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Abstract—Consider a multiuser communication system in a coexist [1]. In such scenarios, system-enforced FDMA so-
frequency selective environment whereby users share a common|ytion may no longer be feasible or desirable, and we are
spectrum and can interfere with each other. Assuming Gaussian naturally led to a situation whereby users can communicate
signaling and no interference cancelation, we study optimal . . .
spectrum sharing strategies for the maximization of sum-rate s!mqlf[aneo.usly over a common spectrum, potentlally causing
under separate power constraints for individual users. Since the Significant interference to each other. For such a multiuser sys-
sum-rate function is non-concave in terms of the users’ power tem, each user’s performance depends on not only the power
allocations, there can be multiple local maxima for the sum- allocation (across spectrum) of his own, but also those of other
rate maximization problem in general. In this paper, we show users in the system. Thus, proper spectrum management (i.e.,

that, if the normalized crosstalk coefficients are larger than a trol) i ded for th imizati f th I
given threshold (roughly equal to1/2), then the optimal spectrum power control) is needed for the maximization of the overa

sharing strategy is frequency division multiple access (FDMA). System performance. Spectrum management problem of this
In case of arbitrary positive crosstalk coefficients, if each user's type also arises in a digital subscriber line (DSL) system where
power budget exceeds a given threshold, then FDMA is again multiple users communicate with a central office through

sum-rate optimal, at least in a local sense. In addition, we separate telephone lines over a common spectrum. Due to

show that the problem of finding the optimal FDMA spectrum . . . . .
allocation is NP-hard, implying that the general problem of electro-magnetic coupling, signals transmitted over different

maximizing sum-rate is also NP-hard, even in the case of two telephone wires bundled in close proximity may interfere
users. We also propose several simple distributed spectrum al- with each other, resulting in significant signal distortion. In
location algorithms that can approximately maximize sum-rates. fact, such crosstalk is known to be the major source of
Numerical results indicate that these algorithms are efficient signal distortion in a high speed DSL system [2]. Hence,

and can achieve substantially larger sum-rates than the existing for both wirel d wireli DSL licati udici
lterative Waterfilling solutions, either in an interference-rich or both wireless and wireline ( ) applications, judicious

environment or when the users’ power budgets are sufficiently Management of spectrum among users can have a major impact

high. on the overall system performance.
Index Terms—FDMA optimality, multiuser communication For many communication systems, a reasonable measure of
system, spectrum management, sum-rate maximization overall system performance is the sum of achievable rates of
all users in the system. The maximum achievable sum-rate
|. INTRODUCTION (subject to individual power constraints) corresponds to the

N a multiuser communication system, interference mi?—OCiaI optimurmf the system. deally, we W.OU|d Iilfe to enable

igation is a major design and management objectiv@.e,us_ers in the systt_am to reach the social optimum through
A popular approach to minimize multiuser interference i @stnbuted mechanism whereby the users’ power Ievels' are
Frequency Division Multiple Access (FDMA) whereby theadwSted only locally. Un_fortunately, n a_\freq_uency selective
available spectrum is divided into multiple tones (or band V|rr(])nment andf assr?umlng Gaussian S|gnz:1)II|ng, the sum-rate
and shared by all the users on a non-overlapping basis. S ght.e Sense o annc?n) turns out tq € a non-concave
‘orthogonal channelization’ approach is well-suited for hig netion of |nd|V|duaI_u§grs power allocations. Con;equently,
speed structured communication in which quality of service 18¢ problem' of maximizing the sum-rate h"?‘s multiple local
a major concern. However, FDMA also has major drawbacR&XIMa, which in t“”? makes_the pqmput_atlon of a globally
such as high system overhead and low bandwidth utilizatio _t|mal_spe§:trum sharing ;olutlon d|ff|c_ult_(|ndeed, NP-harq as
The latter is due to the fact that a frequency tone, onedown in this paper). Obviously, the distributed maximization
assigned to a user, cannot be used by any other users &g m-rate constitutes an even more formidable computational
if it is not fully utilized. challenge.

With the proliferation of various radio devices and services, Recently, some researchers proposed several spectrum man-

multiple wireless systems sharing a common spectrum mggement algorithms based on duality theory [3], [4], [5], [6]. In

these algorithms, the authors aim to solve the Lagrangian dual
This research is supported in part by the USDOD ARMY, grant numbeglaxation problem instead of the original sum-rate maximiza-

W911NF-05-1-0567. :
tDepartment of Applied Mathematics and Physics, Graduate School t(l)(?n prOblem' AlthOUgh the dual prOblem can be decomposed

Informatics, Kyoto University, Kyoto 606-8501, Japan. The work of thid0 lower dimensional problems and their objective functions
author was performed while he was on a postdoctoral visit at the Universgye convex, it is difficult to solve it exactly since the evalu-

of Minnesota. Emailshunhaya@amp.ikyoto-u.acjp ~ ation of the dual objective function involves a non-concave
fDepartment of Electrical and Computer Engineering, University of

Minnesota, 200 Union Street SE, Minneapolis, MN 55455. EmaimaXimization' Moreover, the duality gap can still be positive
luozqg@ece.umn.edu for any finite number of tones, so the optimal dual solution



can only provide an upper bound on the social optimumoefficients between each pair of users is greater than 1.
In other words, the dual decomposition based algorithms E®reover, when restricted to the FDMA strategies, the optimal
prescribed in [3], [6] cannot solve the original primal spectrutandwidth allocation can be computed easily using convex
management problem due to the existence of a positive dualigtimization. In this paper, we study the same problem, but
gapt. Another class of spectrum management methods (fifst a more practical frequency selective environment. As it
proposed by Cioffi and Yu [2] and later studied in [8], [9]turns out, frequency selectivity greatly complicates the sum-
[10], [11], [12], [13]) are based on game theoretical conceptate maximization problem — it makes an otherwise computa-
whereby users maximize their individual rates in a distributdtnally easy problem intractable, even if the number of users
manner using the well-known water-filling strategy. In thign the system is only two.
framework, the spectrum management problem is viewed asThe contribution of this paper is two fold. First, for the
a non-cooperative Nash game in which each player’s paytffo-user case, we show that, if the pairwise products of the
function is his data rate, and every user greedily updates fitsrmalized crosstalk coefficients at all frequency tones are
power spectrum by treating other users’ signals as Gaussiarger than a certain threshold valuﬁe(l + ﬁ), with C
noise. When crosstalk interference is small, the resultifging the minimum number of tones used by any user), then
distributed algorithm (called iterative water-filling algorithmthe optimal spectrum sharing strategy for the maximization of
or IWFA herein) is known to generate a sequence of powsum-rate is FDMA. If, in addition, each normalized crosstalk
allocations converging to a unique Nash equilibrium point afoefficient is greater thai/2 for all users at each frequency
the non-cooperative game [12], [13], [11]. When the crosstalne, then FDMA remains sum-rate optimal for the case of
interference is strong, there may be multiple Nash equilibriuarbitrary number of users. Second, we restrict ourselves to the
points and the convergence of IWFA is unknown, thoughkDMA strategies and study, for a given channel condition,
empirical evidence suggests the algorithm still convergd®ow to find an optimal bandwidth allocation which maximizes
Despite its distributed nature and simplicity, the sum-ratbe sum-rate. We show that this problem is NP-hard and
achieved by IWFA can be far from the social optimum; segropose several simple algorithms to approximately maximize
the simulation results in Section VI. the sum-rate. Numerical results indicate that these algorithms

How should users in an interference-limited communicatictre efficient and can generate higher quality solutions than
system share spectrum in order to achieve the social optimutM#A when the crosstalk coefficients are sufficiently large.
The answer depends on the communication environment. In-This paper is organized as follows. In Section II, we describe
tuitively, if the crosstalk interference is absent or low, then dihe system model and give some mathematical preliminaries
users should utilize the entire spectrum simultaneously. On i@ the first and second order necessary conditions for local
other hand, when the crosstalk interference is significant, taptimality. In Section Ill, we derive a sufficient condition
users may be much better off if no spectrum is shared, thet@der which the global optimum of the sum-rate maximiza-
fore giving rise to a self-induced (rather than system-enforcei#n problem possesses the FDMA structure. Our proof is
FDMA solution. Our interest in FDMA type solutions is twobased on an analysis of quasi-convexity using the gradient
fold. First, it is of practical interest to characterize how strongectors and Hessian matrices of sum-rate function at each
the crosstalk interference has to be before FDMA strateffgquency tone. In Section IV, we further provide a sufficient
becomes sum-rate optimal. The answer to this question v@pndition for the existence of a local maxima of the sum-rate
not only provide valuable insight into the structural propertfunction (subject to individual power constraints) that has the
of optimal power allocation strategies, but also help simpliffDMA structure. In SectionV, we establish the NP-hardness
the spectrum management problem since it allows the user®tdhe sum-rate maximization problem and propose a simple
narrow their search to FDMA type solutions only. The lattedlistributed algorithm and two polynomial time combinatorial
is a much simpler design problem than the general noncon&sérch algorithms for finding a FDMA solution with maximal
sum-rate maximization problem. Second, there exist simgigm-rate. Numerical results are reported in Section VI, and
distributed algorithms that can determine the optimal FDM#e concluding remarks are given in Section VII.
type solutions, regardless of their overall optimality for the Throughout the paper, we use the following notations. We
general sum-rate maximization problem. It turns out thgenote the set of frequency tones and users\byand K,
FDMA solutions obtained this way can offer substantiallyespectively, i.e. N := {1,...,N} and K := {1,..., K}.
higher sum-rates than the existing IWFA method in certaf\Ns0, we use superscript to denote the frequency tone index
situations. and subscripk to denote the user index.

