solutions only. The latter
is a much simpler design problem than the general nonconvex
sum-rate maximization problem. Second, there exist simple
distributed algorithms that can determine the optimal FDMA
type solutions, regardless of their overall optimality for the
general sum-rate maximization problem. It turns out that
FDMA solutions obtained this way can offer substantially
higher sum-rates than the existing IWFA method in certain
situations.

The structural property of optimal spectrum sharing strate-
gies has been recently studied in [14] for a frequency flat
environment. It was shown that the optimal spectrum sharing
strategy is FDMA when the product of normalized crosstalk

1It is worth noting that the authors of [6] claimed that the duality gap is
zero if a certain “time-sharing” property holds. They also used an intuitive
(but non-rigorous) argument to show that the time-sharing property holds
approximately when the tone spacing is narrow. A rigorous treatment of the
issue is needed to substantiate this claim and to estimate the size of duality
gap, see [7].

coefficients between each pair of users is greater than 1.
Moreover, when restricted to the FDMA strategies, the optimal
bandwidth allocation can be computed easily using convex
optimization. In this paper, we study the same problem, but
for a more practical frequency selective environment. As it
turns out, frequency selectivity greatly complicates the sum-
rate maximization problem — it makes an otherwise computa-
tionally easy problem intractable, even if the number of users
in the system is only two.

The contribution of this paper is two fold. First, for the
two-user case, we show that, if the pairwise products of the
normalized crosstalk coefficients at all frequency tones are
larger than a certain threshold value14 (1 + 1

C−1 ), with C
being the minimum number of tones used by any user), then
the optimal spectrum sharing strategy for the maximization of
sum-rate is FDMA. If, in addition, each normalized crosstalk
coefficient is greater than1/2 for all users at each frequency
tone, then FDMA remains sum-rate optimal for the case of
arbitrary number of users. Second, we restrict ourselves to the
FDMA strategies and study, for a given channel condition,
how to find an optimal bandwidth allocation which maximizes
the sum-rate. We show that this problem is NP-hard and
propose several simple algorithms to approximately maximize
the sum-rate. Numerical results indicate that these algorithms
are efficient and can generate higher quality solutions than
IWFA when the crosstalk coefficients are sufficiently large.

This paper is organized as follows. In Section II, we describe
the system model and give some mathematical preliminaries
on the first and second order necessary conditions for local
optimality. In Section III, we derive a sufficient condition
under which the global optimum of the sum-rate maximiza-
tion problem possesses the FDMA structure. Our proof is
based on an analysis of quasi-convexity using the gradient
vectors and Hessian matrices of sum-rate function at each
frequency tone. In Section IV, we further provide a sufficient
condition for the existence of a local maxima of the sum-rate
function (subject to individual power constraints) that has the
FDMA structure. In Section V, we establish the NP-hardness
of the sum-rate maximization problem and propose a simple
distributed algorithm and two polynomial time combinatorial
search algorithms for finding a FDMA solution with maximal
sum-rate. Numerical results are reported in Section VI, and
the concluding remarks are given in Section VII.

Throughout the paper, we use the following notations. We
denote the set of frequency tones and users byN and K,
respectively, i.e.,N := {1, . . . , N} and K := {1, . . . , K}.
Also, we use superscriptn to denote the frequency tone index
and subscriptk to denote the user index.

II. PRELIMINARIES

We first describe the frequency selective Gaussian interfer-
ence channel model and the mathematical formulation of the
sum-rate maximization problem. Then we derive the first and
second order conditions for sum-rate optimality.

A. Channel model and the sum-rate maximization problem

Suppose there areK users sharing a common spectrum
which is divided into N frequency tones numbered by
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{1, 2, ..., N}. For notational simplicity, we assume that each
user acts both as a transmitter and as a receiver2, and we
number the transmitters and receivers by the same index
set {1, 2, ..., K}. In this way, a physical user may act as
transmitterk and receiverl, with l 6= k. Let xn

k denote the
transmitted complex Gaussian signal from transmitterk at tone
n, and letSn

k := E|xn
k |2 denote its power. The received signal

yn
k is given by

yn
k =

K∑

l=1

hn
lkxn

l + zn
k , n ∈ N , k ∈ K,

wherezn
k ∼ CN(0, N0) denotes the complex Gaussian chan-

nel noise with zero mean and varianceN0, and the complex
scalars{hn

lk} represent channel gain coefficients. In practice,
hn

lk can be determined by the distance between transmitterl
and receiverk. Assuming that the interference is treated as
white noise, we can write transmitterk’s achievable data rate
Rn

k at tonen [15] as

Rn
k (Sn

1 , . . . , Sn
K) = log

(
1 +

|hn
kk|2Sn

k

N0 +
∑

l 6=k |hn
lk|2Sn

l

)
,

Upon normalizing the channel coefficients, we obtain

Rn
k (Sn

1 , . . . , Sn
K) := log

(
1 +

Sn
k

σn
k +

∑
l 6=k αn

lkSn
l

)
, (1)

where σn
k = N0/|hn

kk|2 denotes the normalized background
noise power, andαn

lk = |hn
lk|2/|hn

kk|2 is the normalized
crosstalk coefficient from transmitterl to receiverk at tone
n. Due to normalization, we haveαn

kk = 1 for all k.
Notice that unlike the frequency flat case considered in

[14], the channel coefficientshn
lk vary according to tone

index n due to frequency selectivity, resulting in a non-
constant normalized noise powerσn

k across tones. As it turns
out, this crucial difference greatly complicates the sum-rate
maximization problem in the frequency selective case, making
the computation of optimal power allocations computationally
intractable; see Section V.

Throughout, we assume that transmitterk’s power is
bounded byPk > 0, i.e.,

N∑
n=1

Sn
k ≤ Pk, for k ∈ K.

For a given power allocation{Sn
k }, transmitter k’s total

achievable data rate is given by
∑N

n=1 Rn
k and the total

sum-rate is given by
∑K

k=1

∑N
n=1 Rn

k . Hence, the sum-rate
maximization problem can be written as follows:

maximize
{Sn

1 ,...,Sn
K}N

n=1

K∑

k=1

N∑
n=1

log

(
1 +

Sn
k

σn
k +

∑
l 6=k αn

lkSn
l

)

subject to
N∑

n=1

Sn
k ≤ Pk, Sn

k ≥ 0, ∀n ∈ N , ∀k ∈ K. (2)

2There is no loss of generality with this assumption since we can always
create a virtual channel with zero channel gain coefficients between pair of
users who do not wish to communicate.

It can be easily seen that userk’s total achievable data rate∑N
n=1 Rn

k is concave for userk’s power vector(S1
k, . . . , SN

k )
when other users’ power vectors are fixed. However, the total
sum-rate function

∑K
k=1

∑N
n=1 Rn

k is in general non-concave
even if other users’ powers are fixed, since userk’s powerSn

k

appears in the denominators of other users’ data rate function.
When interference is absent (or small), it can be easily

checked [14] that signal spreading across spectrum is optimal.
In other words, if the crosstalk coefficients are sufficiently
small, then all frequency tones should be utilized by all users.
On the other hand, if the crosstalk coefficients are large, then
the communication system becomes interference limited, and
spectrum sharing is no longer optimal. Intuitively, FDMA
should yield a larger sum-rate in this case. Mathematically,
FDMA property is defined as follows:

Definition 2.1: A feasible solution{Sn
1 , . . . , Sn

K}N
n=1 of the

sum-rate maximization problem (2) is said to have FDMA
property, if the following implication holds for all(n, k) ∈
N ×K :

Sn
k > 0 =⇒ Sn

l = 0, ∀ l 6= k.

B. First and second order optimality conditions

In this subsection, we give some necessary or sufficient
conditions of local optimality for (4). Since those conditions
can be derived directly from standard optimization theory [16],
[17], we simply state the results without proofs.

To simplify our notations, we letSn, Sk, andS denote the
power vectors at tonen, for userk, and in the whole system,
respectively, i.e.,

Sn := (Sn
1 , . . . , Sn

K) ∈ <K ,

Sk := (S1
k, . . . , Sn

k ) ∈ <N ,

S := (S1
1 , . . . , SN

K ) ∈ <NK .

We denote the power budget vector byP, i.e., P := (P1, . . . ,
PK) ∈ <K . Also, we denote the noise plus interference power
for userk at tonen, and the sum of all users’ data rates at
tonen by Xn

k andfn, respectively, i.e.,

Xn
k (Sn) := σn

k +
∑

l 6=k

αn
lkSn

l ,

fn(Sn) :=
K∑

k=1

Rn
k (Sn) =

K∑

k=1

log
(

1 +
Sn

k

Xn
k

)
.

(3)

Note that Xn
k and fn depend onSn only. We adopt the

following short notations for the first and second derivatives
of fn:

∂kfn(Sn) :=
∂

∂Sn
k

fn(Sn), ∂klf
n(Sn) :=

∂2

∂Sn
k ∂Sn

l

fn(Sn).

With these notations, we can rewrite the sum-rate maximiza-
tion problem (2) as follows:

maximize
S1,...,SN

N∑
n=1

fn(Sn) (4)

subject to
N∑

n=1

Sn ≤ P, Sn ≥ 0, ∀ n ∈ N ,
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where the vector inequalities are to be interpreted componen-
twise. Finally, we define the following index sets which will
be convenient for describing the FDMA property of a feasible
power vector.

Definition 2.2: For a feasible solutionS of problem (4), we
define the following sets.

T (S) := {(n, k) |Sn
k > 0} ⊆ N ×K,

Tk(Sk) := {n |Sn
k > 0} ⊆ N ,

T n(Sn) := {k |Sn
k > 0} ⊆ K.

Note thatTk(Sk) denotes the set of all tones used by user
k, andT n(Sn) denotes the set of all users using tonen.

Definition 2.3: For a feasible solutionS of problem (4), we
define the tone sets by

NO(S) :=
{

n
∣∣∣ |T n(Sn)| = 0

}
,

NI(S) :=
{

n
∣∣∣ |T n(Sn)| = 1

}
,

NII(S) :=
{

n
∣∣∣ |T n(Sn)| ≥ 2

}
,

where|T n(Sn)| denotes the number of elements belonging to
T n(Sn).

Since|T n(Sn)| implies the number of users whose transmit
power is allocated to tonen, power vectorS has FDMA
property if and only ifNII = ∅. In the ensuing discussions,
we often omit the argumentS when it is obvious from the
context.

The first order necessary conditions, which are also called
the Karush-Kuhn-Tucker (KKT) conditions, for problem (4) is
given as follows. One can easily see that the linear indepen-
dence constraint qualification always holds sincePk > 0 for
all k ∈ K.

Proposition 2.1 (Karush-Kuhn-Tucker conditions):Let
S be a local optimum for problem (4). Then there exist
nonnegative realsλ1, . . . , λK such that

λk ≥ 0, Pk −
∑N

n=1 Sn
k ≥ 0, λk

(
Pk −

∑N
n=1 Sn

k

)
= 0,

Sn
k ≥ 0, λk − ∂kfn(Sn) ≥ 0, Sn

k

(
λk − ∂kfn(Sn)

)
= 0,

(5)

for all k ∈ K andn ∈ N .
Note that (5) requires eitherλk = 0 or Pk−

∑N
n=1 Sn

k = 0,
andSn

k = 0 or λk − ∂kfn(Sn) = 0. Moreover, sinceλk does
not depend on tones, (5) also implies

n, m ∈ Tk =⇒ 0 ≤ λk = ∂kfn(Sn) = ∂kfm(Sm). (6)

Since the objective function of problem (4) is not concave,
some KKT points can be local minima or saddle points. In
order to distinguish these non-optimal KKT points from local
maxima, we consider the following second order necessary
optimality conditions.

Proposition 2.2 (Second order necessary conditions):
Suppose thatS satisfies the KKT conditions (5), and
Pk −

∑N
n=1 Sn

k = 0 for all k ∈ K. If S is a local maximum
of problem (4), then the following conditions hold: for any
vectorv = (v1

1 , . . . , vN
K ) ∈ <NK such that

vn
k = 0 ∀n /∈ Tk, and

∑

n∈Tk

vn
k = 0, ∀ k ∈ K, (7)

there holds

N∑
n=1

(vn)T∇2fn(Sn)vn ≤ 0, (8)

wherevn := (vn
1 , . . . , vn

K) ∈ <K .
The second order sufficient conditions for local optimality

can be described as follows.
Proposition 2.3 (Second order sufficient conditions):

Suppose thatS satisfies the KKT conditions (5), andλk > 0
for all k ∈ K. Suppose that

N∑
n=1

(vn)T∇2fn(Sn)vn < 0 (9)

for any vectorsv1, . . . , vN ∈ <K such thatv = (v1, . . . , vN )
6= 0,

vn
k = 0 ∀n /∈ Tk, and

∑

n∈Tk

vn
k = 0, ∀ k ∈ K. (10)

Then, the power vectorS is a local maximum of problem (4).
These optimality conditions will be used in the subsequent

sections to show the optimality of FDMA-type solutions under
various channel conditions.