The structural property of optimal spectrum sharing strate-
gies has been recently studied in [14] for a frequency flat ] ) ] o
environment. It was shown that the optimal spectrum sharingwe first describe the frequency selective Gaussian interfer-

strategy is FDMA when the product of normalized crossta1ce channel model and the mathematical formulation of the
sum-rate maximization problem. Then we derive the first and

it is worth noting that the authors of [6] claimed that the duality gap igecond order conditions for sum-rate optimality.

zero if a certain “time-sharing” property holds. They also used an intuitive

(but non-rigorous) argument to show that the time-sharing property holds Channel model and the sum-rate maximization problem
approximately when the tone spacing is narrow. A rigorous treatment of the .

issue is needed to substantiate this claim and to estimate the size of dualit)SuPpose there aré&’ users sharing a common spectrum

gap, see [7]. which is divided into N frequency tones numbered by

Il. PRELIMINARIES



{1,2,..., N}. For notational simplicity, we assume that eacht can be easily seen that usk’s total achievable data rate
user acts both as a transmitter and as a receiad we 25:1 R7 is concave for usek’s power vector(S;, ..., S}Y)
number the transmitters and receivers by the same indeken other users’ power vectors are fixed. However, the total
set {1,2,...,K}. In this way, a physical user may act asum-rate functionz,{{:1 Zf:’zl 7 is in general non-concave
transmitterk and receiver], with [ # k. Let 2} denote the even if other users’ powers are fixed, since ussmpower S}
transmitted complex Gaussian signal from transmittat tone appears in the denominators of other users’ data rate function.

n, and letSy := E|z7|? denote its power. The received signal When interference is absent (or small), it can be easily

yp is given by checked [14] that signal spreading across spectrum is optimal.
X In other words, if the crosstalk coefficients are sufficiently
yr = Z a4 sn meN. keK small, then all frequency tones should be utilized by all users.
k — k™l k> ) )

On the other hand, if the crosstalk coefficients are large, then
. ) the communication system becomes interference limited, and
wherezy ~ C'N(0, No) denotes the complex Gaussian chanspectrum sharing is no longer optimal. Intuitively, FDMA

nel noise with zero mean and variandg, and the complex sphoyld yield a larger sum-rate in this case. Mathematically,
scalars{h;} } represent channel gain coefficients. In practicgppa property is defined as follows:
hij, can be determined by the distance between transniitter pefinjtion 2.1: A feasible solution{ S, . .. S2AN_ of the

and receiverk. Assuming that the interference is treated a§,m-rate maximization problem (2) is said to have FDMA
white noise, we can write transmittéis achievable data rate property, if the following implication holds for alin, k) €
R} at tonen [15] as N xK:

=1

i |2Si n no_ '
Ry ( ?,...,S;():1Og<1+ |hiix S ) Sp>0 = SP=0, Vi#k

No + 3z, | i 25T
B. First and second order optimality conditions

In this subsection, we give some necessary or sufficient
Sy ) 1) conditions of local optimality for (4). Since those conditions
o+, 2k ansr |’ can be derived directly from standard optimization theory [16],
[17], we simply state the results without proofs.
where o}l = No/|hj,|* denotes the normalized background To simplify our notations, we le§", S;, andS denote the

noise power, andaj, = |hj[*/|hi|* is the normalized power vectors at tone, for userk, and in the whole system,
crosstalk coefficient from transmittérto receiverk at tone respectively, i.e.,

n. Due to normalization, we hawe}, =1 for all k.

Upon normalizing the channel coefficients, we obtain

R}(ST,...,SE) = log <1 +

no._ mn n K
Notice that unlike the frequency flat case considered in 8" = (S7,...,5%) € RT,
[14], the channel coefficientd], vary according to tone Sk == (S},..., 80 e RN,
index n due to frequency selectivity, resulting in a non- S = (S1,...,8N) e RNK,

constant normalized noise powef across tones. As it turns

out, this crucial difference greatly complicates the sum-ratde denote the power budget vector Byi.e., P := (Py,...,
maximization problem in the frequency selective case, makidg) € R Also, we denote the noise plus interference power
the computation of optimal power allocations computationalkpr userk at tonen, and the sum of all users’ data rates at

intractable: see Section V. tonen by X7 and f", respectively, i.e.,
Throughout, we assume that transmittéls power is nQ n n gn
XI’L n =
bounded byP, > 0, i.e., £(8") = o+ ;a”ﬁl ’
N ¢ K o (3)
Y Sp <P forkek. fr(8™) ==Y Rp(8™) =) log <1 + X’Z) -
k=1 k=1 k

n=1

For a given power allocation( "'}, transmitter k's total Note that.Xj' and f" depend onS™ only. We adopt the
achievable data rate is given bZN  R? and the total following short notations for the first and second derivatives

sum-rate is given by> 1 SV Rr. Hence, the sum-rate °

maximization problem can be written as follows: 0 0?
Opf"(S") = "(S™), O f"(8") == s [7(ST).
L Skt
{SIEaXISI{}IZZSB Z Z log <1 + LS, an S") With these notations, we can rewrite the sum-rate maximiza-
DR RIn=l p=1n=1 k Ik TR tion problem (2) as follows:
N
subject to S S < Py, Sp >0, Vne N, Vk e K. (2) T
g ’ * maximize > _ f"(S") @)

.....

n=1

2There is no loss of generality with this assumption since we can always ) N
create a virtual channel with zero channel gain coefficients between pair of subject to Z S"<P, S">0, VneN,

users who do not wish to communicate. ne1



where the vector inequalities are to be interpreted compongiere holds

twise. Finally, we define the following index sets which will N
be convenient for describing the FDMA property of a feasible Z(v")TVQf"(S")v” <0, (8)
power vector. 1
Definition 2.2: For a feasible solutio§ of problem (4), we
define the following sets. wherev” := (vf, ..., vj) € R¥.
The second order sufficient conditions for local optimality
7(S) = {(n,k)[ S >0} SN x K, can be described as follows.
Tk(Sk) := {n| S} >0} CWN, Proposition 2.3 (Second order sufficient conditions):
T7(S") == {k|S} >0} C K. Suppose tha$ satisfies the KKT conditions (5), ank, > 0

for all £k € K. Suppose that
Note that7;(S;) denotes the set of all tones used by user

k, and7™(S™) denotes the set of all users using tone N T e
Definition 2.3: For a feasible solutio$' of problem (4), we Z(” ) V(ST <0 ©)
define the tone sets by n=t
for any vectorsv!, ... v € R¥ such thatv = (v!,... v")

No(S) = {n ‘ |77(S™")| = 0}, £0,

Ni(8) = {” ‘ 7787 :1}’ V=0 VYng¢ T, and > vf=0, VkeKk. (10)

Ni(S) = {n ‘ IT(S™)] > 2}, net,

where|7™(S™)| denotes the number of elements belonging t-cr>hen’ the po_wer_vectcs IS a Ioca_l maX|mum_of problem (4).

T(S™). These optimality conditions will be used in the subsequent
ﬁections to show the optimality of FDMA-type solutions under

Since|7™(S™)| implies the number of users whose transmit ™" L
various channel conditions.

power is allocated to tone:, power vectorS has FDMA
property if and only ifA;; = 0. In the ensuing discussions,
we often omit the argumer® when it is obvious from the [1l. SUM-RATE OPTIMALITY OF FDMA
context. : .
The first order necessary conditions, which are also callgﬂ'g s mentioned earlier, we expect that an FDMA-type power

the Karush-Kuhn-Tucker (KKT) conditions, for problem (4) is cz_at_|0n will maximize the sum-rat_e Whe_n the crosstalk
. . . . coefficients are sufficiently large. In this section we show the
given as follows. One can easily see that the linear indepen-

. . : validity of this claim and derive an explicit bound on the
dence constraint qualification always holds sidge> 0 for .- ! : .
al ke K. crosstalk coefficients which will ensure the existence of an

Proposition 2.1 (Karush-Kuhn-Tucker conditiond)et optimal FDMA type solution. We will first consider the general

S be a local optimum for problem (4). Then there exi {(-usercase, and then strengthen the result in the two-user case
P P ' Soy exploiting the quasi-convexity of the sum-rate function (4).

nonnegative reald,, ..., A such that Notice that the first and second order derivatives of function
e >0, Py — 25:1 Sp >0, A (pk - ZnN:1 s;;) =0, f™ (defined by (3)) can be computed explicitly as follows:
(5) Proposition 3.1: Denote
SP >0, A — O f(S™) > 0, SP ()\k - akfn(sn)) —0, | X
for all k € K andn € . N A X B XSy
Notf t_hat (5) requweielt:érf =0or P —anl Sp =0, PP i= A7 — B, QU= (AT)? — (BP)?
andS; =0 or A\, — 0, f™(S™) = 0. Moreover, since\; does
not depend on tones, (5) also implies with X" defined by (3). Then, for every, k,1) € N x K x K

nomeT, — 0< M\ =0f"(S") = df"(S™). (6) such thatt # [, we have

some KKT points can be local minima or saddle points. In
order to distinguish these non-optimal KKT points from local 1%
maxima, we consider the following second order necessagy, tm(gn) = — (A7) +Z(a;§,)2 "
optimality conditions.

Proposition 2.2 (Second order necessary conditions): K
Suppose thatS satisfies the KKT conditions (5), and 9y, f"(S") = — {afi(A})? + afy (A7)} + D af0inQr.

K
Since the objective function of problem (4) is not concave, n/an n n pn
) P 4) -f(S)ZAk—EO%TP-a

r=1

r=1

P, — 3N Sp=o0forall ke K. If Sis alocal maximum =
of problem (f)’ ther;vthe f?v'l?w'”g conditions helébr any We note that the summations in the above equalities contain
vectorv = (vq,...,vx) € R such that

the case where = k andr = [ with o, = o}} = 1. Itis
=0 V¥ng T, and > o =0, Vkek, (7) easytoseethally > By >0, P >0andQy >0, with
neT;, Pl =Qp =0if and only if S} = 0.



A. Analysis of the generdk-user case allocation vectorS cannot satisfy the second order necessary
Let us first introduce a condition on a feasible powefonditions for local optimality if (1)S is not FDMA, (2)
allocation vectorS. crosstalk coefficients are larger than certain values, an@ (3)

Condition 1: There holds satisfies Condition 1. This implies that every local maximum
S of (4) satisfying (2) and (3) must be FDMA.
We first give the following proposition which characterizes
N a non-FDMA power allocation vectds.
(b) Y 8" =P Proposition 3.3:Let S € RVX be a non-FDMA power
n=1 i I i iti
In other words, every user uses at least two tones ﬁgr&i;’ aj:{I{rEtSe)ge?;@z) ;figsglnnegsgggi‘f‘?iln(z)} ;hf/rj’
exhausts h_|s power b_udget_. More(_)yer, we assume that a user sefki,...,ky} C K such thatn; # n; and
global maximum satisfies this cqndltlon. ki # k; for anyi # j, and either of the following two
_ Assumpt_mn A:Any global maximum of problem (4) satis- conditions holds
fies Conditionl for someC > 2.

(a) ini}rcl |7%(Sk)| > C, for some integeC' > 2,
S

Assumption A is difficult to verify since the global max- () (nik) € T and (ni,kip1) € T for i =
imum is not known a priori. However, in a practical DSL 1,...,M —1. Moreover, (nar, kar) € T and
system, the number of ton€¥ is usually much larger than . (nar k1) € 7. )
the number of useré, i.e., K < N, and the power budget (1) (ki) € T and (nj, k1) € 7 for i =

for each user is sufficiently high. The following proposition L,...,M — 1. Moreover, iy N Ty, = {m1}

shows that, when all the crosstalk coefficients are greater than andNir 0Tk, = {nar—1}-

or equal to1/2, the lower bound”' of mingex |7%(Sk)| can Proof: See Appendix B. n

be evaluated by using the constants in the problem only. By using Proposition 3.3, we establish sufficient conditions
Proposition 3.2: Supposen, > 1/2 for all I,k € K and on crosstalk coefficients under which non-FDMA feasible

n € N. Let C € [2, N] be an arbitrary integer. If there existssolutions cannot satisfy the second order necessary conditions.

another integefn € [C, N| such that We do so by considering the condition (i) and the condition

(i) of Proposition 3.3 separately.

, m Proposition 3.4: Suppose that
2 <1+ M > (1+Kpal), (11) p pp

1+— >
m

C-1 N—m 1
[
where Yk~
Py P, NK ;
poi= min £ o= max -* foralln € /\/’gnd(kz,l) g.ICxIC. LetSe R N bg an arbitrary
(n,k)ENXK O} (n,k)EN XK T} vector satisfying Conditiorl and the conditior(i) of Propo-
1yK p sition 3.3 for some{n;}*, C NV and {k;}, C K. Then,
— K Ziuk=1"1F ; Lo
Pa = o’ S cannot be a local maximum of the sum-rate maximization
(nR)EN XK T problem (4).
thenmingcx |7 (Sk)| > C for any global maximizeB of the Proof: For any S satisfying the given assumptions, we
sum-rate maximization problem (4). can verify that the necessary condition for optimality cannot
Proof: See Appendix A. B be met. SAS cannot be a local maximum. The details of the
In Proposition 3.2, the parametesg, pys andp, represent proof are relegated to Appendix C. [ ]

the minimum, maximum and average signal to noise ratiosNow we consider the case (ii) of Proposition 3.3.

across all tones and among all users. In the case whete Proposition 3.5: Suppose that
oM = pa = p andC = m = 2, then the above sufficient

2
condition (11) formingex |7%(Sk)| > 2 simplifies to atar > 2 (1 n 1 (12)
L Yk > C_1
P P
1+2><1+P> (1+N—1>’ for all n € A and (k1) € K x K with k # . Let S €
_ o _ RNK be an arbitrary vector satisfying Conditidnand the
which can be satisfied with largeand smallK/N. condition (ii) of Proposition 3.3 for somén,}, C N and

_In case of X' = 2, the conditionaji, > 1/2 in Proposi- (1M c k. ThenS cannot be a local maximum of the
tion 3.2 can be relaxed to a weaker conditiofya3;, > 1/4;  sum-rate maximization problem (4).

see the end of Section III for details. While the lower bound  prsof: For any S satisfying the given assumptions, we

provided by Proposition 3.2 may not be tight, it is satisfyingap yse the first and second order derivatives formula to verify
that such a bound faminkcx [7x(Sk)| can be obtained evenih; the second order necessary optimality condition must be
if the global maximumS is not known. violated. This shows tha$ cannot be a local maximum of

We now show that, if Assumption A holds and the northe sum-rate maximization problem (4). See Appendix D for
malized crosstalk coefficients are sufficiently greater than details. ]
(in the sense of (12)), then optimal spectrum sharing strategycombining the above two propositions, we obtain the fol-
must be FDMA. Our proofs are based on the local optimalitpwing sufficient conditions under which every global maxi-
conditions. Specifically, we will show that a feasible poweMum of sum-rate maximization problem is FDMA.



Theorem 3.1:Suppose that Assumption A holds. Then, any It will be interesting to see to what extent the above result
global maximum of problem (4) must be FDMA, provided thatand proof) can be extended to the more general ¢ase 3.
We expect thaf™ will still be quasi-convex forK” > 3 under

2
aly, > 1 and alap, > 1 (1 + 1) an appropriate condition on the crosstalk coefficiegisand
2 4 Cc-1 o However, the proof is likely to be much more complicated
for all n € A" and (k, 1) € K x K with k # 1. than the two-user case, since we do not expect the factorization

Proof: Consider a global optimur € *VK satisfying (1ick can be applied to th&” > 3 case.

Condition 1 for someC > 2. If S is not FDMA, then there The following corollary says that the assumption in Theo-
exist a tone sefn; } 4, and a user seftk; }, such that either rem 3.2 holds regardless of the background noise parameters

@) or (i) in Propos?ition 3.3 holds. However, by virtue ofif the crosstalk-coefficifnts are sufficiently Igrge.
Propositions 3.4 and 3.5 cannot be a local maximum in Corollary 3.1: Let /" be the rate function for tone:
either case. Henc& must be FDMA. m (defined by (13)). If
When C' is sufficiently large, sayC' > 100, we have 1
14+ 4 ~ 1. In this case, the conditionf} oy, > 1 (1+52)? 4’
is essentially implied by the condit.ioa;;C > 1/2. Thu;,_ then f is quasi-convex o0, +cc)?.
Theorem 3.1 shows that if the nqrmallzed crosstalk coefficients  prqof- We have
are sufficiently greater thaih/2 (in the sense of (12)), then . .
the optimal spectrum sharing strategy must be FDMA. ol (2) +al <Ui) > 2\/ata8 > 1,
2 1
B. Improved analysis for the two-user case where the first inequality follows from the simple relation

between the arithmetic and geometric means, and the last

In this subsection, we restrict ourselves on the two-user Cefﬁsquality is due toa,a, > 1/4. By Theorem 3.2,f" is

(K = 2) and show the optimality of FDMA strategy underquasi-convex orf0, +00)2. =

a weaker condition than that of Theorem 3.1. Specifically, g4 tar we have shown that for each ton¢he rate function
we show that the conditiomin{afy, a3} > 1/2 can be e ig quasi-convex when the product of normalized crosstalk
dropped wher’ = 2, and the opt|maI|tylof FD'\fA gtrateg|es coefficients is greater thairy4. Notice that the quasi-convexity
is ensured under the conditiar; af, > 7 (1 + z—y)" alone. ¢ e goes not imply the quasi-convexity of the total sum-rate
Our analysis exploits .heavny the quasi-convexity property fQ{,,tion N_1 f7(S™), since the sum of two quasi-convex
the sum of data rate in each tone. functions is not quasi-convex in general.
Since K = 2, function f* can be rewritten as Now we proceed to establish a sufficient condition for the
e em Sy Sy optimality of FDMA. Recall that\;;(S) denotes the set of
fr(ST, 85) = log (1 + Xn) +log <1 + Xn) » (13)  frequency tones shared by at least two usersS $ FDMA
! ° . if and only if [N7;(S)| = 0. Hence, to establish the optimality
where X7 = of + a3,53 and X3 = o3 + a,57. We first ¢ EppvA, we only need to show that any feasible solution
define the concept of quasi-conveXitipr twice differentiable g \yith IN7(S)| > 1 cannot be a local optimum. We will
functions. o consider the two separate cag&§;(S)| > 2 and [Ny (S)| =
~ Definition 3.1: Let g : 2 C %" — R be a twice differen- | \yhich correspond precisely to the two cases (i) and (i) in
tiable function. Theng is quasi-convex or if Proposition 3.3. Notice that the cag7;(S)| = 1 is already
T2 covered by Proposition 3.5 which shows tigtcannot be a
v' Vg(z)v >0 . . " 1 1 o
local maximum of (4) if the conditiomj,ab; > (14 #=7)
for anyz € Q andv € R such thatVg(z)Tv = 0 andv # 0. is satisfied. Let us now consider the remaining daAse(S)| >
The following theorem gives a sufficient condition undeg.

n n
QioQipy >

which f™ is quasi-convex. Proposition 3.6:Suppose thatS ¢ R2V is a feasible
Theorem 3.2:If solution of sum-rate maximization problem (4) such that
on n IN7(S)| > 2. If f is quasi-convex for all tones € A/, then
afy <n> Qg <n> > 1, (14) S cannot be a local maximum of the sum-rate maximization
72 ! problem (4).
then the rate functiorf™ defined by (13) is quasi-convex on Proof: The proof consists of finding a feasible pertur-
[0, +00)2. bation direction along which the second order necessary opti-

Proof: The proof involves some algebraic computatiomality condition (Proposition 2.2) is violated due to the quasi-
verifying that the quasi-convexity condition in Definition 3.lconvexity assumption. The details of the proof are relegated
is satisfied. The critical step in the proof is the factorization @ Appendix F. ]

a certain cubic polynomial function as the product of several We now state our main result for the two-user case.
simpler terms whose signs can be readily verified under theTheorem 3.3:Suppose thak’ = 2 and Assumption A holds
given assumption. See Appendix E for details. B for someC > 2. If

1

2
30ur definition is stronger than the conventional notion of quasi-convexity aal > 1 1+
which is defined by the convexity of level sets; see [18]. 12721 — C—1



for all n € A, then the global maximum of sum-rateis to derive some weaker sufficient conditions which will guar-

maximization problem (4) is FDMA. antee the existence of a FDMA typecal maxima. Although
Proof: We only need to argue th& cannot be a local these conditions do not guarantee the global optimum to be
maximum of (4) when|Ny(S)] > 1. If [Ny(S)| = 1, FDMA, the numerical results in Section VI show that, under

then Proposition 3.3 (ii) holds foll/ = 2. Therefore, by such conditions, FDMA type power allocations often show
Proposition 3.58 is not a local maximum. IfA;(S)| > 2, better performance than the solutions obtained by the iterative
then Corollary 3.1 implies that the guasi-convexity conditiowater-filling algorithm (IWFA).
of Propositions 3.6 is satisfied. Thus, once adghicannot be  The first step of our analysis is to identify candidates for
a local maximum. The theorem is proven. m the FDMA type local maximums of the sum-rate maximization
As with Theorem 3.1, the threshold for the crosstalk produptoblem (4). We do so by considering the sum-rate maximiza-
in Theorem 3.3 involves the paramet€r which represents tion problem under the additional constraint that each user
the minimum number of tones used by any user. In practidal the communication system is pre-assigned a set of fixed
situations where each user has a sufficiently high power budged mutually non-overlapping frequency tones. That is, we
and the number of available tones is large, we expetd be consider the sum-rate maximization problem under the FDMA
large. In these cases, the threshold in Theorem 3.3 becorgesgstraint. Under this constraint, multiuser interference is no
essentiallyl/4. Interestingly, for the two user case, FDMAlonger present and the sum-rate maximization problem decou-
becomes sum-rate optimal whenever for each tang¢he ples into a set of independent rate maximization subproblems,
product of normalized crosstalk coefficient, ok, is greater one per each user, whose global maximums are given by the
than1/4, even ifmin, {af,, a3, } is small. This is in contrast well-known water-filling solutions. We will show later that the
to the sufficient condition for thél > 3 case (Theorem 3.1) resulting FDMA type solutions can be local maximums for the
which, in addition to the condition that the pairwise produdriginal sum-rate maximization problem (4) when each user’s
amal is greater thar /4, also requiresnin, .+, {af,, ol } power budget is sufficiently large.
to be greater thai/2. It is not clear if it is possible to remove Let us define the set of FDMA type frequency allocations
the conditionmin,, {a;, af% } > 1/2in Theorem 3.1. We leave by
this as an open question. . K
Before closing this section, we strengthen Proposition 3.2 FPM = {E ’ Igélzlé'ﬁk' 21, Upmi L =N,
by replacing the condition];, > 1/2 with the quasi-convexity _ }
condition of Theorem 3.2.lk / and Ly O L =0 (vk #1) .
Proposition 3.7: Suppose thatk = 2 and (14) holds (or HereL; represents the set of frequency tones allocated to user
more strictlya,a%, > 1/4) foralln € N. LetC € [2, N] be k. For anyL € 7DM, we consider the followingC-restricted
an arbitrary integer. If there exists another integee [C, N] sum-rate maximization problem (denoted 8RMP (L)):

such that (11) holds, theningcx |7x(Sk)| > C for any global K "
maximizerS of the sum-rate maximization problem (4). maximize Z Z log (1 + Sk)
Proof: The proof is almost identical to Appendix A except AR S o oy
for the formulation of maximization problem (28). We need N
to replace (28) by the following maximization problem: SRMP(L) subjectto Z S™ <P,
n=1
maximize f"(s7,s5) 5P >0 (n € Ly),
subject to s} + s =U", s} >0, s > 0. St =0 gLy, FEL