III. SUM-RATE OPTIMALITY OF FDMA

As mentioned earlier, we expect that an FDMA-type power
allocation will maximize the sum-rate when the crosstalk
coefficients are sufficiently large. In this section we show the
validity of this claim and derive an explicit bound on the
crosstalk coefficients which will ensure the existence of an
optimal FDMA type solution. We will first consider the general
K-user case, and then strengthen the result in the two-user case
by exploiting the quasi-convexity of the sum-rate function (4).

Notice that the first and second order derivatives of function
fn (defined by (3)) can be computed explicitly as follows:

Proposition 3.1:Denote

An
k :=

1
Xn

k

, Bn
k :=

1
Xn

k + Sn
k

,

Pn
k := An

k −Bn
k , Qn

k := (An
k )2 − (Bn

k )2

with Xn
k defined by (3). Then, for every(n, k, l) ∈ N ×K×K

such thatk 6= l, we have

∂kfn(Sn) = An
k −

K∑
r=1

αn
krP

n
r ,

∂kkfn(Sn) = −(An
k )2 +

K∑
r=1

(αn
kr)

2Qn
r ,

∂klf
n(Sn) = −{

αn
lk(An

k )2 + αn
kl(A

n
l )2

}
+

K∑
r=1

αn
krα

n
lrQ

n
r .

We note that the summations in the above equalities contain
the case wherer = k and r = l with αn

kk = αn
ll = 1. It is

easy to see thatAn
k ≥ Bn

k > 0, Pn
k ≥ 0 and Qn

k ≥ 0, with
Pn

k = Qn
k = 0 if and only if Sn

k = 0.



5

A. Analysis of the generalK-user case

Let us first introduce a condition on a feasible power
allocation vectorS.

Condition 1: There holds

(a) min
k∈K

|Tk(Sk)| ≥ C, for some integerC ≥ 2,

(b)
N∑

n=1

Sn = P.

In other words, every user uses at least two tones and
exhausts his power budget. Moreover, we assume that the
global maximum satisfies this condition.

Assumption A:Any global maximum of problem (4) satis-
fies Condition1 for someC ≥ 2.

Assumption A is difficult to verify since the global max-
imum is not known a priori. However, in a practical DSL
system, the number of tonesN is usually much larger than
the number of usersK, i.e., K ¿ N , and the power budget
for each user is sufficiently high. The following proposition
shows that, when all the crosstalk coefficients are greater than
or equal to1/2, the lower boundC of mink∈K |Tk(Sk)| can
be evaluated by using the constants in the problem only.

Proposition 3.2:Supposeαn
lk ≥ 1/2 for all l, k ∈ K and

n ∈ N . Let C ∈ [2, N ] be an arbitrary integer. If there exists
another integerm ∈ [C,N ] such that

1 +
ρ0

m
>

(
1 +

ρM

C − 1

)C−1
m

(
1 +

Kρa

N −m + 1

)
, (11)

where

ρ0 := min
(n,k)∈N×K

Pk

σn
k

, ρM := max
(n,k)∈N×K

Pk

σn
k

,

ρa :=
1
K

∑K
k=1 Pk

min(n,k)∈N×K σn
k

,

thenmink∈K |Tk(Sk)| ≥ C for any global maximizerS of the
sum-rate maximization problem (4).

Proof: See Appendix A.
In Proposition 3.2, the parametersρ0, ρM andρa represent

the minimum, maximum and average signal to noise ratios
across all tones and among all users. In the case whereρ0 =
ρM = ρa = ρ and C = m = 2, then the above sufficient
condition (11) formink∈K |Tk(Sk)| ≥ 2 simplifies to

1 +
ρ

2
>

(
1 + ρ

)1/2(
1 +

Kρ

N − 1

)
,

which can be satisfied with largeρ and smallK/N .
In case ofK = 2, the conditionαn

lk ≥ 1/2 in Proposi-
tion 3.2 can be relaxed to a weaker conditionαn

12α
n
21 > 1/4;

see the end of Section III for details. While the lower bound
provided by Proposition 3.2 may not be tight, it is satisfying
that such a bound formink∈K |Tk(Sk)| can be obtained even
if the global maximumS is not known.

We now show that, if Assumption A holds and the nor-
malized crosstalk coefficients are sufficiently greater than1/2
(in the sense of (12)), then optimal spectrum sharing strategy
must be FDMA. Our proofs are based on the local optimality
conditions. Specifically, we will show that a feasible power

allocation vectorS cannot satisfy the second order necessary
conditions for local optimality if (1)S is not FDMA, (2)
crosstalk coefficients are larger than certain values, and (3)S
satisfies Condition 1. This implies that every local maximum
S of (4) satisfying (2) and (3) must be FDMA.

We first give the following proposition which characterizes
a non-FDMA power allocation vectorS.

Proposition 3.3:Let S ∈ <NK be a non-FDMA power
vector (i.e., NII(S) 6= ∅) satisfying Condition1 (a). Then,
there exist an integerM ≥ 2, a tone set{n1, . . . , nM} ⊆ N ,
and a user set{k1, . . . , kM} ⊆ K such thatni 6= nj and
ki 6= kj for any i 6= j, and either of the following two
conditions holds:

(i) (ni, ki) ∈ T and (ni, ki+1) ∈ T for i =
1, . . . , M − 1. Moreover,(nM , kM ) ∈ T and
(nM , k1) ∈ T .

(ii) (ni, ki) ∈ T and (ni, ki+1) ∈ T for i =
1, . . . , M − 1. Moreover,NII ∩ Tk1 = {n1}
andNII ∩ TkM

= {nM−1}.
Proof: See Appendix B.

By using Proposition 3.3, we establish sufficient conditions
on crosstalk coefficients under which non-FDMA feasible
solutions cannot satisfy the second order necessary conditions.
We do so by considering the condition (i) and the condition
(ii) of Proposition 3.3 separately.

Proposition 3.4:Suppose that

αn
lk >

1
2

for all n ∈ N and(k, l) ∈ K×K. Let S ∈ <NK be an arbitrary
vector satisfying Condition1 and the condition(i) of Propo-
sition 3.3 for some{ni}M

i=1 ⊆ N and {ki}M
i=1 ⊆ K. Then,

S cannot be a local maximum of the sum-rate maximization
problem (4).

Proof: For anyS satisfying the given assumptions, we
can verify that the necessary condition for optimality cannot
be met. SoS cannot be a local maximum. The details of the
proof are relegated to Appendix C.

Now we consider the case (ii) of Proposition 3.3.
Proposition 3.5:Suppose that

αn
lkαn

kl >
1
4

(
1 +

1
C − 1

)2

(12)

for all n ∈ N and (k, l) ∈ K × K with k 6= l. Let S ∈
<NK be an arbitrary vector satisfying Condition1 and the
condition (ii) of Proposition 3.3 for some{ni}M

i=1 ⊆ N and
{ki}M

i=1 ⊆ K. Then S cannot be a local maximum of the
sum-rate maximization problem (4).

Proof: For anyS satisfying the given assumptions, we
can use the first and second order derivatives formula to verify
that the second order necessary optimality condition must be
violated. This shows thatS cannot be a local maximum of
the sum-rate maximization problem (4). See Appendix D for
details.

Combining the above two propositions, we obtain the fol-
lowing sufficient conditions under which every global maxi-
mum of sum-rate maximization problem is FDMA.
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Theorem 3.1:Suppose that Assumption A holds. Then, any
global maximum of problem (4) must be FDMA, provided that

αn
lk >

1
2

and αn
lkαn

kl >
1
4

(
1 +

1
C − 1

)2

for all n ∈ N and (k, l) ∈ K ×K with k 6= l.
Proof: Consider a global optimumS ∈ <NK satisfying

Condition 1 for someC ≥ 2. If S is not FDMA, then there
exist a tone set{ni}M

i=1 and a user set{ki}M
i=1 such that either

(i) or (ii) in Proposition 3.3 holds. However, by virtue of
Propositions 3.4 and 3.5,S cannot be a local maximum in
either case. Hence,S must be FDMA.

When C is sufficiently large, say,C > 100, we have
1+ 1

C−1 ≈ 1. In this case, the conditionαn
lkαn

kl > 1
4 (1+ 1

C−1 )2

is essentially implied by the conditionαn
lk > 1/2. Thus,

Theorem 3.1 shows that if the normalized crosstalk coefficients
are sufficiently greater than1/2 (in the sense of (12)), then
the optimal spectrum sharing strategy must be FDMA.

B. Improved analysis for the two-user case

In this subsection, we restrict ourselves on the two-user case
(K = 2) and show the optimality of FDMA strategy under
a weaker condition than that of Theorem 3.1. Specifically,
we show that the conditionmin{αn

12, α
n
21} > 1/2 can be

dropped whenK = 2, and the optimality of FDMA strategies
is ensured under the conditionαn

21α
n
12 > 1

4 (1 + 1
C−1 )2 alone.

Our analysis exploits heavily the quasi-convexity property for
the sum of data rate in each tone.

SinceK = 2, function fn can be rewritten as

fn(Sn
1 , Sn

2 ) = log
(

1 +
Sn

1

Xn
1

)
+ log

(
1 +

Sn
2

Xn
2

)
, (13)

whereXn
1 = σn

1 + αn
21S

n
2 and Xn

2 = σn
2 + αn

12S
n
1 . We first

define the concept of quasi-convexity3 for twice differentiable
functions.

Definition 3.1: Let g : Ω ⊆ <n → < be a twice differen-
tiable function. Then,g is quasi-convex onΩ if

vT∇2g(x)v > 0

for anyx ∈ Ω andv ∈ <n such that∇g(x)T v = 0 andv 6= 0.
The following theorem gives a sufficient condition under

which fn is quasi-convex.
Theorem 3.2:If

αn
12

(
σn

1

σn
2

)
+ αn

21

(
σn

2

σn
1

)
> 1, (14)

then the rate functionfn defined by (13) is quasi-convex on
[0, +∞)2.

Proof: The proof involves some algebraic computation
verifying that the quasi-convexity condition in Definition 3.1
is satisfied. The critical step in the proof is the factorization of
a certain cubic polynomial function as the product of several
simpler terms whose signs can be readily verified under the
given assumption. See Appendix E for details.

3Our definition is stronger than the conventional notion of quasi-convexity
which is defined by the convexity of level sets; see [18].

It will be interesting to see to what extent the above result
(and proof) can be extended to the more general caseK ≥ 3.
We expect thatfn will still be quasi-convex forK ≥ 3 under
an appropriate condition on the crosstalk coefficientsαn

lk and
σn

k . However, the proof is likely to be much more complicated
than the two-user case, since we do not expect the factorization
trick can be applied to theK ≥ 3 case.

The following corollary says that the assumption in Theo-
rem 3.2 holds regardless of the background noise parameters
if the crosstalk coefficients are sufficiently large.

Corollary 3.1: Let fn be the rate function for tonen
(defined by (13)). If

αn
12α

n
21 >

1
4

,

thenfn is quasi-convex on[0,+∞)2.
Proof: We have

αn
12

(
σn

1

σn
2

)
+ αn

21

(
σn

2

σn
1

)
≥ 2

√
αn

12α
n
21 > 1,

where the first inequality follows from the simple relation
between the arithmetic and geometric means, and the last
inequality is due toαn

12α
n
21 > 1/4. By Theorem 3.2,fn is

quasi-convex on[0, +∞)2.
So far we have shown that for each tonen the rate function

fn is quasi-convex when the product of normalized crosstalk
coefficients is greater than1/4. Notice that the quasi-convexity
of fn does not imply the quasi-convexity of the total sum-rate
function

∑N
n=1 fn(Sn), since the sum of two quasi-convex

functions is not quasi-convex in general.
Now we proceed to establish a sufficient condition for the

optimality of FDMA. Recall thatNII(S) denotes the set of
frequency tones shared by at least two users, soS is FDMA
if and only if |NII(S)| = 0. Hence, to establish the optimality
of FDMA, we only need to show that any feasible solution
S with |NII(S)| ≥ 1 cannot be a local optimum. We will
consider the two separate cases|NII(S)| ≥ 2 and |NII(S)| =
1 which correspond precisely to the two cases (i) and (ii) in
Proposition 3.3. Notice that the case|NII(S)| = 1 is already
covered by Proposition 3.5 which shows thatS cannot be a
local maximum of (4) if the conditionαn

12α
n
21 > 1

4 (1+ 1
C−1 )2

is satisfied. Let us now consider the remaining case|NII(S)| ≥
2.