Sincef" is quasi-convex, the maximum is achieved at a vertewhere the objective function is equal to the sum-rate function
i.e., (0,U™) or (U™,0). Other parts of the proof in Appendix Zf:/:l f™(S™) since FDMA requirement implies that there
A remain unchanged. B is no interference among users. Notice tIBRMP(L) is

a concave maximization, and does not involve any crosstalk
coefficienta],. Moreover,SRMP (L) is completely separable
with respect to each usér, implying thatSRMP (L) can be
decomposed into the following” independent rate maximiza-

In the previous section, we have shown that the optimébn problems:

IV. EXISTENCE OF ALOCALLY OPTIMAL FDMA
SOLUTION

solution of sum-rate maximization problem is FDMA if the n
normalized crosstalk coefficients are sufficiently greater than maximize Z log (1 + Z)
1/2 (in the sense of (12)). This is a sufficient condition for (S0} ez, 7
the existence of a FDMA optimal solution. Are there otherRMP (L)) subject to Z Sp < Py
more practical situations (i.e., with weaker conditions on the neLy

crosstalk coefficients) in which FDMA strategies are optimal? S>>0 (neLy),

Our extensive computational experiments suggest that when ST=0 (n¢ L)
each user's power budget is sufficiently large, FDMA will k k-

become optimal even if the crosstalk coefficients do not satidty is known that each user’s rate maximization problem
the conditions in Theorems 3.1 or 3.3. The goal of this secti@&MP(L;) can be solved by the water-filling procedure [8],



[9], [10], [11], [2]. To focus our analysis on the interference iThen, for any tone sef € DM such thatningex | L] > C,

the system, we make the following high signal to noise ratihe global maximum oSRMP (L) is a local maximum of

assumption. sum-rate maximization problem (4). Moreover, if
Assumption B:For all £ € I, there holds 1 1

n Py>(N—-(K-1)C <++1>UM, (20)
Vi = —Pk * 2nec, O > max oj. (15) ( ) Ao VA
Ll neLs then (19) holds.

Under Assumption B, the water level (see [8], [9], [10], [11], Proof: The proof of this theorem involves verifying
[2]) is equal toyy, and the global maximum dBRMP (L) that (18)= (15) and (20} (19)=-(17). See Appendix H for
can be described explicitly. details. [ ]

S = e — ot (¥n e Lx) Although condition (20) is more restrictive than (19), it is
{ BT kT O k (16) more intuitive and easier to apply in practice. Compared to

Sk =0 (¥n ¢ Ly) our earlier results (Theorems 3.1 and 3.3), Theorem 4.1 shows
for k=1,..., K. Moreover,7;,(Sx) = Ly for k=1,..., K, the existence of a FDMA type local maxima for the sum-rate
and the setVp(S) defined by (2.3) is empty. maximization problem (4) even when the crosstalk coefficients

We now study the conditions under which the global optare small (but positive), so long as users’ power budgets are
mum (16) of SRMP(L) is a local optimum of the original sufficiently large.
sum-rate maximization problem (4). Needless to say, such
conditions guarantee the existence of a local optimum of sum- vy EFinpiNG AN OPTIMAL EDMA BANDWIDTH
rate maximization problem. ALLOCATION
The following proposition gives sufficient conditions under

which problem (4) has a FDMA local maximu such that In this section, we focus our attention on the more practical
Ta(Sk) = Ly for k=1 K issue of how to design an optimal FDMA scheme for a

multiuser communication system. The latter entails allocating
Oﬂ’ue available set of frequency tones to the users in the system.
et us denote the set of FDMA solutions by

Proposition 4.1: Let the tone allocation set be given Bye
FDM, and~; be defined by (15). Suppose that Assumpti
B holds. If

1 1 1> 1 S={s=0|spsp =0, Vk#1 vn},

n o qn ( n) - agl (n - S —_ (17)
(o (0% — 0 (o2
k e ! _ o Tk where the conditionS;’S;> = 0 signifies that no frequency
for any (k,l) € K x K with k # [ andn € £;, then the tone can be shared by any two users. Then, the optimal FDMA

global maximum (16) of SRMP (L) is a local maximum of frequency allocation problem can be described as follows:
sum-rate maximization problem (4).

Proof: Let S be the global maximum SRMP (L) given o L& 1 1 S
by (16). Then, we verify tha$ satisfies the KKT conditions maxguize > log(1+ o
and the second order sufficient conditions (Propositions 2.1 N
ggga”ZS.?i[)olfSpeéntgii ggh SNR assumption (15). We Iea;/e the subject to S € S, ng <P, kek. (21
Although the condition (17) can be verified beforehand, it _ ) ) )
involves all possible combinations fér I andn, and concerns Where S dsnotes_ the( NK)-dimensional vector with entries
only a given tone allocatiof. This makes it inconvenient to €qual to.5¢. Notice that, due to the FDMA condition, the

apply Proposition 4.1 in practice. In the following corollarynterference term_,, aji.Si" is absent from the sum-rate
result, we simplify the conditions of Proposition 4.1 so as fgbjective function. This makes the objective function concave.

k=1n=1

n=1

improve its applicability in practice. However, problem (21) remains a nonconvex problem due to
Theorem 4.1:Let C' be an arbitrary integer such that< the nonconvex constrairg € S. The following result shows
C < N/K, and denote ~ that the optimization problem (21) is NP-hard, even in the case
N of two users.
Py = max Py, Py = min Py, Theorem 5.1:For K = 2, the optimal bandwidth allocation
oy = max o}, 0o := min o}, problem (21) is NP-hard. Thus, the general sum-rate maxi-
(n.k)EN XK . (nk)EN XK - mization problem (4) is also NP-hard, even in the two-user
Q0 =Ll Aoi= i alkak case.
P e ’“’f‘}’) Proof: The proof consists of reducing the so-called
o= L 4o, I L S—— equipartition problem to (21). Specifically, given a set of
¢ N—-(K-1)C N (even) positive integersy;, as, ..., an, the equipartition
Suppose that the following inequalities hold problem asks: does there exist a subBet {1,2,..., N} of
size|T| = N/2 such that
Yo > o, (18) N
Ao (0 — onr)? + ao (Y00 + Yoour) (Y0 — onr) S o= a, = % S an.
> ouyo(ymr —00).  (19) neT ngT n—1



The equipartition problem is known to be NP-complete.  analytically as

For any instance of the equipartition problem, we can
construct a two-user instance of (21) as well as a convex Z APy + Z max Mk (). (25)
relaxation of this nonconvex problem. We can show that the
two problems have the same optimal objective values if a
only if the answer to the equipartition problem is ‘yes’. The
details are given in Appendix I.

Theorem 5.1 suggests that finding either a global optlmal

E]%ere may be more than one user attaining this maximum, in
Wh|ch case we simply assign theth tone to an arbitrary (but
nique) user denoted by(n). Then a subgradient af(A) is

FDMA bandwidth allocation, or a global sum-rate opt|ma§J ven by

power allocation in general is computationally intractable _a\F
when the number of tones are large, even in the two-user ( Z 517“" Pr — Z SK)
case. Given this negative result, we are naturally led to the neN1(A) neNx (X

problem of designing efficient polynomial time algorithmsyhere we denote the set of tones assigned to ibgr\j (X).
which can approximately maximize the sum-rates. In whafotice that the components of subgradi&hf(A) correspond

follows, we propose three simple algorithms for computingy each user's unused power (or deficit power if negative).
an approximately optimal FDMA bandwidth allocations. The The dual minimization problem is given by

first one is based on dual decomposition, while the other two

are based on the idea of greedy local search. minimize d(A)
subject toA > 0.

Dual decomposition method The standard dual descent method for this problem can now

~ be stated foll .
Define the bounded s& c RVE by eAslga(l)ﬁthrE;Sl.O ows

S:=8n {s ‘ 0<Sp<P, vV k,n} Step 0 Choose an initial pointA(O) > 0 and a stepsize
al® > 0. Setv = 0.
Then, we can easily see that the constraint region of (21) istep 1 For all (n, k) € N x K, compute
unchanged ifS is replaced byS. Hence, by using multipliers

{Ar} to dualize the linear constraints in (21), we obtain the EH) = Py ((/\,(CV )t - 02’) if /\,(CV) >0
following dual function k '_ P, if )\2”) -0
d(A) SH®) .
o\ KW (M) = log (1 + B s

‘= max log (1+=£ > Ak < SE — Pk)> k

Ses (k 1; Z nz: Moreover, for eachk = 1,...,K, set the FDMA

K K N gn tone assignment according to
= > AP+ maxz > (log (1 + k) — )\kSk>

k=1 S€S k=1n=1 Ne(AW) .= {nGN‘ (M) :k/ max (M,?/)(”)}7

K K = ’

Sn
Z )\kPkJFZ o0, Z<10g<1+k> >\k51?> (22) and calculate the subgradient by
n= lsngn 0,izj k=1 v —na
_ g =Py~ Z (Sp)®

where the last step is due to the fact that, without the nENL(AM)

power constraints, the bandwidth allocation problem decouples
across tones. The inner maximization in (22) can be solve8tep 2 UpdateA) according to
by allocating each tone to the user which can provide the 1 y y

; AT — 1A () () k=1,2
maximumshadow ratdog (1 + S} /o}') — A Si on that tone. k k Ie | o 1S
Simple calculation shows that the maximum shadow fdje
for userk at tonen is given by

K

)

where[-]+ denotes the positive part of a real number,
anda) is the stepsize calculated by an appropriate

n _ Sy n rule.
Mg (M) += 0<8n2 Py (bg (1 + gg> - AkS’“) (23) Step 3 Go to Step 4 if the termination criterion is satisfied.
3" Otherwise, set := v + 1, and return to Step 1.

log (1 + Uﬁ) — A5, Step 4 If S“) is feasible for problem (21), then out-

k put it as the solution. Otherwise, choosesuch

where the optimal power level is that [|¢™ | = min{|[¢g@],...,[l¢"|]}, and cal-

1 . culate the optimal power allocatio8 based on

57— J Pely — o) if A >0 24 NLAD)Y, . Ng(AP). Then, outputS as the so-

k (24)
P if A <0 lution.

Here P (-) denotes the projection of a real number to the The above algorithm falls in the same general framework of
interval [0, P;]. Thus, the dual function (22) can be writterdual decomposition method as [3], [4], [5], [6]. However, there
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are two notable differences. First, we implement a projectidrhen, by the hypothesis, we obtain
operation in Step 1 so as to ensure the boundedness of the

primal variables and to improve convergence. Second, al (?Z)*
implement an adaptive rule to select stepsifa$”’)} which Zlog <1 T n )
improves the convergence speed significantly (see Section \fff

"' K N —n K N
Similar to [6], the above dual descent algorithm has a per- (Sk)" _ * T
iteration complexity ofO(NK). Moreover, Steps 1—3 of the D Z log { 1+ o PR ,Zwk) P

o
1n=1 k

above algorithm can be implemented in a distributed manner. ~ . . K N

For exgmple, t_he tone a§signmer_1t step (Step 1) can be carrigdmag Z Z log (1 + Sl;) _ Z AL ( Z Sr— Pk)
out using a simple carrier sensing mechanism: each kser ses \, =/ =1 T}, Pt ot

tries to send a beacon signal on tanafter a waiting period K N gn K N

Who_s_e Iength is propor_tlonal tyS(_(M,?)("))_, where f is any > max (Z ZIOg <1+07:L) _Z AZ(ZSZ_P’C)>
positive strictly decreasing function. In this way, the user who SN sn<p\k=1n=1 k =1 ne1

first sends the beacon signal over tongets that tone, while X N .
other users, upon hearing a beacon signal on tepavill > 5% Zzbg (1 + Sk)
immediately abort their transmission of beacon signals over ZN;i‘Zspk el m—1 g

this tone. Also, Steps 2 and 3 require no information from

other users and therefore can be performed completely loca¥ifnere the second step follows from (26), the first inequality
Step 4 requires the centralization, but it can be modified i due to

a distributed manner as follows. B is infeasible, then N . -

each userk calculates his own power vector by using the {S ‘ S€Ss, Zsk < Pk} cs,

current tone assignment’;,(A(")), instead of searching the n=l

past iteration. Since each usek has the information of and the last step can be seen from the nonnegativw oT his
Ne(A™), o and Py, and Vi (A™) N A(A®)) = 0 for all  shows thaiS” is a global optimal solution of the bandwidth
I # k, he can calculate his optimal power vector easily byliocation problem(21) and the duality gap is zero.  m
using the well-known water-filling strategy. Proposition 5.1 implies that if the power allocations ob-
Standard convergence analysis of dual descent algorithfifhed in Step 1 of Algorithm 1 are asymptotically feasible,
can be applied to the above algorithm. In particular, if stepsiigen they must be globally optimal. This provides a simple way
a) is chosen sufficiently small, then the distance from thg check the optimality of the computed solution and terminate
iterate to the dual optimal solution set decreases monotonicali algorithm. The minimization of FDMA duafi(\) is
(even though the objective valu#A*)) may not decrease). polynomial time solvable using e.g., ellipsoid method, (i.e.,
Moreover, every limit point of the iterate sequen “)} " finding ane-optimal solution is polynomial in dimensiaN, K
solves (25). If the corresponding power sequefit€; )’} andlog1/¢). The NP-hardness result (Theorem 5.1) implies
is asymptotically feasible (i.e., satisfying individual powethat the duality gap is nonzero in general, so the optimal
constraint), then each limit point df(S}; )} is a global op- solution of the dual is not always primal optimal. However,
timal solution of the nonconvex optimal bandwidth allocatioff the dual iterates satisfy the primal power constraints with
problem (21). Notice that a similar dual descent method waguality in the limit, then Proposition 5.1 implies the global
considered in [6] which, like the dual algorithms proposegptimality of both primal and dual in limit. This optimality

in this paper, may not solve the primal problem due to théndition is usually observed in our simulation.
existence of a duality gap.

Proposition 5.1:Let\* > 0 andS” > 0 be the limit points
of {2} and {S"'} generated by the dual decompositiot-0cal search algorithm A

algorithm. If there holds We now present an efficient combinatorial local search

N N algorithm which has an overall complexity 6f( NK). In this
Z(g;z)* <P, X\ ( Z(gg)* _ Pk) -0, VkeKk, algorithm, we fix the order of tones a priori, and then sequen-
ot tially allocate each tone to the user who offers the largest rate
increment. This algorithm can be written as follows.
then the duality gap is zero aid is a global optimal solution Algorithm 2:
of the bandwidth allocation probler21). _ Step 0 Permute the tones:,...,ny arbitrarily so that
Proof: By nature of dual decomposition algorithm, we {(n1,...,nn} = N. Let E}(CO) — ¢ and R](vo) —0
have for eachk =1,..., K. Setv := 0.

_ K N gn Step 1 Foreachk =1,..., K, solveRMP(C,(c")u{nl,H})
S = argmax (Z > log (1 + ﬁ) and obtain its optimal valug,,.
S€S  \k=1n=1 Tk Step 2 Find ak such that

n=1

K N
_Z)‘Z< SQ_Pk))' (26) k = argmax (R;—R?).
k=1 n=1

ke



Then, definec" " and B\ by

) {ﬁi-” Ui} (=)
k T v -
cy” (k # ),
o+ R, (k=F)
Ry =19 —w) —
R (k#%)

for eachk =1,... K.

Step 3 Setv := v+ 1. If v = N, then terminate. Otherwise, Step 3 If N/

return to Step 1.
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Define £V and RV by

o _ J Ll u@mmy (k=h
SR L k
z; (k£ F),
RO { B (k=P
R (k#F)

for eachk € K. Then, letV" " .= )\ {m(%)}.
“+1 _ 0, then terminate. Otherwise, set:—
v+ 1 and return to Step 1.

In Step 1%, can be obtained by the water-filling procedure. N Step 0, the computational cost for the sorfof (k), ..,
In general, the obtained solution and sum-rate depend on the(k)} is O(Nlog N) for eachk. Step 1-1 implies that tone

initial ordering of {n,...,ny}.

Local search algorithm B

In Algorithm 2, we have fixed the order of tones beforehan

7i(k) € N is chosen so that?™ = min{oy |n € N},

In Step 1-2R; can be obtained by the water-filling procedure.

One is tempted to think Algorithm 3 would always yield a bet-

ter solution than Algorithm 2. While it often does, numerical

gesults in the next section show that Algorithm 3 sometimes

and then allocate a tone,,; at thev-th iteration. However, it c@n léad to a worse sum-rate solution than Algorithm 2.
is expected that the sum-rate will be improved by consideringBOth local search algorithms (Algorithms 2 and 3) can also

all the possible combinations of tones and users at e

4%, implemented in a distributed fashion by using the same

iteration. That is, we can consider the following three step<EaiTier sensing mechanism stated after Algorithm 1. Inithe

(i) For each pair of user and unallocated tone combinati
we calculate the corresponding rate increment.
(i) Find the tonen and the usek which yield the larges
rate increment. Allocate tore to userk.
(iii)

return to (i) until all tones are allocated.

A direct implementation of the above procedure will result in
a computational complexity of(N2K). However, we note

that, for anyk € K, £, € N, andn, n' € Ly, it follows
Ri(Ly U {n}) < Ri(Lx U {n'}) if and only if o > o7
Therefore, by sorting the noise parametgr§ } appropriately,

we can reduce its complexity 10(N K log N). We describe

the algorithm in the following, where!”, FE:), and V)

denote usek’s allocated tone set, usgis temporary data rate

and unallocated tone set at theth iteration.
Algorithm 3:

Step O For eachk =
{n1(k),...,nn(k)} =N so that

om® << R,

Let £ := ¢, R = o, and V" .= A for all
ke K. Setv :=0.

Step 1 Foreveryk = 1,..., K, perform the following steps

Step 1-1Find a tonen(k) := n,_(k) such that
i = min{i ’ ni(k) € N(”)}.

Step 1-2 SOIVGRMP(L,(:)U{W(k)}) and obtain its
optimal valueR, .
Step 2 Find ak € K such that

k = argmax

e )

1,..., K, sort the tone indices

th iteration, each usdr sends a beacon signal after the waiting

O;S‘eriod f (E; —R,(C”)) with a certain strictly decreasing function
.y where the value of (&), — R,(f)) can be calculated locally.

Then, tonen, ;1 (or (k) for Algorithm 3) is assigned to the

Remove tonen from the non-allocated tone set, andJser who first sends the beacon signal.

VI.

In this section, we consider a wireless setup and compare
the performance of various spectrum management algorithms:
the dual decomposition method (Algorithm 1), the local search
algorithms (Algorithms 2 and 3), and the iterative water-filling
algorithm (IWFA).

For the dual decomposition method, we choose the initial
dual vectorA® = (1,...,1)7, and consider two different

NUMERICAL RESULTS

' stepsize rules:

Stepsize rule Ao :=1/(v +1).
Stepsize rule Ba® := 00 (d(A")—=L*)/||g™) |2, where
L* is a known lower bound of the dual function
d, and#™) is calculated according to the following
rule: (i) 6 =2, (i) 6D =) /2 if dA)) >
A1) for v > 10, and (iii) @ +D = 9 if
dAM) < da A1) or v < 9.
Stepsize rule A is simple and easily implementable. We note,
however, that{a(*)} converges to 0 very slowly, and hence
a large number of iterations may be required. Stepsize rule B
is a modification of a standard stepsize rule for maximizing
a Lagrangian function [19]. If a tight lower boun@* is
available, the algorithm typically can terminate in a small
number of iterations. In implementing this stepsize rule, we
first calculate the sum-rate by the local search algorithm B,
and then use the obtained sum-rate as the lower bdiind
We stop the algorithm when eithg A1) — x| < 104
or v > 300.
For IWFA, we let each user choose an initial power level
randomly from the interval0, maxy Px], and terminate the
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iteration if|[S“+1) —S()|| < 10~* orv > 300. As mentioned attained by more than one method, we duplicate counting so
in Section I, IWFA maximizes each user’s individual rate in ¢here can be more than 1000 times that the best sum-rate is
distributed manner by treating other users’ signals as Gausséhieved. As Figure 5 shows, the dual decomposition method
noise. This can be easily implemented using the well-knov attains the best sum-rate for more than 90 % cases when
water-filling strategy for a single user rate maximization. Sincé& > 0.1.
the FDMA concept is not considered in IWFA, the obtained
power spectra are not FDMA in general. Experiment 2

In our simulation, we consider a multiuser wireless com In the second experiment, we also 86t 12 and K — 4,

munication system in a frequency selective environment; see

Subsection 1I-A for a full description. We define the channé?}nOI generate the transmitters a_nd rece_ivers in a way similar
coefficients adil’ :— dfkl'sgﬁf whered,;, denotes the physical to Experiment 1. However, we fix the distance /o= 0.04

distance between transmittérand receiverk, and g7l is (so the crosstalk coefficients are small), and vary power budget

a complex normalized gaussian random variable with Zeﬁ\éels. Our goal is to demonstrate that FDMA becomes optimal

mean and unit variance. Then, the crosstalk coefficients afl e.n power budget becomes large even in low interference
environment. We choose the power budget levdtom —10

normalized noise power are chosends := |h}|?/|h%, |
and o7 = Ny/|h7,|%, where the background noise level isdB to +30 dB, and generate 1000 test problems for each

set toN, = —40 dB. The programs were coded in MATLABB' For each test problem, we choose the power budfgts

7 and run on a machine with 3.60GHz CPU and 2GB RAM.rom the interval [§ — 3,6 + 3] (dB) randomly. Figure ©
shows the average of obtained sum-rates. Since the crosstalk

coefficients are relatively small, IWFA achieves better sum-
Experiment 1 rates than our methods in the low power region. However, if
Let there beN = 12 tones shared by = 4 users in the the power budget level becomes higher, then our FDMA-based

system (e.g., the blue tooth setup). Then we randomly gener&gthods yield higher sum-rate than IWFA as predicted by

4 pairs of transmitters and receivers so that each transmiftff theoretical analysis (Theorem 4.1). Unfortunately, the dual
k is located in the 2-dimensional unit square afd (the decomposition method A shows worse performance than other

distance from transmittek to receiverk) equalsA > 0 for FDMA-based methods whef > 20. We suppose that, in this

all k € K.* Figure 1 shows a simple example, where the soltS€ the generated poit” is still far from the solution\”

arrows denote the desired signal path, and all other edge£Y§n after 300 iterations (i.e., termination criterion is satisfied).
the graph (not shown) represent interferences. This result also shows the advantage of Stepsize rule B.