Proposition 3.6:Suppose thatS ∈ <2N is a feasible
solution of sum-rate maximization problem (4) such that
|NII(S)| ≥ 2. If fn is quasi-convex for all tonesn ∈ N , then
S cannot be a local maximum of the sum-rate maximization
problem (4).

Proof: The proof consists of finding a feasible pertur-
bation direction along which the second order necessary opti-
mality condition (Proposition 2.2) is violated due to the quasi-
convexity assumption. The details of the proof are relegated
to Appendix F.

We now state our main result for the two-user case.
Theorem 3.3:Suppose thatK = 2 and Assumption A holds

for someC ≥ 2. If

αn
12α

n
21 >

1
4

(
1 +

1
C − 1

)2
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for all n ∈ N , then the global maximum of sum-rate
maximization problem (4) is FDMA.

Proof: We only need to argue thatS cannot be a local
maximum of (4) when|NII(S)| ≥ 1. If |NII(S)| = 1,
then Proposition 3.3 (ii) holds forM = 2. Therefore, by
Proposition 3.5,S is not a local maximum. If|NII(S)| ≥ 2,
then Corollary 3.1 implies that the quasi-convexity condition
of Propositions 3.6 is satisfied. Thus, once againS cannot be
a local maximum. The theorem is proven.

As with Theorem 3.1, the threshold for the crosstalk product
in Theorem 3.3 involves the parameterC which represents
the minimum number of tones used by any user. In practical
situations where each user has a sufficiently high power budget
and the number of available tones is large, we expectC to be
large. In these cases, the threshold in Theorem 3.3 becomes
essentially1/4. Interestingly, for the two user case, FDMA
becomes sum-rate optimal whenever for each tonen the
product of normalized crosstalk coefficientsαn

12α
n
21 is greater

than1/4, even ifminn{αn
12, α

n
21} is small. This is in contrast

to the sufficient condition for theK ≥ 3 case (Theorem 3.1)
which, in addition to the condition that the pairwise product
αn

klα
n
lk is greater than1/4, also requiresminn,l 6=k{αn

kl, α
n
lk}

to be greater than1/2. It is not clear if it is possible to remove
the conditionminn{αn

kl, α
n
lk} > 1/2 in Theorem 3.1. We leave

this as an open question.
Before closing this section, we strengthen Proposition 3.2

by replacing the conditionαn
lk ≥ 1/2 with the quasi-convexity

condition of Theorem 3.2.
Proposition 3.7:Suppose thatK = 2 and (14) holds (or

more strictlyαn
12α

n
21 > 1/4) for all n ∈ N . Let C ∈ [2, N ] be

an arbitrary integer. If there exists another integerm ∈ [C, N ]
such that (11) holds, thenmink∈K |Tk(Sk)| ≥ C for any global
maximizerS of the sum-rate maximization problem (4).

Proof: The proof is almost identical to Appendix A except
for the formulation of maximization problem (28). We need
to replace (28) by the following maximization problem:

maximize fn(sn
1 , sn

2 )
subject to sn

1 + sn
2 = Un, sn

1 ≥ 0, sn
2 ≥ 0.

Sincefn is quasi-convex, the maximum is achieved at a vertex,
i.e., (0, Un) or (Un, 0). Other parts of the proof in Appendix
A remain unchanged.

IV. EXISTENCE OF ALOCALLY OPTIMAL FDMA
SOLUTION

In the previous section, we have shown that the optimal
solution of sum-rate maximization problem is FDMA if the
normalized crosstalk coefficients are sufficiently greater than
1/2 (in the sense of (12)). This is a sufficient condition for
the existence of a FDMA optimal solution. Are there other
more practical situations (i.e., with weaker conditions on the
crosstalk coefficients) in which FDMA strategies are optimal?
Our extensive computational experiments suggest that when
each user’s power budget is sufficiently large, FDMA will
become optimal even if the crosstalk coefficients do not satisfy
the conditions in Theorems 3.1 or 3.3. The goal of this section

is to derive some weaker sufficient conditions which will guar-
antee the existence of a FDMA typelocal maxima. Although
these conditions do not guarantee the global optimum to be
FDMA, the numerical results in Section VI show that, under
such conditions, FDMA type power allocations often show
better performance than the solutions obtained by the iterative
water-filling algorithm (IWFA).

The first step of our analysis is to identify candidates for
the FDMA type local maximums of the sum-rate maximization
problem (4). We do so by considering the sum-rate maximiza-
tion problem under the additional constraint that each user
in the communication system is pre-assigned a set of fixed
and mutually non-overlapping frequency tones. That is, we
consider the sum-rate maximization problem under the FDMA
constraint. Under this constraint, multiuser interference is no
longer present and the sum-rate maximization problem decou-
ples into a set of independent rate maximization subproblems,
one per each user, whose global maximums are given by the
well-known water-filling solutions. We will show later that the
resulting FDMA type solutions can be local maximums for the
original sum-rate maximization problem (4) when each user’s
power budget is sufficiently large.

Let us define the set of FDMA type frequency allocations
by

FDM :=
{
L

∣∣∣ min
k∈K

|Lk| ≥ 1, ∪K
k=1Lk = N ,

andLk ∩ Ll = ∅ (∀k 6= l)
}

.

HereLk represents the set of frequency tones allocated to user
k. For anyL ∈ FDM, we consider the followingL-restricted
sum-rate maximization problem (denoted bySRMP(L)):

maximize
{S1

k,...,SN
k }K

k=1

K∑

k=1

∑

n∈Lk

log
(

1 +
Sn

k

σn
k

)

SRMP(L) subject to
N∑

n=1

Sn ≤ P,

Sn
k ≥ 0 (n ∈ Lk),

(k ∈ K)
Sn

k = 0 (n /∈ Lk),

where the objective function is equal to the sum-rate function∑N
n=1 fn(Sn) since FDMA requirement implies that there

is no interference among users. Notice thatSRMP(L) is
a concave maximization, and does not involve any crosstalk
coefficientαn

lk. Moreover,SRMP(L) is completely separable
with respect to each userk, implying thatSRMP(L) can be
decomposed into the followingK independent rate maximiza-
tion problems:

maximize
{S1

k,...,SN
k }

∑

n∈Lk

log
(

1 +
Sn

k

σn
k

)

RMP(Lk) subject to
∑

n∈Lk

Sn
k ≤ Pk

Sn
k ≥ 0 (n ∈ Lk),

Sn
k = 0 (n /∈ Lk).

It is known that each user’s rate maximization problem
RMP(Lk) can be solved by the water-filling procedure [8],
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[9], [10], [11], [2]. To focus our analysis on the interference in
the system, we make the following high signal to noise ratio
assumption.

Assumption B:For all k ∈ K, there holds

γk :=
Pk +

∑
n∈Lk

σn
k

|Lk| > max
n∈Lk

σn
k . (15)

Under Assumption B, the water level (see [8], [9], [10], [11],
[2]) is equal toγk, and the global maximum ofSRMP(L)
can be described explicitly.

{
Sn

k = γk − σn
k (∀n ∈ Lk)

Sn
k = 0 (∀n /∈ Lk) (16)

for k = 1, . . . , K. Moreover,Tk(Sk) = Lk for k = 1, . . . , K,
and the setNO(S) defined by (2.3) is empty.

We now study the conditions under which the global opti-
mum (16) ofSRMP(L) is a local optimum of the original
sum-rate maximization problem (4). Needless to say, such
conditions guarantee the existence of a local optimum of sum-
rate maximization problem.

The following proposition gives sufficient conditions under
which problem (4) has a FDMA local maximumS such that
Tk(Sk) = Lk for k = 1, . . . , K.

Proposition 4.1:Let the tone allocation set be given byL ∈
FDM, and γk be defined by (15). Suppose that Assumption
B holds. If

1
σn

k + αn
lk(γl − σn

l )
− αn

kl

(
1
σn

l

− 1
γl

)
≤ 1

γk
(17)

for any (k, l) ∈ K × K with k 6= l and n ∈ Ll, then the
global maximum (16) ofSRMP(L) is a local maximum of
sum-rate maximization problem (4).

Proof: Let S be the global maximum ofSRMP(L) given
by (16). Then, we verify thatS satisfies the KKT conditions
and the second order sufficient conditions (Propositions 2.1
and 2.3) under the high SNR assumption (15). We leave the
details to Appendix G.

Although the condition (17) can be verified beforehand, it
involves all possible combinations fork, l andn, and concerns
only a given tone allocationL. This makes it inconvenient to
apply Proposition 4.1 in practice. In the following corollary
result, we simplify the conditions of Proposition 4.1 so as to
improve its applicability in practice.

Theorem 4.1:Let C be an arbitrary integer such that1 ≤
C ≤ N/K, and denote

PM := max
k∈K

Pk, P0 := min
k∈K

Pk,

σM := max
(n,k)∈N×K

σn
k , σ0 := min

(n,k)∈N×K
σn

k ,

α0 := min
(n,k,l)∈N×K×K

k 6=l

αn
lk, A0 := min

(n,k,l)∈N×K×K
k 6=l

αn
lkαn

kl,

γM :=
PM

C
+ σM , γ0 :=

P0

N − (K − 1)C
+ σ0.

Suppose that the following inequalities hold:

γ0 > σM , (18)

A0γM (γ0 − σM )2 + α0(γMσ0 + γ0σM )(γ0 − σM )
≥ σMγ0(γM − σ0). (19)

Then, for any tone setL ∈ FDM such thatmink∈K |Lk| ≥ C,
the global maximum ofSRMP(L) is a local maximum of
sum-rate maximization problem (4). Moreover, if

P0 ≥
(
N − (K − 1)C

) (
1

A0
+

1√
A0

+ 1
)

σM , (20)

then (19) holds.
Proof: The proof of this theorem involves verifying

that (18)⇒ (15) and (20)⇒ (19)⇒ (17). See Appendix H for
details.

Although condition (20) is more restrictive than (19), it is
more intuitive and easier to apply in practice. Compared to
our earlier results (Theorems 3.1 and 3.3), Theorem 4.1 shows
the existence of a FDMA type local maxima for the sum-rate
maximization problem (4) even when the crosstalk coefficients
are small (but positive), so long as users’ power budgets are
sufficiently large.

V. FINDING AN OPTIMAL FDMA BANDWIDTH

ALLOCATION

In this section, we focus our attention on the more practical
issue of how to design an optimal FDMA scheme for a
multiuser communication system. The latter entails allocating
the available set of frequency tones to the users in the system.
Let us denote the set of FDMA solutions by

S =
{

S ≥ 0
∣∣∣ Sn

k Sn
l = 0, ∀k 6= l, ∀n

}
,

where the conditionSn
k Sn

l = 0 signifies that no frequency
tone can be shared by any two users. Then, the optimal FDMA
frequency allocation problem can be described as follows:

maximize
S

K∑

k=1

N∑
n=1

log
(

1 +
Sn

k

σn
k

)

subject to S ∈ S,

N∑
n=1

Sn
k ≤ Pk, k ∈ K. (21)

where S denotes the(NK)-dimensional vector with entries
equal toSn

k . Notice that, due to the FDMA condition, the
interference term

∑
l 6=k αn

lkSn
l is absent from the sum-rate

objective function. This makes the objective function concave.
However, problem (21) remains a nonconvex problem due to
the nonconvex constraintS ∈ S. The following result shows
that the optimization problem (21) is NP-hard, even in the case
of two users.

Theorem 5.1:For K = 2, the optimal bandwidth allocation
problem (21) is NP-hard. Thus, the general sum-rate maxi-
mization problem (4) is also NP-hard, even in the two-user
case.