We let the distancel,, = A vary from 0.02 to 0.2, and As shown in the above numerical results, the FDMA-based
generate 1000 test problems for eash As expected, the methods provide a much improved performance than IWFA

crosstalk interference becomes stronger when the distance/nNder €ither the strong crosstalk or high power budget condi-
increases. For each test problem, we choose power bud¥is:- Moreover, they can be implemented in a distributed
Py, randomly from the interva[l0,16] (dB), and solve the manner_by mtrodgcmg the aforementlongd carrier sensing
corresponding spectrum management problem by the dffffchanism. (In this case, Step 4 of Algorithm 1 need to be
decomposition method with stepsize rules A and B (denotgbOd'f'ed so that the values of the last _|teratm1are adopted
by dual decomposition method A and B respectively), locdiStéad of searching.) However, even in such cases, IWFA
search algorithms A and B, and IWFA. The average cptjill has _the following advantage. In IWFA, each_us_er can
time among 1000 trials are shown in Figure 2, which shovb?date his power vector whenever he wishes, that is, it can be
that the computational costs of the local search algorithff@Plemented in an asynchronous manner[20]. On the other
are much lower than other algorithms. Figure 3 shows tf@nd, the carrier sensing approach needs to synchronize all
average of the obtained sum-rates for edchit can be seen USErs’ clocks before starting the waiting period.
that, for smallA where the crosstalk coefficients are small,
IWFA vyields higher sum-rate compared to our FDMA-based VII. CONCLUDING REMARKS
methods. This is expected since FDMA is strictly sub-optimal In this paper we have studied the structure of optimal
in low interference environment. However, whénbecomes spectrum sharing strategies for a multiuser communication
larger, our FDMA-based methods yield much higher sum-rategstem in a frequency selective environment. Our analysis
than IWFA, confirming the superiority of FDMA solutionsand simulations show that FDMA is sum-rate optimal when
under strong crosstalk conditions. Figure 4 plots the ratios either the crosstalk interference is strong or when users’
sum-rates obtained by our FDMA-based methods relative gower budgets are high. Unlike the frequency flat case where
that of the local search algorithm A. As the figure showshe sum-rate maximum FDMA solution can be found using
the dual decomposition method B gives the highest averagsnvex optimization, the same problem in a frequency se-
values. Figure 5 shows the number of times the best sulgetive environment is considerably more difficult (NP-hard).
rates are obtained among five methods. If the best sum-ratgdsapproximately solve the sum-rate maximization problem
, . - _ ~for a frequency selective environment, we have proposed
e e e ety e Several simple distibuted algorithms that can find igh qualiy
circumferen’ce of the circle whose center is trahsmii:tcer‘c =1,...,4) and sum-rate suboptlmal FDMA solutions. Numerical experiments
radius isA. show that, if the crosstalk coefficients and/or power budgets
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are sufficiently large, the proposed algorithms not only find
higher sum-rates than those obtained by IWFA, but also enjoy o.s . . ; ; : ; ; :

. . Local Search A —+—
faster convergence. However, when crosstalk interference is o6 | Local Search B —-—
low, IWFA can deliver higher sum-rates. These results suggest Bual Decompodtion 5
a hybrid approach for the sum-rate maximization problem o} WWRA =&
in practice whereby both IWFA and the proposed optimal
bandwidth allocation algorithms are used, depending on thg
strength of crosstalk interference. g o

There are several issues that are worthy of further inveg- o.os | .
tigation. For example, the analysis in this paper shows th&t
the sum-rate maximization problem is NP-hard even in the *%[ .
case of two users. However, it is not known if the same is 004y o o o B g e o 4
true when we fix the number of tones and let the number of | | T i
users increase to infinity. Also, this paper has not addressed the F
fairness issue. One popular approach to ensure user fairness & 0os o006 008 01 o012 o014 o016 o018 o2
[21] is to maximize the sum of proportional fair rates rather Mean distance: Delta
than the sum-rates; the forr_ner is c_jefined_as the logarithm I%_ 2 CPU time v.s. distance
user’s data rates. It will be interesting to find out under what
conditions the maximization of proportional fair rates will
result in FDMA solutions. Moreover, is the maximization of
sum of proportional fair rates also NP-hard? Are there simple

distributed algorithms which can approximately maximize the  *°T "~ ™ " " " locaséana
sum of proportional fair rates? The answers to these questions , | Dual Decompostion A < |
are of considerable value for the standardization of dynamic Dual Decomposto A a.-

spectrum management technologies. Finally, one may be able ,,
to derive other sufficient conditions for FDMA optimality Y
that are weaker than those presented in this paper (simulatign 300 |
results strongly suggest this). It may also be possible to design
simple distributed bandwidth allocation algorithms capable of 250
delivering sum-rates that are provably optimal up to a constant

factor. 200
150
ri
o
R R G . 100 1 1 1 1 1 1 1 1
. \ 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
h11l oltl Mean distance: Delta
t4. Fig. 3 Sum-rate v.s. distancA
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Assume thatmingex |75 (Sk)| < C — 1 and we will derive
a contradiction. Without loss of generality we can assume that : _
userl uses at most'— 1 tones inS and these tones are indexed 'J" 4 Sum-rate ratios v.s. distanck
tonesl,...,C—1. Thatis,Sp >0forn=1,...,C—1and
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5S¢ =...=8N =0. Since}™_, Sp < P, for all k € K, it
follows that

K N K

SPITIED SN

k=1n=1 k=1

Let n; € N denote the tone for which the total user power is

the i-th smallest, namely,

K K
ZSZI SZSZZS"'S
k=1 k=1

I
A

Then we have for each=1,..., N,
N K K
(N —i+1) ZS”’<ZZS SZZ <> p
Jj=t k=1 n=1 k=1 k=1

which further implies that

K

K
ngi z+lz=: @7)

k=1

In what follows, we will show that it is better (in terms of
achieving a higher sum-rate) to let user 1 allocate equal pow: £ (8m) Z log (
to tonesn, ..., ny,, and have other users give up using these;—

14

m tones. This will imply thainingex | 7% (Sk)| < C—1 cannot
hold at any global sum-rate optimum singe > C' — 1. To
show this, we need to estimate the sum-rate achievable by
the power vectorS on tonesng,...,n,,. For this purpose,

we consider the following sum-rate maximization problem for
each tonen € \V:

n
maxumze Z log <1 + ;?-f-%:M’)
5 ,

""" k=1

K 5"
= log (1 + k )
2 e\ ST
K
subjectto » sp =U", sp >0, keK, (28)
k=1

whereU™ := S5 | S7. Notice that the crosstalk coefficients
i have all been reduced tty2 in (28). It can be checked
that the second order derivative (with respecsj}d of the rate

function
Sn
log [ 1+ k )
g< o + 50" = 5p)

is nonnegative oves} > 0, implying that this rate function

is convex. This shows that the objective function of (28) is

convex in the feasible set. Consequently, as a maximization
problem, the maximum of (28) is achieved at a vertex of the
feasible set, implying

whereo§ := mingex of. This gives an upper bound on the
data rate achieved on tons:

K gni
frist) =) log [ 1+ — k =
Z opt D i S

where the last step follows from (27). B
Let us consider a new power allocation veckr

1;1, k=1, ne{ny,...,nn}

0, k>2, ne{ny,....,nm}

0, k=1, ne{l,...,C—=1}\{n1,...,nn}
Sy, elsg

Qn __
Sk/. _—

It isﬁclear thatS is feasible. Moreover, the sum-rate achieved
by S over the tones:y,...,n,, is evaluated as

> > mlog (1+p0>.
m

m
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On the other hand, forany e {1,...,C—1}\{n1,...,nn}, APPENDIXB

we have PROOF OFPROPOSITION3.3
n(gn n(gn Let S € RMK be an arbitrary non-FDMA power vector
fr(S"™) = (8" satisfying Condition 1 (a). We first show that (i) holds, or there

exist an integer. > 1, a tone set{n;}Z ,, and a user set
{ki}14" such that[n; # n; andk; # k; for any j # 5

k=2

0+ EK: log [ 1+ St
OF + D1z, 12k ST

o and
— 1 1lo 1+ L > ni ki) €T, (ng, kix1 6Tf0l’i=1,...,L,
g ( O+ > O SP ;nd N)H A TkL(H _ ?n)L} (29)
+§: log (1 n Sy ) This can be verified according to the following procedure.
P oF 4+ D ik ST Step 0 Choose arbitrary:; € Ny andk; € K such that
S7 S7 (n1,k1) € T. Seti := 1.
> —log <1 +— - n) > —log <1 + n) Step 1 Find k; 41 # k; such that(k;41,n;) € 7. Such a
of + 21 OS] 91 ' i
ki+1 exists sincen; € N][. If k'7;+1 € {]fl,. . .,ki},
We thus have then terminate since (i) holds.
Step 2 If n; is an only element inN;; N 7y, ., then
Z [f(S8™) — f™(S™)] terminate. Otherwise, we can find,; € N7y,
né{ny,....,nm} such thami+1 7& ;.
nette oot . Step 3 If n;41 € {ni,...,n;}, then terminate since (i)
> Z log ( 1+ St holds. Otherwise, return to Step 1 with setting=
ng{ni....nm} of i+ 1.
"e{;:lcfl} Note that the above procedure must terminate within
> _ Zlog <1+ 5?) min(K, N) iterations since, in the-th iteration (i > 2),
T = ot we havek; # kj and n; # nj for any (j,j') with
- c-1 . 1 <j <4 <i. In Step 2, if the iteration terminates, then
> —(C —1)log b <1+ 1) we have (29). In Step 1, we can specify the sets in (i) as
K or follows. If k11 = k, with 1 < p < i — 1, then we have
i 1 c-1 gn (le,k'j) e 7 and (’I”Lj,k'j.;,.ﬁ e T for Jj =Dyt — 1,
> 1 n)] and (n;, k;) € 7 and(n;,k,) € 7. Hence, renumbering the

—(C —1)log 1+(C—1)§

P
(C — 1) minpepn (o)

indices appropriately, we have (i). Also, in Step 3, we can see
(i) as follows. If n;4; = ng, with 1 < g < i —1, then we
have(nj,k:j) € 7 and (nj,k:jJr]_) e7T forj=q+1,...,14,

> —(C—-1)log |1+

V

Pt and(ng, kit1) € 7 and(ng, kg41) € 7. Renumbering the in-
> _(C_l)log 1+O_1 ) dices aS(kq+1,...,k7;+1)4>(kl,...,kM), (n(ﬁ_l,...,ni)ﬂ
(n1,...,npm—1), andng — nar With M = i — ¢, we have (i).
where the third inequality is due to the arithmetic-geometric Next we show either (i) or (ii) holds, assuming (29)
mean inequality. holds. For the sake of convenience, we relabel the indices as
We can now compare the sum-rate achieve®tgndS.  (nz,np—1,...,n1) — (n1,ne,...,ng) and (kpy1,kr, ...,
k1) — (k1,k2,...,kr+1). Then, (29) is rewritten as
N N
Zf"(gn) - Zf"(S”) (ni ki) € T, (ni ki) €T fori=1,....L, 44
n=1 n=1 and N]] n 77@1 = {711} ( )
= Z [f™(S™) = f*(S™)] + Z [f"(S™) = f*(S™)] Now we can carry out the above procedure again from Step
ne{n,...,nm} niin ) 2 with i := L. If the iteration terminates in Step 2, then we
s % have (ii). If it terminates in Step 1 or 3, then we have (i).
> mlog <1 + po) - Zlog (1 + m)
= m) (N —i+1)og APPENDIXC
M PROOF OFPROPOSITIONS3.4
—(C-1log (14— . :
C-1 By reordering indices if necessary, we assume without loss
Po Kp, of generality that := n, andi := k; fori =1,..., M. Then
>m10g(1+m)mlog(1+N_m+1) we have
—(C =1)log (1+ CPM1> > 0. (i,i) and (i, i +1) €7, fori=1,...,M,

B where we regardd + 1 as 1 for convenience. Since we
This shows that the new power vect8rachieves a higher always write the tone index as a superscript and user index
sum-rate thars, contradicting the global optimality d. as a subscript, the notati(ﬁj;rl signifies the power value for
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playeri + 1 at tonei. Also, we use(s, i + 1) to denote the where we note thaP;’ = Q7 = 0 if and only if S} = 0.

pair of tonei and player; + 1. Therefore, we have for each=1,...,C —1
i NK .
Now, let us define a vectar € ®** as follows: A1 f™ (S™) = — (91 f™ (S™))?
v%:vgz' =l =1, = — (01 f1(Sh))?
vy =05 = =i (= 0)") = -1, > —(4})?, (33)
v =0 (other componenis where the first equality is due to (32), the second equality
Then it can be easily seen thatsatisfies (7). On the otherh0|d5 from (31) a1nd theKInequalllty follciws since we have
hand, by Proposition 3.1, we have < O fi(SY) = Ap - 3 o, Pp < Aj from (31) and
N Proposmon 3.1. In a similar way, we also obtain
> W)V (s Oam [ (S™3) > —(AyrH)? (34)
n=1 forallj=1,...,C—1.
B M < v} )T< 0 fH (S Oiip1fH(SYH) ) ( vl ) Now, we can define as
— \vi}, Biix1[*(8") Oiyriva f'(8") ) \viy, vi = fi (1=1,...,M-1)
U%ﬁl 6i+1 (7’ = 15 aM - 1)
Mo\ vl =—f(C-D7" (= 1, ,C—=1) (35
=2 o = pu(C =17 (=10 1)
i=1 . 4 .2 , o vpg =0 (other componen)s
_( (A7) i1 (A7) + g (Af) ) where
i (ADZ 4ol (AL )2 Al — _1)-!
a2+11( 7,) + a“+1( z+1) ( z+1) { 51 ~ 1 _t (C ]-) (M _ 2>7 (36)

K )
(af,)? ozzrozHlT) ; ( 1 )
+; (azraerlr ( z+17‘) Q 1

pr=1
{ 5’L+1 = 2a§i+1ﬁi (Z = ]-7 ceey M - 2) (M Z 3) (37)
= > {(adei — D(AD? + 20l - D(ALL)?)

By = (203173 _1) " B

i=1 It is easily seen that satisfies (7). By the definition (35) of
M K , v, we have

+ Z Z z+1r Q; > Oa N
i=1r=1 Z(vn)Tv2fn(Sn)vn

where the inequality follows sincej;, > 1/2, A} > 0 and n=1

Q¢ > 0 for all n, £ and!. SinceS does not satisfy the second ) c-1 ) )
order necessary condition$,cannot be a local maximum. = (C —1)" (BF011 179 (S™) + BrrOnna [ (S™))
j=1
APPENDIX D .\ Z ( )T< Dif'(S") i1 fi(SY) ) ( B, >
PROOF OFPROPOSITION3.5 Bit B i1 FH(SY) Dirin1 F1(SY) )\ =Bim
By re-ordering indices if necessary, we assume n; for
i= )1/,...,M—1gandz' :=k; fori=1,..., M. Then we have 2 (C — 7O =B A - (O - (A D)
M—-1 T
(i,i9)and(i,i+1)e T, fori=1,...,M —1, +Z( Bi >
NunT, = {1}, andNy N Tar = {M—1}. Since|Ti |, |Tu| =
N7y = {1}, andNyNTy = {M-1}. Since|7y|, [Ty | > 2 i N2 i i N2
C (cf. Condition 1 (a)), there exist tones.,...,no_1 ¢ B (Ai). a'iJrli(Ai) +O‘i-i+1(‘4i+1)
t{hl,é..,M—l} andmy,...,m¢c—1 ¢ {1,...,M —1} such HU(AZ)?JFQZHI(A;H)? (Al )?
a
+Z ’LT 2+17‘ Qi ﬁl
ni,...,NC-1 € NI mﬂ’ zr z+1r ( z+1r) _/872+1
mi,...,Mc—1 € NN Ty

>—(C-1)"! {m (A1)? + B, (AN )%}
Assume, to the contrary, th8tis a local maximum. We will
derive a contradiction. Sincg satisfies the KKT conditions 2 i )2
+ —Bi + 2BiBir10i 1) (A
(5), we have from (6) that Z {( g Biffiiain ) (4))

0<OfH(SY) =hfm(S™) = =9y fro-1(S"e-1). (31) + (=B + 2&/6’1-“0[2:”1)(142:“)2}, (38)
Moreover, sincen; € N; N T1 forall j =1,...,C — 1, we where the first inequality follows from (33), (34) and Propo-
haveS(¥ > 0 and Sy’ = --- = S = 0. This together with sition 3.1, and the last inequality is due @, > 0 and

Proposition 3.1 ylelds T e i
e n; E— 2 ( B > ( (atiy) O‘iro‘i+1§> < bi ) > 0.
01" (S™) =By’ and o1 f"(S™) = —(By")", (32) —Bit1 @y () —Biv1)
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When M = 2, substituting (36) to (38), we have for any S; > 0 and .Sy > 0. By Proposition 3.1, the first and
second derivatives can be written as follows:

N flzl_aw(l_l),
;(v")Tvzf”(S")v" X i’ S1 )iz Xo 10- So
> —(C - 1)@ (al? + 3(ab) ) = Xiwl o (X ‘1X1+51)1’
(=02 + 20 Bood ) (ADP+(— 08 + 20 Baab) (412} T = T {X - (X+S)} ’
= (1+ (€= )7H{dahad, — (1 +(C - 1)) }(4})? o= e b {; - (Xis)} ,

>0, (€5} Q12

o= "X sy T Rt S

where the last inequality follows fromj,a3, > §(1+55)?. Letting I := X7 X2(X5 + S2)*(X1 + S1)* > 0, we have
When M > 3, substituting (37) to (38), we obtain

Tf]for = {Xz(Xz + S2) — a1252(X; + 51)}2

3 1512, + 51X+ S2) — X2+ 5177 ),
D@ " {ohsiex + 8%+ 5 s }
n= PiEfn = {X(X1 +81) — a2 $1(Xz + 52) }
- M—1
> —(C = 1) BHAD? + 53, (4l 1)) (02,52(2% + 5)(%: + 512 — X3(X + 527},
M—-2
+ {(4a§i+1 Qi — 1)@2(145)2} 2l fifafr2 = 2X1X2{X2(X2 + 92) — a125 (X1 +51)}
i=1

{Xl (X1 4 51) — 2151 (X2 + 5'2)}
{0412(X1 +51)? + a9 (Xa + 52)2}~
Summing up the above three equations, we have

L(f fa2 + f3 /11 — 2f1f2/f12)

+{@ad(Tl o adiaioy — DBL(AN
= {4alyad, - (14 (C - )7 (A

+{aadi~ly adinh ) — (L (€ = 1)) R (Al

0 M=3
n M—2 , _ b i ( ) = 2(X1 + 51)%(Xa + 52)*(X1X2 — 12021 5155)
>~ {Ual ol - DBADT} (29 (0120120251 + 0120210155
>0 = + a120% + 042105 — 0102) (39)
= 2(X1 4+ 51)*(X2 + 92)*(X1X2 — a12001515) 102
S1 . S2 o1 92\ 4
where the last inequality follows fromia, > (1 + Q22| + o + {2 oy +ag o) )

25)2 > 21+ 5) > 1/4, B > 0, and A7 > 0 for
anyk, [, andn. Sincev does not satisfy (8), the second ord
necessary conditions do not hold, and hentesannot be a
local maximum. This completes the proof.

eyvhere the equality (39) is obtained by a straightforward factor-
ization. Sincel’ > 0 and X1 Xs — 100191515 > 0 from the
definitions ofX; and X5, we havef? foo+ 2 f11—2f1 f2 f12 >
0 for any S; > 0 and .Sy > 0.

APPENDIXF
PROOF OFPROPOSITION3.6

APPENDIXE Since [N (S)| > 2, there exist two tones; andn, such
PROOF OFTHEOREM3.2 that S7* > 0, S3* > 0, ST > 0, and S3> > 0. Assume
to the contrary thaS is a local maximum of the sum-rate

o ] ] ) maximization problem (4). We will derive a contradiction.
For simplicity, we omit the superscript (tone index) and Then, from the KKT conditions (5) and (6), we have
denote f, := Jpf™(S™) and fi; := Ok f™(S™) for (k,1) €
{1,2} x {1,2}. Then, from Definition 3.1, we only have to 0< Ay =01 f"(8™) = 01f"(8™),

show that 0< A =0of"(S™) =0 f"2(S™).

( fa )T<f11 f12> ( fo )
—f1 fi2 fa2 ) \=f1

= fifoo+ f2fi1 —2fifof12 > 0

Now, letv € ®2V be defined as

W=D, v = A,
n n
vt ==X, vy° = Ay,

v =08 =0 (YneN\{ni,n}).



Then, it is obvious that satisfies (7). Sincg™* and f™2 are
guasi-convex, we have

N

Z(vn)TVan(Sn)vn

n=1

- () eren ()G emen ()
_ < 8zf”1<s"1>)>TV2fm(sm)< Oaf" (S™) )

_81fn1 (Snl _81fn1 (Snl)
_82fn2 (Snz) T 2o rems (_annz (S"2)>
*(orgrtsony ) V7 (s

> 0,

which contradicts Proposition 2.2. Hen&gcannot be a local

maximum.

APPENDIXG
PROOF OFPROPOSITION4.1

We first show the KKT conditions (5). Choose, k) €
N x K arbitrarily, and let\; := ~, '. From Assumption B
and (16), we have, > 0. Moreover, we have

N

Po=Y Sp =P~ ) (m—op)
n=1 nely
Pk"‘z cr U,?
= P — L eneby B n
k {|£k| ‘£k| Z Jk}

neLly
= 0.
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choosen € N arbitrarily. Then, there exists, € K such that
7"(S™) = {k,} from L € FDM andNy(S) = 0. From (10),
we havev] = 0 for any k£ ¢ 7"(S™), which together with
T7™(S™) = {k,} yields

(") TV (S = (vF, )k, f"(S™)
= — (o} )2(Bp),

(40)

the last equality is due to Proposition 3.1 a@f = (A})? —
(Bp)? = 0 for all k # k,. Sincev # 0 and B} > 0,
summing up (40) fromm =1 to N, we obtain (9).