Proof: The proof consists of reducing the so-called
equipartition problem to (21). Specifically, given a set of
N (even) positive integers,a1, a2, ..., aN , the equipartition
problem asks: does there exist a subsetT ⊂ {1, 2, ..., N} of
size |T | = N/2 such that

∑

n∈T

an =
∑

n6∈T

an =
1
2

N∑
n=1

an.
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The equipartition problem is known to be NP-complete.
For any instance of the equipartition problem, we can

construct a two-user instance of (21) as well as a convex
relaxation of this nonconvex problem. We can show that the
two problems have the same optimal objective values if and
only if the answer to the equipartition problem is ‘yes’. The
details are given in Appendix I.

Theorem 5.1 suggests that finding either a global optimal
FDMA bandwidth allocation, or a global sum-rate optimal
power allocation in general is computationally intractable
when the number of tones are large, even in the two-user
case. Given this negative result, we are naturally led to the
problem of designing efficient polynomial time algorithms
which can approximately maximize the sum-rates. In what
follows, we propose three simple algorithms for computing
an approximately optimal FDMA bandwidth allocations. The
first one is based on dual decomposition, while the other two
are based on the idea of greedy local search.

Dual decomposition method

Define the bounded set̃S ⊂ <NK by

S̃ := S ∩
{
S

∣∣∣ 0 ≤ Sn
k ≤ Pk ∀ k, n

}
.

Then, we can easily see that the constraint region of (21) is
unchanged ifS is replaced byS̃. Hence, by using multipliers
{λk} to dualize the linear constraints in (21), we obtain the
following dual function

d(λ)

:= max
S∈S̃

(
K∑

k=1

N∑
n=1

log
(

1 +
Sn

k

σn
k

)
−

K∑

k=1

λk

( N∑
n=1

Sn
k − Pk

))

=
K∑

k=1

λkPk + max
S∈S̃

K∑

k=1

N∑
n=1

(
log

(
1 +

Sn
k

σn
k

)
− λkSn

k

)

=
K∑

k=1

λkPk+
N∑

n=1

max
0≤Sn

i
≤Pi

Sn
i

Sn
j

=0, i 6=j

K∑

k=1

(
log

(
1+

Sn
k

σn
k

)
−λkSn

k

)
(22)

where the last step is due to the fact that, without the
power constraints, the bandwidth allocation problem decouples
across tones. The inner maximization in (22) can be solved
by allocating each tone to the user which can provide the
maximumshadow ratelog (1 + Sn

k /σn
k )−λkSn

k on that tone.
Simple calculation shows that the maximum shadow rateMn

k

for userk at tonen is given by

Mn
k (λk) := max

0≤Sn
k≤Pk

(
log

(
1 +

Sn
k

σn
k

)
− λkSn

k

)
(23)

= log

(
1 +

S
n

k

σn
k

)
− λkS

n

k

where the optimal power level is

S
n

k =
{Pk(λ−1

k − σn
k ) if λk > 0

Pk if λk ≤ 0 (24)

Here Pk(·) denotes the projection of a real number to the
interval [0, Pk]. Thus, the dual function (22) can be written

analytically as

d(λ) =
K∑

k=1

λkPk +
N∑

n=1

max
k=1,...,K

Mn
k (λk). (25)

There may be more than one user attaining this maximum, in
which case we simply assign then-th tone to an arbitrary (but
unique) user denoted byk(n). Then a subgradient ofd(λ) is
given by

∇d(λ) =
(

P1 −
∑

n∈N1(λ)

S
n

1 , . . . , PK −
∑

n∈NK(λ)

S
n

K

)T

where we denote the set of tones assigned to userk byNk(λ).
Notice that the components of subgradient∇d(λ) correspond
to each user’s unused power (or deficit power if negative).

The dual minimization problem is given by

minimize d(λ)
subject toλ ≥ 0.

The standard dual descent method for this problem can now
be stated as follows.

Algorithm 1:

Step 0 Choose an initial pointλ(0) ≥ 0 and a stepsize
α(0) > 0. Setν = 0.

Step 1 For all (n, k) ∈ N ×K, compute

(S
n

k )(ν) :=

{
Pk

(
(λ(ν)

k )−1 − σn
k

)
if λ

(ν)
k > 0

Pk if λ
(ν)
k = 0,

(Mn
k )(ν) := log

(
1 +

(S
n

k )(ν)

σn
k

)
− λk(S

n

k )(ν).

Moreover, for eachk = 1, . . . , K, set the FDMA
tone assignment according to

Nk(λ(ν)) :=
{

n ∈ N
∣∣∣∣ (Mn

k )(ν) = max
k′=1,...,K

(Mn
k′)

(ν)

}
,

and calculate the subgradient by

g
(ν)
k := Pk −

∑

n∈Nk(λ(ν))

(S
n

k )(ν).

Step 2 Updateλ(ν) according to

λ
(ν+1)
k =

[
λ

(ν)
k − α(ν)g

(ν)
k

]
+

, k = 1, 2, ..., K,

where[·]+ denotes the positive part of a real number,
andα(ν) is the stepsize calculated by an appropriate
rule.

Step 3 Go to Step 4 if the termination criterion is satisfied.
Otherwise, setν := ν + 1, and return to Step 1.

Step 4 If S
(ν)

is feasible for problem (21), then out-
put it as the solution. Otherwise, chooseν such
that ‖g(ν)‖ = min{‖g(0)‖, . . . , ‖g(ν)‖}, and cal-
culate the optimal power allocationS based on
N1(λ(ν)), . . . ,NK(λ(ν)). Then, outputS as the so-
lution.

The above algorithm falls in the same general framework of
dual decomposition method as [3], [4], [5], [6]. However, there
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are two notable differences. First, we implement a projection
operation in Step 1 so as to ensure the boundedness of the
primal variables and to improve convergence. Second, we
implement an adaptive rule to select stepsizes{α(ν)} which
improves the convergence speed significantly (see Section VI).
Similar to [6], the above dual descent algorithm has a per-
iteration complexity ofO(NK). Moreover, Steps 1 – 3 of the
above algorithm can be implemented in a distributed manner.
For example, the tone assignment step (Step 1) can be carried
out using a simple carrier sensing mechanism: each userk
tries to send a beacon signal on tonen after a waiting period
whose length is proportional tof((Mn

k )(ν)), wheref is any
positive strictly decreasing function. In this way, the user who
first sends the beacon signal over tonen gets that tone, while
other users, upon hearing a beacon signal on tonen, will
immediately abort their transmission of beacon signals over
this tone. Also, Steps 2 and 3 require no information from
other users and therefore can be performed completely locally.
Step 4 requires the centralization, but it can be modified in
a distributed manner as follows. IfS

(ν)
is infeasible, then

each userk calculates his own power vector by using the
current tone assignmentNk(λ(ν)), instead of searching the
past iterationν. Since each userk has the information of
Nk(λ(ν)), σn

k and Pk, andNl(λ(ν)) ∩ Nk(λ(ν)) = ∅ for all
l 6= k, he can calculate his optimal power vector easily by
using the well-known water-filling strategy.

Standard convergence analysis of dual descent algorithms
can be applied to the above algorithm. In particular, if stepsize
α(ν) is chosen sufficiently small, then the distance from the
iterate to the dual optimal solution set decreases monotonically
(even though the objective valued(λ(ν)) may not decrease).
Moreover, every limit point of the iterate sequence{λ(ν)}
solves (25). If the corresponding power sequence{(Sn

k )(ν)}
is asymptotically feasible (i.e., satisfying individual power
constraint), then each limit point of{(Sn

k )(ν)} is a global op-
timal solution of the nonconvex optimal bandwidth allocation
problem (21). Notice that a similar dual descent method was
considered in [6] which, like the dual algorithms proposed
in this paper, may not solve the primal problem due to the
existence of a duality gap.

Proposition 5.1:Let λ∗ ≥ 0 andS
∗ ≥ 0 be the limit points

of {λ(ν)} and {S(ν)} generated by the dual decomposition
algorithm. If there holds

N∑
n=1

(S
n

k )∗ ≤ Pk, λ∗k

( N∑
n=1

(S
n

k )∗ − Pk

)
= 0, ∀ k ∈ K,

then the duality gap is zero andS
∗

is a global optimal solution
of the bandwidth allocation problem(21).

Proof: By nature of dual decomposition algorithm, we
have

S
∗

= argmax
S∈S̃

(
K∑

k=1

N∑
n=1

log
(

1 +
Sn

k

σn
k

)

−
K∑

k=1

λ∗k

( N∑
n=1

Sn
k − Pk

))
. (26)

Then, by the hypothesis, we obtain

K∑

k=1

N∑
n=1

log
(

1 +
(S

n

k )∗

σn
k

)

=
K∑

k=1

N∑
n=1

log
(

1 +
(S

n

k )∗

σn
k

)
−

K∑

k=1

λ∗k

( N∑
n=1

(S
n

k )∗ − Pk

)

= max
S∈S̃

(
K∑

k=1

N∑
n=1

log
(

1 +
Sn

k

σn
k

)
−

K∑

k=1

λ∗k

( N∑
n=1

Sn
k − Pk

))

≥ max
S∈S∑N

n=1 Sn
k
≤Pk

(
K∑

k=1

N∑
n=1

log
(

1+
Sn

k

σn
k

)
−

K∑

k=1

λ∗k

( N∑
n=1

Sn
k−Pk

))

≥ max
S∈S∑N

n=1 Sn
k
≤Pk

(
K∑

k=1

N∑
n=1

log
(

1 +
Sn

k

σn
k

))

where the second step follows from (26), the first inequality
is due to

{
S

∣∣∣ S ∈ S,

N∑
n=1

Sn
k ≤ Pk

}
⊂ S̃,

and the last step can be seen from the nonnegativity ofλ∗. This
shows thatS

∗
is a global optimal solution of the bandwidth

allocation problem(21) and the duality gap is zero.
Proposition 5.1 implies that if the power allocations ob-

tained in Step 1 of Algorithm 1 are asymptotically feasible,
then they must be globally optimal. This provides a simple way
to check the optimality of the computed solution and terminate
the algorithm. The minimization of FDMA duald(λ) is
polynomial time solvable using e.g., ellipsoid method, (i.e.,
finding anε-optimal solution is polynomial in dimensionN, K
and log 1/ε). The NP-hardness result (Theorem 5.1) implies
that the duality gap is nonzero in general, so the optimal
solution of the dual is not always primal optimal. However,
if the dual iterates satisfy the primal power constraints with
equality in the limit, then Proposition 5.1 implies the global
optimality of both primal and dual in limit. This optimality
condition is usually observed in our simulation.

Local search algorithm A

We now present an efficient combinatorial local search
algorithm which has an overall complexity ofO(NK). In this
algorithm, we fix the order of tones a priori, and then sequen-
tially allocate each tone to the user who offers the largest rate
increment. This algorithm can be written as follows.

Algorithm 2:

Step 0 Permute the tonesn1, . . . , nN arbitrarily so that
{n1, . . . , nN} = N . Let L(0)

k := ∅ and R
(0)

k := 0
for eachk = 1, . . . , K. Setν := 0.

Step 1 For eachk = 1, . . . , K, solveRMP(L(ν)
k ∪{nν+1})

and obtain its optimal valueR
′
k.

Step 2 Find ak such that

k = argmax
k∈K

(
R
′
k −R

(ν)

k

)
.
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Then, defineL(ν+1)
k andR

(ν+1)

k by

L(ν+1)
k :=

{
L(ν)

k ∪ {nν+1} (k = k)

L(ν)
k (k 6= k),

R
(ν+1)

k :=

{
R
′
k (k = k)

R
(ν)

k (k 6= k)

for eachk = 1, . . . , K.
Step 3 Setν := ν +1. If ν = N , then terminate. Otherwise,

return to Step 1.

In Step 1,R
′
k can be obtained by the water-filling procedure.

In general, the obtained solution and sum-rate depend on the
initial ordering of{n1, . . . , nN}.

Local search algorithm B

In Algorithm 2, we have fixed the order of tones beforehand,
and then allocate a tonenν+1 at theν-th iteration. However, it
is expected that the sum-rate will be improved by considering
all the possible combinations of tones and users at each
iteration. That is, we can consider the following three steps:

(i) For each pair of user and unallocated tone combination,
we calculate the corresponding rate increment.

(ii) Find the tonen and the userk which yield the largest
rate increment. Allocate tonen to userk.

(iii) Remove tonen from the non-allocated tone set, and
return to (i) until all tones are allocated.

A direct implementation of the above procedure will result in
a computational complexity ofO(N2K). However, we note
that, for anyk ∈ K, Lk ⊆ N , and n, n′ ∈ Lk, it follows
Rk(Lk ∪ {n}) ≤ Rk(Lk ∪ {n′}) if and only if σn

k ≥ σn′
k .

Therefore, by sorting the noise parameters{σn
k } appropriately,

we can reduce its complexity toO(NK log N). We describe

the algorithm in the following, whereL(ν)
k , R

(ν)

k , andN (ν)

denote userk’s allocated tone set, userk’s temporary data rate,
and unallocated tone set at theν-th iteration.

Algorithm 3:

Step 0 For each k = 1, . . . ,K, sort the tone indices
{n1(k), . . . , nN (k)} = N so that

σ
n1(k)
k ≤ · · · ≤ σ

nN (k)
k .

Let L(0)
k := ∅, R

(0)
k := 0, andN (0)

:= N for all
k ∈ K. Setν := 0.

Step 1 For everyk = 1, . . . ,K, perform the following steps:
Step 1-1 Find a tonen(k) := ni−(k) such that

i− = min
{

i
∣∣∣ ni(k) ∈ N (ν)

}
.

Step 1-2 SolveRMP(L(ν)
k ∪{n(k)}) and obtain its

optimal valueR
′
k.

Step 2 Find ak ∈ K such that

k = argmax
k∈K

(
R
′
k −R

(ν)

k

)
.

DefineL(ν+1)
k andR

(ν+1)

k by

L(ν+1)
k :=

{
L(ν)

k ∪ {n(k)} (k = k)
L(ν)

k (k 6= k),

R
(ν+1)

k :=

{
R
′
k (k = k)

R
(ν)

k (k 6= k)

for eachk ∈ K. Then, letN (ν+1)
:= N (ν) \{n(k)}.

Step 3 If N (ν+1)
= ∅, then terminate. Otherwise, setν :=

ν + 1 and return to Step 1.
In Step 0, the computational cost for the sort of{n1(k), . . . ,

nN (k)} is O(N log N) for eachk. Step 1-1 implies that tone

n(k) ∈ N (ν)
is chosen so thatσn(k)

k = min{σn
k |n ∈ N

(ν)}.
In Step 1-2,R

′
k can be obtained by the water-filling procedure.

One is tempted to think Algorithm 3 would always yield a bet-
ter solution than Algorithm 2. While it often does, numerical
results in the next section show that Algorithm 3 sometimes
can lead to a worse sum-rate solution than Algorithm 2.

Both local search algorithms (Algorithms 2 and 3) can also
be implemented in a distributed fashion by using the same
carrier sensing mechanism stated after Algorithm 1. In theν-
th iteration, each userk sends a beacon signal after the waiting
periodf(R

′
k−R

(ν)
k ) with a certain strictly decreasing function

f , where the value off(R
′
k−R

(ν)
k ) can be calculated locally.

Then, tonenν+1 (or n(k) for Algorithm 3) is assigned to the
user who first sends the beacon signal.

VI. N UMERICAL RESULTS

In this section, we consider a wireless setup and compare
the performance of various spectrum management algorithms:
the dual decomposition method (Algorithm 1), the local search
algorithms (Algorithms 2 and 3), and the iterative water-filling
algorithm (IWFA).

For the dual decomposition method, we choose the initial
dual vectorλ(0) = (1, . . . , 1)T , and consider two different
stepsize rules:

Stepsize rule Aα(ν) := 1/(ν + 1).
Stepsize rule Bα(ν) := θ(ν)(d(λ(ν))−L∗)/‖g(ν)‖2, where

L∗ is a known lower bound of the dual function
d, andθ(ν) is calculated according to the following
rule: (i) θ(0) = 2, (ii) θ(ν+1) = θ(ν)/2 if d(λ(ν)) ≥
d(λ(ν−10)) for ν ≥ 10, and (iii) θ(ν+1) = θ(ν) if
d(λ(ν)) < d(λ(ν−10)) or ν ≤ 9.

Stepsize rule A is simple and easily implementable. We note,
however, that{α(ν)} converges to 0 very slowly, and hence
a large number of iterations may be required. Stepsize rule B
is a modification of a standard stepsize rule for maximizing
a Lagrangian function [19]. If a tight lower boundL∗ is
available, the algorithm typically can terminate in a small
number of iterations. In implementing this stepsize rule, we
first calculate the sum-rate by the local search algorithm B,
and then use the obtained sum-rate as the lower boundL∗.
We stop the algorithm when either‖λ(ν+1) − λ(ν)‖ ≤ 10−4

or ν ≥ 300.
For IWFA, we let each user choose an initial power level

randomly from the interval[0, maxkPk], and terminate the
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iteration if‖S(ν+1)−S(ν)‖ ≤ 10−4 or ν ≥ 300. As mentioned
in Section I, IWFA maximizes each user’s individual rate in a
distributed manner by treating other users’ signals as Gaussian
noise. This can be easily implemented using the well-known
water-filling strategy for a single user rate maximization. Since
the FDMA concept is not considered in IWFA, the obtained
power spectra are not FDMA in general.

In our simulation, we consider a multiuser wireless com-
munication system in a frequency selective environment; see
Subsection II-A for a full description. We define the channel
coefficients ashn

lk := d−1.8
lk gn

lk wheredlk denotes the physical
distance between transmitterl and receiverk, and gn

lk is
a complex normalized gaussian random variable with zero
mean and unit variance. Then, the crosstalk coefficients and
normalized noise power are chosen asαn

lk := |hn
lk|2/|hn

kk|2
and σn

k := N0/|hn
kk|2, where the background noise level is

set toN0 = −40 dB. The programs were coded in MATLAB
7 and run on a machine with 3.60GHz CPU and 2GB RAM.

Experiment 1

Let there beN = 12 tones shared byK = 4 users in the
system (e.g., the blue tooth setup). Then we randomly generate
4 pairs of transmitters and receivers so that each transmitter
k is located in the 2-dimensional unit square anddkk (the
distance from transmitterk to receiverk) equals∆ > 0 for
all k ∈ K.4 Figure 1 shows a simple example, where the solid
arrows denote the desired signal path, and all other edges in
the graph (not shown) represent interferences.

We let the distancedkk = ∆ vary from 0.02 to 0.2, and
generate 1000 test problems for each∆. As expected, the
crosstalk interference becomes stronger when the distance∆
increases. For each test problem, we choose power budget
Pk randomly from the interval[10, 16] (dB), and solve the
corresponding spectrum management problem by the dual
decomposition method with stepsize rules A and B (denoted
by dual decomposition method A and B respectively), local
search algorithms A and B, and IWFA. The average CPU
time among 1000 trials are shown in Figure 2, which shows
that the computational costs of the local search algorithms
are much lower than other algorithms. Figure 3 shows the
average of the obtained sum-rates for each∆. It can be seen
that, for small∆ where the crosstalk coefficients are small,
IWFA yields higher sum-rate compared to our FDMA-based
methods. This is expected since FDMA is strictly sub-optimal
in low interference environment. However, when∆ becomes
larger, our FDMA-based methods yield much higher sum-rates
than IWFA, confirming the superiority of FDMA solutions
under strong crosstalk conditions. Figure 4 plots the ratios of
sum-rates obtained by our FDMA-based methods relative to
that of the local search algorithm A. As the figure shows,
the dual decomposition method B gives the highest average
values. Figure 5 shows the number of times the best sum-
rates are obtained among five methods. If the best sum-rate is

4More precisely, we randomly generate 4 transmitters in the 2-dimensional
unit square, and then generate receiverk (k = 1, . . . , 4) randomly on the
circumference of the circle whose center is transmitterk (k = 1, . . . , 4) and
radius is∆.

attained by more than one method, we duplicate counting so
there can be more than 1000 times that the best sum-rate is
achieved. As Figure 5 shows, the dual decomposition method
B attains the best sum-rate for more than 90 % cases when
∆ ≥ 0.1.

Experiment 2

In the second experiment, we also setN = 12 andK = 4,
and generate the transmitters and receivers in a way similar
to Experiment 1. However, we fix the distance to∆ = 0.04
(so the crosstalk coefficients are small), and vary power budget
levels. Our goal is to demonstrate that FDMA becomes optimal
when power budget becomes large even in low interference
environment. We choose the power budget levelβ from −10
dB to +30 dB, and generate 1000 test problems for each
β. For each test problem, we choose the power budgetsPk

from the interval [β − 3, β + 3] (dB) randomly. Figure 6
shows the average of obtained sum-rates. Since the crosstalk
coefficients are relatively small, IWFA achieves better sum-
rates than our methods in the low power region. However, if
the power budget level becomes higher, then our FDMA-based
methods yield higher sum-rate than IWFA as predicted by
our theoretical analysis (Theorem 4.1). Unfortunately, the dual
decomposition method A shows worse performance than other
FDMA-based methods whenβ ≥ 20. We suppose that, in this
case, the generated pointλ(ν) is still far from the solutionλ∗

even after 300 iterations (i.e., termination criterion is satisfied).
This result also shows the advantage of Stepsize rule B.

As shown in the above numerical results, the FDMA-based
methods provide a much improved performance than IWFA
under either the strong crosstalk or high power budget condi-
tions. Moreover, they can be implemented in a distributed
manner by introducing the aforementioned carrier sensing
mechanism. (In this case, Step 4 of Algorithm 1 need to be
modified so that the values of the last iterationν are adopted
instead of searchingν.) However, even in such cases, IWFA
still has the following advantage. In IWFA, each user can
update his power vector whenever he wishes, that is, it can be
implemented in an asynchronous manner [20]. On the other
hand, the carrier sensing approach needs to synchronize all
users’ clocks before starting the waiting period.

VII. C ONCLUDING REMARKS

In this paper we have studied the structure of optimal
spectrum sharing strategies for a multiuser communication
system in a frequency selective environment. Our analysis
and simulations show that FDMA is sum-rate optimal when
either the crosstalk interference is strong or when users’
power budgets are high. Unlike the frequency flat case where
the sum-rate maximum FDMA solution can be found using
convex optimization, the same problem in a frequency se-
lective environment is considerably more difficult (NP-hard).
To approximately solve the sum-rate maximization problem
for a frequency selective environment, we have proposed
several simple distributed algorithms that can find high quality
sum-rate suboptimal FDMA solutions. Numerical experiments
show that, if the crosstalk coefficients and/or power budgets
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are sufficiently large, the proposed algorithms not only find
higher sum-rates than those obtained by IWFA, but also enjoy
faster convergence. However, when crosstalk interference is
low, IWFA can deliver higher sum-rates. These results suggest
a hybrid approach for the sum-rate maximization problem
in practice whereby both IWFA and the proposed optimal
bandwidth allocation algorithms are used, depending on the
strength of crosstalk interference.

There are several issues that are worthy of further inves-
tigation. For example, the analysis in this paper shows that
the sum-rate maximization problem is NP-hard even in the
case of two users. However, it is not known if the same is
true when we fix the number of tones and let the number of
users increase to infinity. Also, this paper has not addressed the
fairness issue. One popular approach to ensure user fairness
[21] is to maximize the sum of proportional fair rates rather
than the sum-rates; the former is defined as the logarithm of
user’s data rates. It will be interesting to find out under what
conditions the maximization of proportional fair rates will
result in FDMA solutions. Moreover, is the maximization of
sum of proportional fair rates also NP-hard? Are there simple
distributed algorithms which can approximately maximize the
sum of proportional fair rates? The answers to these questions
are of considerable value for the standardization of dynamic
spectrum management technologies. Finally, one may be able
to derive other sufficient conditions for FDMA optimality
that are weaker than those presented in this paper (simulation
results strongly suggest this). It may also be possible to design
simple distributed bandwidth allocation algorithms capable of
delivering sum-rates that are provably optimal up to a constant
factor.

t1

h22

t2

t3

t4

r2
r3

r1

r4

h33

h11

unit square

h44

Fig. 1. A wireless scenario

APPENDIX A
PROOF OFPROPOSITION3.2

Let S ∈ <NK be a globally optimal power allocation for
the sum-rate maximization problem.