APPENDIXH
PROOF OFTHEOREM4.1

Let £ € DM be an arbitrary tone allocation set such that
mingex | Lx| > C. Then, we havenaxiex |Lr] < N — (K —
1) C sincemingei [Lx| > C and ], i [Lx| = N.

Choose(k, 1) € K x K with k # [ arbitrarily. Then, it can
be easily seen

Y < <YM
Moreover, from (18), we have
Yk > Yo > Oy > Max oy,
neLly

that is, Assumption B holds. Hence, it suffices to show (19)
= (17) and (20)= (19).

First we show (19)= (17). For an arbitraryh € L;, we
have from (19)

n_.n _ 2 n n _
Hence, the first part of (5) holds. Next we show the secorfde k1M (Y0 — on) "+ (@00 + agiy0om) (Yo — o)

part. If n € Ly, then it follows from (16) and Assumption B

that S = v, — o} > 0. Therefore, we have

1 0 Sy
e ST = — - 9 1o 1+k>
k kf( ) Vi 85,’; g( O.Z
B I
 Sp+ol SP4op
f()v

where the first equality follows since tonmeis used by only

userk, i.e.,7"(S™) = {k}, and the second equality is due to
(16). If n ¢ Ly, thenS}} = 0 and there exists another player

l € K such that # k andn € £; sinceL € FDM. Moreover,
we have

Ao — O f(S™)
Yol — (AF — oy P
1 1 1 1

(s (3-3)
o +apn—op) oy

Vi
= 0,
where the first equality follows from Proposition 3.1 aRfl =
0 for all » # [, the second equality follows froX] = o} +
ap Sy, X = o, and S = v — o from (16), and the

> omo(Ym — 00),

which can be equivalently written as

1 N ( 1 ) 1
n —ap | S —.
oo + oy, (Yo — om) oM Y0 Y
Hence, we have (17).
Next we show (20)= (19). From (20), we have

P, 1 1
0 >(+ +1)aM

N—_(K-1)C =~ \4, ' VA
(67
+1)0M—<1+AZ)0—0,

Py (O’M — 0400'0) + oV Ay
N_(K-1C Ao '

Sinceyy = Fy/(N — (K —1)C) 4+ 09 and2a.+ 26 > a +
(o 4+ 4B%)'/% for any a > 0 and 3 > 0, we have

1 1
> (—+
(Ao V Ay

which is identical to

+oo—opm 2>

(O'M - OzoO'()) + \/(O’M - a000)2 + 4A00'J%4
24, ’

Yo — om 2>

or equivalently

inequality follows from (17). Hence, we obtain the secondd vy, (yo — oar)? + ao(coyar + oarvo) (Yo — onr)

part of (5).

Next we show the second order sufficient conditions. Let

> ovyo(vm — 00) + @0v0on (Yo — onr) + oarooo-

v € RVE pe an arbitrary nonzero vector satisfying (10), an8ince agyoour (Yo — oar) + oarooyo > 0, we have (19).
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APPENDIXI and the equality holds if and only if the equipartition problem
PROOF OFTHEOREMS5.1 has a ‘yes’ answer. This claim implies the NP-hardness of

Given an even integeN and a set ofV positive integers the optimal bandwidth allocation problem (21) in the two-
a1, as, ..., ay, We CONstruct a two-user communication systetSer case. To establish this claim, let us consider a globally
as follows: let there be a total of frequency tones, and let theOPtimal solution(S;, S;) € R of (41). Due to the FDMA
channel noise powers for the two usersdje= o§ = a,,, for ~constraint, the setd;(S;) and 75(S,) form a partition of
n=12..,N. We also set the crosstalk coefficient, = ~ = {1,2,... N}, where 7,(S,) := {n[S} > 0} C N
a2, = 1.01 for all n, and letP; = P, = P := (N + 1)3g,,, @nd72(S2) := {n[S3 > 0} C V. Since(S;,S,) is a sum-
with oy := max,, a,,. In this case, problem (21) is reduced t¢ate optimal solution of (41), it follows that the subvectors
the following: {ST bneri(sy) {95 tnets(s,) Must be the water-filling solu-

tions of corresponding sum-rate maximization subproblems
. al ) 1 ST a 1 ] S over the tones in7;(S;) and 73(S2) respectively. In other
S (S, S)eRaN 21 g\ttt )T Z:l g\t words, there exist two positive constants (water levels)y,
" " such that

N N
subjectto Se€S, Y SP <P, > Sp<P,  (41) > Sp =P Sptan =7, YneTi(Sy) and k=1,2,
n=1 n=1 neTi(Sk)
where we denote the optimal value Byyma Let us consider a where we have used the fact that the power lefel=
convex relaxation of (41) by dropping the nonconvex FDMAN + 1)30); = (N + 1) max,, a,, is sufficiently large so that
constraintS € S, and by combining the two separate poweg; > 0 for all n € 7;(Sy) and k = 1,2. Simple algebraic

constraints as a single one: manipulations of above condition show
N
o gn P+ > an=Nym, k=12, (45)
o B, ot (147]) i
N so that N
subjectto Y S"<2P, §">0, Vn, (42) 2P+ a4y = Niyi + Noma, (46)
n=1 n=1

where we denote the optimal value Wyepy. Notice that where N, := |7, (Sy)| for k = 1,2. Thus, we obtain
the relaxed problem (42) is a standard single user sum-rate

maximization problem, s@cax can be evaluated easily using Rigma = Z log (a”JrSl> + Z log (CWSZ)
the water-filling procedure (or the classical Karush-Kuhn- neTi(S1) n neT2(S2) n

Tucker optimality condition). Specifically, there exists some " 7o
~ > 0 (water level) such that = Z log (a> + Z log (a>
N n€T1(S1) " n€T(S2) "
n __ n _ N
ZS =2h S'tam=y Vm, :Nllog’YlJrNQlOsz*ZlOgan
n=1 —1
where we have used the fact that the power |&vel= 2(N + Nivi + N N
1)? max,, a,, is large enough so tha&™ > 0 for all n. The < Nlog (M> _ Zlog an (47)
above condition further implies N =1
N 2P + ZnN:1 an N
2P+ a, = Nv. 43) = Nlog (N ~ > logan = Rrelax
n=1

n=1

where the last equality follows from (46), while the inequality

Thus, we obtain (47) is due to the (strict) concavity of thiegz function.

N n N n Moreover, the inequality (47) holds with equality if and onl
Rrelax = Zlog (1+§) zzlog <an:—S ) if 1 =79. | v &0 | ! ’
n=1 " n=1 " It remains to show that the conditiop, = ~» holds for
N ol N some global optimal solutiofS,, S2) of (41) is equivalent to
= leog (an> = Nlogy — leogan the equipartition problem having a ‘yes’ answer. Clearly, if

N N the equipartition problem is a ‘yes’ instance, then there exists
2P n i =
Nlog ( + %:\/'n:la ) B Zlogan, (44) someT C {1,2,..., N} with |T| = N/2 such that

=1

N
1
where the last step (44) follows from (43). Z n = Z 4n =73 Z:l - (48)

Our main claim is that _ neT ngT
Let us define

Ridma < Rrelax = N log 20 Lunm=17M | log a,, n_ Y —anp, IT n €& n _ Y—ap, T n
ma = el N ; SU=9V0,  ifngT, 270,  ifnerT
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wherey = (2P + 27]:[:1 an)/N. From these definitions andsum-rate is upper bounded by
using (48), we can verify thaf;(S;) = T, 72(S3) = T¢ =

N n
N/T, and (S1,S,) is a feasible solution of (41) with any,, <1+ P) Y log <1+ Sz)
objective value of ax oy an

N N
an + Sy an + S P+3  _san
n T2 =1 P N —1)log ——"==— — log a;,
Zlog< - >+Zlog( - ) og (a1 + P) + (N — 1) log — == Zoga
neT ngT n=1
2P+ YN al =
= Nlog <Nn—1”> _ Z log an = Rrelax. < Nlog(P+ Noy) — (N —1)log(N — 1) — Z log a,
n— n=1
' N
By the fact thatRima < Rrelax,» We can conclude thdS;,S,) < Nlog P—(N—1) 1og(N—1)—Z loga,+ O(1/N), (50)
is a global optimal solution of (41). Moreovey; = v = n=1
in this case.

) ) . where we have used the faBt= (N +1)30,, and the water-
Conversely, ify; = 12 for some global optimal solution gying property of (52, S3, ..., SIV). On the other hand, if we

(S1,8:2) Of .the optimal bandwidth allocation problem (41)’allocate the firstV/2 tones to user 1 and the remainiig/2
then condition (45) shows tones to user 2, then the users achieve a sum-rate of

P4} neri(s,) on _M Nz ST al Sy
P+ ZnETQ(Sz) an N3 Z log (1 + Cln) + Z log (1 + an)
n=1 n=14N/2
We claim N; = N,. Suppose this is not true, then we can N/2 P N
+ — an
assume without loss of generality that, < N/2 < N, — Ebgm + Elog 2in=14N/2
imolvi 2 N/2 2 N/2
plying N
P+ ensyn N 1 - loga,
=—<1-—. (49) ot
P+ ZnGTZ(Sg) an  No N N~
On the other hand, sinc® = (N + 1)3ay = (N + 1) 2 Nlog P — Nlog - — > logan
max,, a,, it follows that n=1
, which is strictly greater the rate (50) for largé Thus, letting
P"’Zne?’l(sl)aﬂ > (N +1)30um > N user 1 uses exactly one tone cannot be sum-rate optimal,
P+ ensnon  (N+1)P%wm+Noy — (N+ 1)3” implying C' > 2 for our problem.

SinceC > 2 andaf, = af; = 1.01 for all n (by definition),
which clearly contradicts with (49) falV > 1. Thus, we must it follows that

have N; = N, which together with (45) and the fagt = -

2
. 1 1 1
further imply afpan; > 1= 1 (1+1)>%> 1 (1 + Cl) , Vo,
an = Qp.-
ne%(:sl) ne%(:sz) so Theorem 3.3 shows that the optimal power allocation

strategy is FDMA. Thus, for the two-user communication
This shows that the equipartition problem has a ‘yes’ answgystem defined in the beginning of this proof, the sum-
with 7' = 7,(S;), which establishes the NP-hardness of theaite maximization problem (4) is equivalent to the optimal
optimal bandwidth allocation problem (21) in the two-usefandwidth allocation problem (21) which is NP-hard. This
case. shows the NP-hardness of the sum-rate maximization (4) in
Finally, we argue that the sum-rate maximization problemhe two-user case. The proof is complete.

(4) is NP-hard in the two-user case. To do so, we consider the
same two-user communication system defined in the beginning ACKNOWLEDGMENT
of this proof, and show that the two optimization problems
(4) and (21) are equivalent in this case. L&;,S;) be
an optimal power allocation for the corresponding sum-rai
maximization problem (4). We first show that in this case
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