Assume thatmink∈K |Tk(Sk)| ≤ C − 1 and we will derive
a contradiction. Without loss of generality we can assume that
user1 uses at mostC−1 tones inS and these tones are indexed
tones1, . . . , C − 1. That is,Sn

1 ≥ 0 for n = 1, . . . , C − 1 and
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SC
1 = · · · = SN

1 = 0. Since
∑N

n=1 Sn
k ≤ Pk for all k ∈ K, it

follows that
K∑

k=1

N∑
n=1

Sn
k ≤

K∑

k=1

Pk.

Let ni ∈ N denote the tone for which the total user power is
the i-th smallest, namely,

K∑

k=1

Sn1
k ≤

K∑

k=1

Sn2
k ≤ · · · ≤

K∑

k=1

SnN

k .

Then we have for eachi = 1, . . . , N ,

(N − i + 1)
K∑

k=1

Sni

k ≤
N∑

j=i

K∑

k=1

S
nj

k ≤
N∑

n=1

K∑

k=1

Sn
k ≤

K∑

k=1

Pk

which further implies that

K∑

k=1

Sni

k ≤ 1
N − i + 1

K∑

k=1

Pk, (27)

In what follows, we will show that it is better (in terms of
achieving a higher sum-rate) to let user 1 allocate equal power
to tonesn1, . . . , nm, and have other users give up using these

m tones. This will imply thatmink∈K |Tk(Sk)| ≤ C−1 cannot
hold at any global sum-rate optimum sincem > C − 1. To
show this, we need to estimate the sum-rate achievable by
the power vectorS on tonesn1, . . . , nm. For this purpose,
we consider the following sum-rate maximization problem for
each tonen ∈ N :

maximize
sn
1 ,...,sn

K

K∑

k=1

log
(

1 +
sn

k

σn
k + 1

2

∑
l 6=k sn

l

)

=
K∑

k=1

log
(

1 +
sn

k

σn
k + 1

2 (Un − sn
k )

)

subject to
K∑

k=1

sn
k = Un, sn

k ≥ 0, k ∈ K, (28)

whereUn :=
∑K

k=1 Sn
k . Notice that the crosstalk coefficients

αn
ij have all been reduced to1/2 in (28). It can be checked

that the second order derivative (with respect tosn
k ) of the rate

function

log
(

1 +
sn

k

σn
k + 1

2 (Un − sn
k )

)

is nonnegative oversn
k ≥ 0, implying that this rate function

is convex. This shows that the objective function of (28) is
convex in the feasible set. Consequently, as a maximization
problem, the maximum of (28) is achieved at a vertex of the
feasible set, implying

max∑K
k=1sn

k
= Un

sn
k
≥0

K∑

k=1

log

(
1 +

sn
k

σn
k + 1

2

∑
l 6=k sn

l

)

= max
k∈K

log
(

1 +
Un

σn
k

)
= log

(
1 +

Un

σn
0

)
,

whereσn
0 := mink∈K σn

k . This gives an upper bound on the
data rate achieved on toneni:

fni(Sni) =
K∑

k=1

log

(
1 +

Sni

k

σni

k +
∑

l 6=k αni

lk Sni

l

)

≤
K∑

k=1

log

(
1 +

Sni

k

σni

k + 1
2

∑
l 6=k Sni

l

)

≤ log
(

1 +
Uni

σni
0

)

≤ log

(
1 +

∑K
k=1 Pk

(N − i + 1)σni
0

)

where the last step follows from (27).
Let us consider a new power allocation vectorS̄:

S̄n
k =





P1
m , k = 1, n ∈ {n1, . . . , nm}
0, k ≥ 2, n ∈ {n1, . . . , nm}
0, k = 1, n ∈ {1, . . . , C − 1} \ {n1, . . . , nm}

Sn
k , else;

It is clear thatS̄ is feasible. Moreover, the sum-rate achieved
by S̄ over the tonesn1, . . . , nm is evaluated as

m∑

i=1

fni(S̄ni) =
m∑

i=1

log
(

1 +
P1

mσni
1

)
≥ m log

(
1 +

ρ0

m

)
.
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On the other hand, for anyn ∈ {1, . . . , C−1}\{n1, . . . , nm},
we have

fn(S̄n)− fn(Sn)

=

[
0 +

K∑

k=2

log

(
1 +

Sn
k

σn
k +

∑
l 6=1, l 6=k αn

lkSn
l

)]

−
[

log
(

1 +
Sn

1

σn
1 +

∑
l 6=1 αn

l1S
n
l

)

+
K∑

k=2

log
(

1 +
Sn

k

σn
k +

∑
l 6=k αn

lkSn
l

)]

≥ − log
(

1 +
Sn

1

σn
1 +

∑
l 6=1 αn

l1S
n
l

)
≥ − log

(
1 +

Sn
1

σn
1

)
.

We thus have
∑

n/∈{n1,...,nm}
n∈{1,...,C−1}

[
fn(S̄n)− fn(Sn)

]

≥ −
∑

n/∈{n1,...,nm}
n∈{1,...,C−1}

log
(

1 +
Sn

1

σn
1

)

≥ −
C−1∑
n=1

log
(

1 +
Sn

1

σn
1

)

≥ −(C − 1) log

[
1

C − 1

C−1∑
n=1

(
1 +

Sn
1

σn
1

)]

≥ −(C − 1) log

[
1 +

1
(C − 1)

C−1∑
n=1

Sn
1

minn∈N (σn
1 )

]

≥ −(C − 1) log
[
1 +

P1

(C − 1)minn∈N (σn
1 )

]

≥ −(C − 1) log
(

1 +
ρM

C − 1

)
,

where the third inequality is due to the arithmetic-geometric
mean inequality.

We can now compare the sum-rate achieved byS and S̄.

N∑
n=1

fn(S̄n)−
N∑

n=1

fn(Sn)

=
∑

n∈{n1,...,nm}

[
fn(S̄n)− fn(Sn)

]
+

∑
n/∈{n1,...,nm}
n∈{1,...,C−1}

[
fn(S̄n)− fn(Sn)

]

≥ m log
(

1 +
ρ0

m

)
−

m∑

i=1

log

(
1 +

∑K
k=1 Pk

(N − i + 1)σni
0

)

−(C − 1) log
(

1 +
ρM

C − 1

)

≥ m log
(

1 +
ρ0

m

)
−m log

(
1 +

Kρa

N −m + 1

)

−(C − 1) log
(

1 +
ρM

C − 1

)
> 0.

This shows that the new power vectorS̄ achieves a higher
sum-rate thanS, contradicting the global optimality ofS.

APPENDIX B
PROOF OFPROPOSITION3.3

Let S ∈ <NK be an arbitrary non-FDMA power vector
satisfying Condition 1 (a). We first show that (i) holds, or there
exist an integerL ≥ 1, a tone set{ni}L

i=1, and a user set
{ki}L+1

i=1 such that
[
nj 6= nj′ and kj 6= kj′ for any j 6= j′

]
and

(ni, ki) ∈ T , (ni, ki+1) ∈ T for i = 1, . . . , L,
and NII ∩ TkL+1 = {nL}. (29)

This can be verified according to the following procedure.

Step 0 Choose arbitraryn1 ∈ NII and k1 ∈ K such that
(n1, k1) ∈ T . Seti := 1.

Step 1 Find ki+1 6= ki such that(ki+1, ni) ∈ T . Such a
ki+1 exists sinceni ∈ NII . If ki+1 ∈ {k1, . . . , ki},
then terminate since (i) holds.

Step 2 If ni is an only element inNII ∩ Tki+1 , then
terminate. Otherwise, we can findni+1 ∈ NII∩Tki+1

such thatni+1 6= ni.
Step 3 If ni+1 ∈ {n1, . . . , ni}, then terminate since (i)

holds. Otherwise, return to Step 1 with settingi :=
i + 1.

Note that the above procedure must terminate within
min(K, N) iterations since, in thei-th iteration (i ≥ 2),
we have kj 6= kj′ and nj 6= nj′ for any (j, j′) with
1 ≤ j < j′ ≤ i. In Step 2, if the iteration terminates, then
we have (29). In Step 1, we can specify the sets in (i) as
follows. If ki+1 = kp with 1 ≤ p ≤ i − 1, then we have
(nj , kj) ∈ T and (nj , kj+1) ∈ T for j = p, . . . , i − 1,
and (ni, ki) ∈ T and (ni, kp) ∈ T . Hence, renumbering the
indices appropriately, we have (i). Also, in Step 3, we can see
(i) as follows. If ni+1 = nq with 1 ≤ q ≤ i − 1, then we
have(nj , kj) ∈ T and (nj , kj+1) ∈ T for j = q + 1, . . . , i,
and(nq, ki+1) ∈ T and(nq, kq+1) ∈ T . Renumbering the in-
dices as(kq+1, . . . , ki+1) → (k1, . . . , kM ), (nq+1, . . . , ni) →
(n1, . . . , nM−1), andnq → nM with M = i− q, we have (i).

Next we show either (i) or (ii) holds, assuming (29)
holds. For the sake of convenience, we relabel the indices as
(nL, nL−1, . . . , n1) → (n1, n2, . . . , nL) and (kL+1, kL, . . . ,
k1) → (k1, k2, . . . , kL+1). Then, (29) is rewritten as

(ni, ki) ∈ T , (ni, ki+1) ∈ T for i = 1, . . . , L,
and NII ∩ Tk1 = {n1}. (30)

Now we can carry out the above procedure again from Step
2 with i := L. If the iteration terminates in Step 2, then we
have (ii). If it terminates in Step 1 or 3, then we have (i).

APPENDIX C
PROOF OFPROPOSITION3.4

By reordering indices if necessary, we assume without loss
of generality thati := ni and i := ki for i = 1, . . . , M . Then
we have

(i, i) and (i, i + 1) ∈ T , for i = 1, . . . , M,

where we regardM + 1 as 1 for convenience. Since we
always write the tone index as a superscript and user index
as a subscript, the notationSi

i+1 signifies the power value for
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player i + 1 at tonei. Also, we use(i, i + 1) to denote the
pair of tonei and playeri + 1.

Now, let us define a vectorv ∈ <NK as follows:

v1
1 = v2

2 = · · · = vM
M = 1,

v1
2 = v2

3 = · · · = vM
M+1(= vM

1 ) = −1,

vn
k = 0 (other components).

Then it can be easily seen thatv satisfies (7). On the other
hand, by Proposition 3.1, we have

N∑
n=1

(vn)T∇2fn(Sn)vn

=
M∑

i=1

(
vi

i

vi
i+1

)T (
∂iif

i(Si) ∂i i+1f
i(Si)

∂i i+1f
i(Si) ∂i+1 i+1f

i(Si)

)(
vi

i

vi
i+1

)

=
M∑

i=1

(
1
−1

)T
{

−
(

(Ai
i)

2 αi
i+1 i(A

i
i)

2 + αi
i i+1(A

i
i+1)

2

αi
i+1 i(A

i
i)

2 + αi
i i+1(A

i
i+1)

2 (Ai
i+1)

2

)

+
K∑

r=1

(
(αi

ir)
2 αi

irα
i
i+1 r

αi
irα

i
i+1 r (αi

i+1 r)
2

)
Qi

r

}(
1
−1

)

=
M∑

i=1

{
(2αi

i+1 i − 1)(Ai
i)

2 + (2αi
i i+1 − 1)(Ai

i+1)
2
}

+
M∑

i=1

K∑
r=1

(αi
ir − αi

i+1 r)
2Qi

r > 0,

where the inequality follows sinceαn
lk > 1/2, An

k > 0 and
Qn

k ≥ 0 for all n, k andl. SinceS does not satisfy the second
order necessary conditions,S cannot be a local maximum.

APPENDIX D
PROOF OFPROPOSITION3.5

By re-ordering indices if necessary, we assumei := ni for
i = 1, . . . ,M−1 andi := ki for i = 1, . . . , M . Then we have

(i, i) and (i, i + 1) ∈ T , for i = 1, . . . , M − 1,

NII ∩T1 = {1}, andNII ∩TM = {M−1}. Since|T1|, |TM | ≥
C (cf. Condition 1 (a)), there exist tonesn1, . . . , nC−1 /∈
{1, . . . ,M −1} and m1, . . . , mC−1 /∈ {1, . . . ,M −1} such
that

n1, . . . , nC−1 ∈ NI ∩ T1,

m1, . . . , mC−1 ∈ NI ∩ TM .

Assume, to the contrary, thatS is a local maximum. We will
derive a contradiction. SinceS satisfies the KKT conditions
(5), we have from (6) that

0 ≤ ∂1f
1(S1) = ∂1f

n1(Sn1) = · · · = ∂1f
nC−1(SnC−1). (31)

Moreover, sincenj ∈ NI ∩ T1 for all j = 1, . . . , C − 1, we
haveS

nj

1 > 0 andS
nj

2 = · · · = S
nj

K = 0. This together with
Proposition 3.1 yields

∂1f
nj (Snj ) = B

nj

1 and ∂11f
nj (Snj ) = −(Bnj

1 )2, (32)

where we note thatPn
k = Qn

k = 0 if and only if Sn
k = 0.

Therefore, we have for eachj = 1, . . . , C − 1

∂11f
nj (Snj ) = −(∂1f

nj (Snj ))2

= −(∂1f
1(S1))2

≥ −(A1
1)

2, (33)

where the first equality is due to (32), the second equality
holds from (31), and the inequality follows since we have
0 ≤ ∂1f

1(S1) = A1
1 −

∑K
r=1 α1

1rP
1
r ≤ A1

1 from (31) and
Proposition 3.1. In a similar way, we also obtain

∂MMfmj (Smj ) ≥ −(AM−1
M )2 (34)

for all j = 1, . . . , C − 1.
Now, we can definev as




vi
i = βi (i = 1, . . . , M − 1)

vi
i+1 = −βi+1 (i = 1, . . . , M − 1)

v
nj

1 = −β1(C − 1)−1 (j = 1, . . . , C − 1)
v

mj

M = βM (C − 1)−1 (j = 1, . . . , C − 1)
vn

k = 0 (other components),

(35)

where{
β1 = 1 + (C − 1)−1

β2 = 2α1
12

(M = 2), (36)





β1 = 1
βi+1 = 2αi

i i+1βi (i = 1, . . . , M − 2)

βM = (2αM−1
M M−1)

−1βM−1

(M ≥ 3). (37)

It is easily seen thatv satisfies (7). By the definition (35) of
v, we have
N∑

n=1

(vn)T∇2fn(Sn)vn

= (C − 1)−2
C−1∑

j=1

(
β2

1∂11f
nj (Snj ) + β2

M∂MMfmj (Smj )
)

+
M−1∑

i=1

(
βi

−βi+1

)T(
∂iif

i(Si) ∂i i+1f
i(Si)

∂i i+1f
i(Si) ∂i+1 i+1f

i(Si)

)(
βi

−βi+1

)

≥ (C − 1)−2
{−(C − 1)β2

1(A1
1)

2 − (C − 1)β2
M (AM−1

M )2
}

+
M−1∑

i=1

(
βi

−βi+1

)T
{

−
(

(Ai
i)

2 αi
i+1 i(A

i
i)

2 + αi
i i+1(A

i
i+1)

2

αi
i+1 i(A

i
i)

2 + αi
i i+1(A

i
i+1)

2 (Ai
i+1)

2

)

+
K∑

r=1

(
(αi

ir)
2 αi

irα
i
i+1 r

αi
irα

i
i+1 r (αi

i+1 r)
2

)
Qi

r

}(
βi

−βi+1

)

≥ − (C − 1)−1
{

β2
1(A1

1)
2 + β2

M (AM−1
M )2

}

+
M−1∑

i=1

{
(−β2

i + 2βiβi+1α
i
i+1 i)(A

i
i)

2

+(−β2
i+1 + 2βiβi+1α

i
i i+1)(A

i
i+1)

2
}

, (38)

where the first inequality follows from (33), (34) and Propo-
sition 3.1, and the last inequality is due toQi

k ≥ 0 and
(

βi

−βi+1

)T (
(αi

ir)
2 αi

irα
i
i+1 r

αi
irα

i
i+1 r (αi

i+1 r)
2

)(
βi

−βi+1

)
≥ 0.
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WhenM = 2, substituting (36) to (38), we have

N∑
n=1

(vn)T∇2fn(Sn)vn

≥ −(C − 1)−1
{

β2
1(A1

1)
2 + β2

2(A1
2)

2
}

+
{

(−β2
1 + 2β1β2α

1
21)(A

1
1)

2+(−β2
2 + 2β1β2α

1
12)(A

1
2)

2
}

= (1 + (C − 1)−1)
{

4α1
12α

1
21 − (1 + (C − 1)−1)2

}
(A1

1)
2

> 0,

where the last inequality follows fromα1
12α

1
21 > 1

4 (1+ 1
C−1 )2.

WhenM ≥ 3, substituting (37) to (38), we obtain

N∑
n=1

(vn)T∇2fn(Sn)vn

≥ −(C − 1)−1
{

β2
1(A1

1)
2 + β2

M (AM−1
M )2

}

+
M−2∑

i=1

{
(4αi

i i+1 αi
i+1 i − 1)β2

i (Ai
i)

2
}

+
{
(4αM−1

M−1 M αM−1
M M−1 − 1)β2

M (AM−1
M )2

}

=
{

4α1
12α

1
21 − (1 + (C − 1)−1)

}
β2

1(A1
1)

2

+
{
4αM−1

M−1 M αM−1
M M−1 − (1 + (C − 1)−1)

}
β2

M (AM−1
M )2

+





0 (M = 3)
M−2∑

i=2

{
(4αi

i i+1 αi
i+1 i − 1)β2

i (Ai
i)

2
}

(M ≥ 4)

> 0,

where the last inequality follows fromαn
lkαn

kl > 1
4 (1 +

1
C−1 )2 > 1

4 (1 + 1
C−1 ) > 1/4, βk > 0, and An

k > 0 for
anyk, l, andn. Sincev does not satisfy (8), the second order
necessary conditions do not hold, and hence,S cannot be a
local maximum. This completes the proof.

APPENDIX E
PROOF OFTHEOREM 3.2

For simplicity, we omit the superscriptn (tone index) and
denotefk := ∂kfn(Sn) and fkl := ∂klf

n(Sn) for (k, l) ∈
{1, 2} × {1, 2}. Then, from Definition 3.1, we only have to
show that

(
f2

−f1

)T(
f11 f12

f12 f22

) (
f2

−f1

)

= f2
1 f22 + f2

2 f11 − 2f1f2f12 > 0

for any S1 ≥ 0 andS2 ≥ 0. By Proposition 3.1, the first and
second derivatives can be written as follows:

f1 =
1

X1 + S1
− α12

(
1

X2
− 1

X2 + S2

)
,

f2 =
1

X2 + S2
− α21

(
1

X1
− 1

X1 + S1

)
,

f11 = − 1
(X1 + S1)2

+ α2
12

{
1

X2
2

− 1
(X2 + S2)2

}
,

f22 = − 1
(X2 + S2)2

+ α2
21

{
1

X2
1

− 1
(X1 + S1)2

}
,

f12 = − α21

(X1 + S1)2
− α12

(X2 + S2)2
.

Letting Γ := X2
1X2

2 (X2 + S2)4(X1 + S1)4 > 0, we have

Γf2
1 f22 =

{
X2(X2 + S2)− α12S2(X1 + S1)

}2

{
α2

21S1(2X1 + S1)(X2 + S2)2 −X2
1 (X1 + S1)2

}
,

Γf2
2 f11 =

{
X1(X1 + S1)− α21S1(X2 + S2)

}2

{
α2

12S2(2X2 + S2)(X1 + S1)2 −X2
2 (X2 + S2)2

}
,

−2Γf1f2f12 = 2X1X2

{
X2(X2 + S2)− α12S2(X1 + S1)

}
{

X1(X1 + S1)− α21S1(X2 + S2)
}

{
α12(X1 + S1)2 + α21(X2 + S2)2

}
.

Summing up the above three equations, we have

Γ(f2
1 f22 + f2

2 f11 − 2f1f2f12)
= 2(X1 + S1)2(X2 + S2)2(X1X2 − α12α21S1S2)(

α12α12σ2S1 + α12α21σ1S2

+α12σ
2
1 + α21σ

2
2 − σ1σ2

)
(39)

= 2(X1 + S1)2(X2 + S2)2(X1X2 − α12α21S1S2)σ1σ2{
α12α21

(
S1

σ1
+

S2

σ2

)
+

(
α12

(
σ1

σ2

)
+α21

(
σ2

σ1

)
−1

)}
,

where the equality (39) is obtained by a straightforward factor-
ization. SinceΓ > 0 andX1X2 − α12α21S1S2 > 0 from the
definitions ofX1 andX2, we havef2

1 f22+f2
2 f11−2f1f2f12 >

0 for any S1 ≥ 0 andS2 ≥ 0.

APPENDIX F
PROOF OFPROPOSITION3.6

Since |NII(S)| ≥ 2, there exist two tonesn1 andn2 such
that Sn1

1 > 0, Sn1
2 > 0, Sn2

1 > 0, and Sn2
2 > 0. Assume

to the contrary thatS is a local maximum of the sum-rate
maximization problem (4). We will derive a contradiction.
Then, from the KKT conditions (5) and (6), we have

0 ≤ λ1 = ∂1f
n1(Sn1) = ∂1f

n2(Sn2),
0 ≤ λ2 = ∂2f

n1(Sn1) = ∂2f
n2(Sn2).

Now, let v ∈ <2N be defined as



vn1
1 = λ2, vn1

2 = −λ1,
vn2
1 = −λ2, vn2

2 = λ1,
vn
1 = vn

2 = 0 (∀n ∈ N \ {n1, n2}) .
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Then, it is obvious thatv satisfies (7). Sincefn1 andfn2 are
quasi-convex, we have

N∑
n=1

(vn)T∇2fn(Sn)vn

=
(

λ2

−λ1

)T

∇2fn1(Sn1)
(

λ2

−λ1

)
+

(−λ2

λ1

)T

∇2fn2(Sn2)
(−λ2

λ1

)

=
(

∂2f
n1(Sn1)

−∂1fn1(Sn1)

)T

∇2fn1(Sn1)
(

∂2f
n1(Sn1)

−∂1fn1(Sn1)

)

+
(−∂2f

n2(Sn2)
∂1fn2(Sn2)

)T

∇2fn2(Sn2)
(−∂2f

n2(Sn2)
∂1fn2(Sn2)

)

> 0,

which contradicts Proposition 2.2. Hence,S cannot be a local
maximum.

APPENDIX G
PROOF OFPROPOSITION4.1

We first show the KKT conditions (5). Choose(n, k) ∈
N × K arbitrarily, and letλk := γ−1

k . From Assumption B
and (16), we haveλk > 0. Moreover, we have

Pk −
N∑

n=1

Sn
k = Pk −

∑

n∈Lk

(γk − σn
k )

= Pk −
{
|Lk| ·

Pk +
∑

n∈Lk
σn

k

|Lk| −
∑

n∈Lk

σn
k

}

= 0.

Hence, the first part of (5) holds. Next we show the second
part. If n ∈ Lk, then it follows from (16) and Assumption B
that Sn

k = γk − σn
k > 0. Therefore, we have

λk − ∂kfn(Sn) =
1
γk
− ∂

∂Sn
k

log
(

1 +
Sn

k

σn
k

)

=
1

Sn
k + σn

k

− 1
Sn

k + σn
k

= 0,

where the first equality follows since tonen is used by only
userk, i.e.,T n(Sn) = {k}, and the second equality is due to
(16). If n /∈ Lk, thenSn

k = 0 and there exists another player
l ∈ K such thatl 6= k andn ∈ Ll sinceL ∈ FDM. Moreover,
we have

λk − ∂kfn(Sn)
= γ−1

k − (An
k − αn

klP
n
l )

=
1
γk
−

{
1

σn
k + αn

lk(γl − σn
l )
− αn

kl

(
1
σn

l

− 1
γl

)}

≥ 0,

where the first equality follows from Proposition 3.1 andPn
r =

0 for all r 6= l, the second equality follows fromXn
k = σn

k +
αn

lkSn
l , Xn

l = σn
l , and Sn

l = γl − σn
l from (16), and the

inequality follows from (17). Hence, we obtain the second
part of (5).

Next we show the second order sufficient conditions. Let
v ∈ <NK be an arbitrary nonzero vector satisfying (10), and

choosen ∈ N arbitrarily. Then, there existskn ∈ K such that
T n(Sn) = {kn} from L ∈ FDM andNO(S) = ∅. From (10),
we havevn

k = 0 for any k /∈ T n(Sn), which together with
T n(Sn) = {kn} yields

(vn)T∇2fn(Sn)vn = (vn
kn

)2∂knkn
fn(Sn)

= −(vn
kn

)2(Bn
kn

)2, (40)

the last equality is due to Proposition 3.1 andQn
k = (An

k )2 −
(Bn

k )2 = 0 for all k 6= kn. Since v 6= 0 and Bn
kn

> 0,
summing up (40) fromn = 1 to N , we obtain (9).

APPENDIX H
PROOF OFTHEOREM 4.1

Let L ∈ FDM be an arbitrary tone allocation set such that
mink∈K |Lk| ≥ C. Then, we havemaxk∈K |Lk| ≤ N − (K −
1)C sincemink∈K |Lk| ≥ C and

∑
k∈K |Lk| = N .

Choose(k, l) ∈ K × K with k 6= l arbitrarily. Then, it can
be easily seen

γ0 ≤ γk ≤ γM .

Moreover, from (18), we have

γk ≥ γ0 > σM ≥ max
n∈Lk

σn
k ,

that is, Assumption B holds. Hence, it suffices to show (19)
⇒ (17) and (20)⇒ (19).

First we show (19)⇒ (17). For an arbitraryn ∈ Ll, we
have from (19)

αn
lkαn

klγM (γ0 − σM )2+(αn
klγMσ0 + αn

lkγ0σM )(γ0 − σM )
≥ σMγ0(γM − σ0),

which can be equivalently written as

1
σ0 + αn

lk(γ0 − σM )
− αn

kl

(
1

σM
− 1

γ0

)
≤ 1

γM
.

Hence, we have (17).
Next we show (20)⇒ (19). From (20), we have

P0

N − (K − 1)C
≥

(
1

A0
+

1√
A0

+ 1
)

σM

≥
(

1
A0

+
1√
A0

+ 1
)

σM −
(

1 +
α0

A0

)
σ0,

which is identical to

P0

N − (K − 1)C
+ σ0 − σM ≥ (σM − α0σ0) + σM

√
A0

A0
.

Sinceγ0 = P0/(N − (K − 1)C) + σ0 and 2α + 2β ≥ α +
(α2 + 4β2)1/2 for any α ≥ 0 andβ ≥ 0, we have

γ0 − σM ≥ (σM − α0σ0) +
√

(σM − α0σ0)2 + 4A0σ2
M

2A0
,

or equivalently

A0γM (γ0 − σM )2 + α0(σ0γM + σMγ0)(γ0 − σM )
≥ σMγ0(γM − σ0) + α0γ0σM (γ0 − σM ) + σMσ0γ0.

Sinceα0γ0σM (γ0 − σM ) + σMσ0γ0 ≥ 0, we have (19).
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APPENDIX I
PROOF OFTHEOREM 5.1

Given an even integerN and a set ofN positive integers
a1, a2, ..., aN , we construct a two-user communication system
as follows: let there be a total ofN frequency tones, and let the
channel noise powers for the two users beσn

1 = σn
2 = an, for

n = 1, 2, ..., N . We also set the crosstalk coefficientsαn
12 =

αn
21 = 1.01 for all n, and letP1 = P2 = P := (N + 1)3σM ,

with σM := maxn an. In this case, problem (21) is reduced to
the following:

maximize
S=(S1,S2)∈<2N

N∑
n=1

log
(

1 +
Sn

1

an

)
+

N∑
n=1

log
(

1 +
Sn

2

an

)

subject to S ∈ S,

N∑
n=1

Sn
1 ≤ P,

N∑
n=1

Sn
2 ≤ P, (41)

where we denote the optimal value byRfdma. Let us consider a
convex relaxation of (41) by dropping the nonconvex FDMA
constraintS ∈ S, and by combining the two separate power
constraints as a single one:

maximize
(S1,S2,...,SN )∈<N

N∑
n=1

log
(

1 +
Sn

an

)

subject to
N∑

n=1

Sn ≤ 2P, Sn ≥ 0, ∀ n, (42)

where we denote the optimal value byRrelax. Notice that
the relaxed problem (42) is a standard single user sum-rate
maximization problem, soRrelax can be evaluated easily using
the water-filling procedure (or the classical Karush-Kuhn-
Tucker optimality condition). Specifically, there exists some
γ > 0 (water level) such that

N∑
n=1

Sn = 2P, Sn + an = γ, ∀ n,

where we have used the fact that the power level2P = 2(N +
1)3 maxn an is large enough so thatSn > 0 for all n. The
above condition further implies

2P +
N∑

n=1

an = Nγ. (43)

Thus, we obtain

Rrelax =
N∑

n=1

log
(

1 +
Sn

an

)
=

N∑
n=1

log
(

an + Sn

an

)

=
N∑

n=1

log
(

γ

an

)
= N log γ −

N∑
n=1

log an

= N log

(
2P +

∑N
n=1 an

N

)
−

N∑
n=1

log an, (44)

where the last step (44) follows from (43).
Our main claim is that

Rfdma≤ Rrelax = N log

(
2P +

∑N
n=1 an

N

)
−

N∑
n=1

log an

and the equality holds if and only if the equipartition problem
has a ‘yes’ answer. This claim implies the NP-hardness of
the optimal bandwidth allocation problem (21) in the two-
user case. To establish this claim, let us consider a globally
optimal solution(S1,S2) ∈ <2N of (41). Due to the FDMA
constraint, the setsT1(S1) and T2(S2) form a partition of
N = {1, 2, ..., N}, where T1(S1) := {n |Sn

1 > 0} ⊆ N
and T2(S2) := {n |Sn

2 > 0} ⊆ N . Since(S1,S2) is a sum-
rate optimal solution of (41), it follows that the subvectors
{Sn

1 }n∈T1(S1), {Sn
2 }n∈T2(S2) must be the water-filling solu-

tions of corresponding sum-rate maximization subproblems
over the tones inT1(S1) and T2(S2) respectively. In other
words, there exist two positive constants (water levels)γ1, γ2

such that∑

n∈Tk(Sk)

Sn
k = P, Sn

k +an = γk, ∀n ∈ Tk(Sk) and k = 1, 2,

where we have used the fact that the power levelP =
(N + 1)3σM = (N + 1)3 maxn an is sufficiently large so that
Sn

k > 0 for all n ∈ Tk(Sk) and k = 1, 2. Simple algebraic
manipulations of above condition show

P +
∑

n∈Tk(Sk)

an = Nkγk, k = 1, 2, (45)

so that

2P +
N∑

n=1

an = N1γ1 + N2γ2, (46)

whereNk := |Tk(Sk)| for k = 1, 2. Thus, we obtain

Rfdma =
∑

n∈T1(S1)

log
(

an + Sn
1

an

)
+

∑

n∈T2(S2)

log
(

an + Sn
2

an

)

=
∑

n∈T1(S1)

log
(

γ1

an

)
+

∑

n∈T2(S2)

log
(

γ2

an

)

= N1 log γ1 + N2 log γ2 −
N∑

n=1

log an

≤ N log
(

N1γ1 + N2γ2

N

)
−

N∑
n=1

log an (47)

= N log

(
2P +

∑N
n=1 an

N

)
−

N∑
n=1

log an = Rrelax,

where the last equality follows from (46), while the inequality
(47) is due to the (strict) concavity of thelog x function.
Moreover, the inequality (47) holds with equality if and only
if γ1 = γ2.

It remains to show that the conditionγ1 = γ2 holds for
some global optimal solution(S1,S2) of (41) is equivalent to
the equipartition problem having a ‘yes’ answer. Clearly, if
the equipartition problem is a ‘yes’ instance, then there exists
someT ⊂ {1, 2, ..., N} with |T | = N/2 such that

∑

n∈T

an =
∑

n6∈T

an =
1
2

N∑
n=1

an. (48)

Let us define

Sn
1 =

{
γ − an, if n ∈ T
0, if n 6∈ T,

Sn
2 =

{
γ − an, if n 6∈ T
0, if n ∈ T,
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whereγ = (2P +
∑N

n=1 an)/N . From these definitions and
using (48), we can verify thatT1(S1) = T , T2(S2) = T c =
N/T , and (S1,S2) is a feasible solution of (41) with an
objective value of

∑

n∈T

log
(

an + Sn
1

an

)
+

∑

n6∈T

log
(

an + Sn
2

an

)

= N log

(
2P +

∑N
n=1 an

N

)
−

N∑
n=1

log an = Rrelax.

By the fact thatRfdma≤ Rrelax, we can conclude that(S1,S2)
is a global optimal solution of (41). Moreover,γ1 = γ2 = γ
in this case.

Conversely, ifγ1 = γ2 for some global optimal solution
(S1,S2) of the optimal bandwidth allocation problem (41),
then condition (45) shows

P +
∑

n∈T1(S1)
an

P +
∑

n∈T2(S2)
an

=
N1

N2
.

We claim N1 = N2. Suppose this is not true, then we can
assume without loss of generality thatN1 < N/2 < N2,
implying

P +
∑

n∈T1(S1)
an

P +
∑

n∈T2(S2)
an

=
N1

N2
< 1− 1

N
. (49)

On the other hand, sinceP = (N + 1)3σM = (N + 1)3

maxn an, it follows that

P +
∑

n∈T1(S1)
an

P +
∑

n∈T2(S2)
an

≥ (N + 1)3σM

(N + 1)3σM + NσM
≥ 1− N

(N + 1)3
,

which clearly contradicts with (49) forN ≥ 1. Thus, we must
haveN1 = N2, which together with (45) and the factγ1 = γ2

further imply ∑

n∈T1(S1)

an =
∑

n∈T2(S2)

an.

This shows that the equipartition problem has a ‘yes’ answer
with T = T1(S1), which establishes the NP-hardness of the
optimal bandwidth allocation problem (21) in the two-user
case.

Finally, we argue that the sum-rate maximization problem
(4) is NP-hard in the two-user case. To do so, we consider the
same two-user communication system defined in the beginning
of this proof, and show that the two optimization problems
(4) and (21) are equivalent in this case. Let(S1,S2) be
an optimal power allocation for the corresponding sum-rate
maximization problem (4). We first show that in this case
C := min{T1(S1), T2(S2)} ≥ 2, that is, the minimum number
of tones used by each user must be at least 2. Suppose the
contrary and let us assume (without loss of generality) that user
1 uses only one frequency tone 1. In this case, user 2 is better
off not to use frequency tone 1 since the noise plus interference
power for user 2 at tone 1 isa1 +1.01P , which is greater than
user 2’s optimal water levelγ2 = (P +

∑N
n=2 an)/(N − 1)

whereP = (N+1)3 maxn an. Thus, the maximum achievable

sum-rate is upper bounded by

log
(

1 +
P

a1

)
+

N∑
n=2

log
(

1 +
Sn

2

an

)

= log (a1 + P ) + (N − 1) log
P +

∑N
n=2 an

N − 1
−

N∑
n=1

log an

≤ N log(P + NσM )− (N − 1) log(N − 1)−
N∑

n=1

log an

≤ N log P−(N−1) log(N−1)−
N∑

n=1

log an+ O(1/N), (50)

where we have used the factP = (N +1)3σM and the water-
filling property of (S2

2 , S3
2 , ..., SN

2 ). On the other hand, if we
allocate the firstN/2 tones to user 1 and the remainingN/2
tones to user 2, then the users achieve a sum-rate of

N/2∑
n=1

log
(

1 +
Sn

1

an

)
+

N∑

n=1+N/2

log
(

1 +
Sn

2

an

)

=
N

2
log

P +
∑N/2

n=1 an

N/2
+

N

2
log

P +
∑N

n=1+N/2 an

N/2

−
N∑

n=1

log an

≥ N log P −N log
N

2
−

N∑
n=1

log an

which is strictly greater the rate (50) for largeN . Thus, letting
user 1 uses exactly one tone cannot be sum-rate optimal,
implying C ≥ 2 for our problem.

SinceC ≥ 2 andαn
12 = αn

21 = 1.01 for all n (by definition),
it follows that

αn
12α

n
21 > 1 =

1
4

(1 + 1)2 ≥ 1
4

(
1 +

1
C − 1

)2

, ∀ n,

so Theorem 3.3 shows that the optimal power allocation
strategy is FDMA. Thus, for the two-user communication
system defined in the beginning of this proof, the sum-
rate maximization problem (4) is equivalent to the optimal
bandwidth allocation problem (21) which is NP-hard. This
shows the NP-hardness of the sum-rate maximization (4) in
the two-user case. The proof is complete.
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