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ABSTRACT

We develop a computationally efficient and memory efficient ap-
proach to (near) maximum a posteriori probability demodulation for
MIMO systems with QPSK signalling, based on semidefinite relax-
ation. Existing approaches to this problem require either storage of
a large list of candidate bit-vectors, or the solution of multiple bi-
nary quadratic problems. In contrast, the proposed demodulator does
not require the storage of a candidate list, and involves the solution
of a single (efficiently solvable) semidefinite program per channel
use. Our simulation results show that the resulting computational
and memory efficiencies are obtained without incurring a significant
degradation in performance.

Index Terms— MIMO soft demodulation; bit-interleaved
coded modulation; iterative demodulation and decoding; semidefi-
nite relaxation

1. INTRODUCTION

Wireless communication systems with multiple transmit and multi-
ple receive antennas have the potential to provide data rates that are
substantially higher than those of the single antenna systems. The
core challenge in designing these systems is to achieve these rates
with reasonable computational complexity. A standard transceiver
architecture for moving towards that goal is to use an outer binary
code, an interleaver, and a multiple-input multiple-output (MIMO)
modulator at the transmitter, and iterative “soft” demodulation and
decoding (IDD) at the receiver. That is, MIMO bit-interleaved coded
modulation (BICM), e.g., [1]; see also Fig. 1. However, the compu-
tational cost of the maximum a posteriori probability (MAP) soft
demodulator increases exponentially with the number of bits trans-
mitted per channel use, and hence there has been considerable in-
terest in the design of approximate (quasi-MAP) soft demodulation
schemes with lower complexity; e.g., [1–8].

One approach to quasi-MAP soft demodulation is to apply the
so-called “max-log” approximation to the log-likelihood ratio. Do-
ing so converts the soft demodulation problem into a set of “hard”
demodulation problems (e.g., [4–6]), but each of these hard demod-
ulation problems is, in itself, a binary quadratic problem, and hence
is difficult to solve exactly. Tree search methods (e.g., [9]), such
as sphere decoding, can be used to find solutions to these problems
(e.g., [4,5]), but both the average and worst-case computational com-
plexities remain exponential in the problem size and can be a seri-
ous impediment to implementation at low SNRs and for large prob-
lems [10]. Semidefinite relaxation methods can also be used [6], and
they have the advantage that the growth of the computational cost
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is bounded by a low-order polynomial in the problem size. (The
implementation in [11] has a number of desirable features.)

An alternative approach to quasi-MAP soft demodulation is to
apply the principles of list decoding, in which one seeks to efficiently
identify a list of bit-vectors that dominate the log-likelihood ratios
that are computed by the MAP demodulator. Most of the existing
list-based approaches have used tree search algorithms to identify the
list members (e.g., [1–3]), but as mentioned above, these algorithms
can be rather costly at low SNRs and for large problems. Further-
more, the size of the list required for accurate approximation of the
MAP demodulator means that these methods have significant mem-
ory requirements. An alternative to the use of tree search algorithms
for generating the list is to use the randomization procedure implicit
in the semidefinite relaxation approach to hard demodulation [7].
While the complexity of that approach is polynomial in the problem
size, the memory required to store the list can still be significant.

In this paper, we will develop an alternative quasi-MAP demod-
ulator based on semidefinite relaxation (SDR). The proposed demod-
ulator has the advantages that: i) the complexity is bounded by a
low-order polynomial in the problem size; ii) it requires only one
semidefinite program (SDP) to be solved for each channel use; and
iii) it does not require the storage of a list of candidate bit-vectors.
The proposed demodulator operates as follows: The first step is to
solve the SDP that one would solve if one were to perform “hard”
demodulation from the channel output via SDR; e.g., [11]. Rather
than using that solution to (approximately) solve the hard demodu-
lation problem, we use it to generate a vector of probabilities that
describe the randomization procedure implicit in hard demodulation
via SDR [12, 13]. This vector of probabilities is combined with the
prior probabilities from the preceding iteration of the decoder, and
the combined probabilities are then used to generate a sequence of
candidate bit vectors via independent scalar Bernoulli trials. By up-
dating its approximation of the soft output in sequence, the proposed
demodulator can operate without having to store these candidate bit
vectors in a list. Our simulation results will show that the resulting
computational and memory efficiencies are obtained without incur-
ring a significant degradation in performance.

2. SYSTEMMODEL

We consider a narrow-band multiple antenna system with Nt trans-
mit antennas, Nr receive antennas, and transmitted symbol vector s.
The received vector y can be written as:

y = Hs + v, (1)

where H is the Nr × Nt matrix of channel coefficients and is as-
sumed to be known at the receiver, and v is a vector of additive
white circular complex Gaussian noise samples with variance σ2

per real dimension. We will consider a MIMO-BICM transmis-
sion scheme with iterative demodulation and decoding (e.g., [1]),
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Fig. 1. MIMO BICM-IDD transceiver.

in which bit vectors b selected from the encoded and interleaved
bit stream are mapped to transmitted symbol vectors s using the
mapping s = M(b); see Fig. 1. For simplicity we will focus on
V-BLAST transmission of QPSK symbols, but extensions to more
general linear dispersion codes can follow from [14], and extensions
to higher-order constellations can be developed from the semidefi-
nite relaxation approaches to hard demodulation in [15] and [16].

We will consider the standard “soft” iterative demodulation and
decoding architecture for the receiver; e.g., [1]. Since binary outer
codes are used, the role of the “soft demodulator” is to compute the
posterior log-likelihood ratio (LLR) of each interleaved encoded bit.
By capturing in a vector λ the extrinsic soft information on the ele-
ments of b from the decoder, these LLRs can be written as (e.g., [1])

Li = log
ΣLi,+1 exp(−D(b)/(2σ2))

ΣLi,−1 exp(−D(b)/(2σ2))
, (2)

where L = {b ∈ {−1, +1}2Nt} denotes the (complete) list of
possible transmitted bit-vectors, Li,±1 = {b ∈ L|bi = ±1} and

D(b) � ‖y −HM(b)‖2
2 − σ2λT b. (3)

It can be seen from (2) that as the number of bits per channel use
increases, the computational cost of (2) increases exponentially. The
standard approaches to reducing the complexity of the soft demodu-
lator involve the use one of the following approximations:

Li � log
ΣL̂i,+1

exp(−D(b)/(2σ2))

ΣL̂i,−1
exp(−D(b)/(2σ2))

(4)

� 1

2σ2

“
min

b∈L̂i,−1

D(b) − min
b∈L̂i,+1

D(b)
”
, (5)

where L̂ ⊆ L. These equations reveal two general classes of approx-
imate soft demodulators. The first is based on selecting L̂ = L and
solving the problems in (5) using the direct applications of “hard”
demodulation techniques. This requires the solution of two binary
quadratic problems for each bit. Each of these solutions can be ob-
tained using a tree search algorithm (e.g., [4, 5]), or can be approxi-
mated by semidefinite relaxation (e.g., [6]). The second class of soft
demodulators is based on efficiently selecting a list L̂ of bit-vectors
with small values of D(b) and then approximating the LLR using
either marginalization over L̂i,±1 in (4) (e.g., [3]), or by performing
an exhaustive search over L̂i,±1 to solve the minimization problems

in (5), (e.g., [1]). Often, methods in the second class are more com-
putationally efficient than those in the first, but they may require
significant memory resources to store the generated list members.

The proposed demodulator falls into the second class, in the
sense that it generates a sequence of candidate bit-vectors, but it does
not store a list. The value of D(b) for each bit-vector is computed
as it is generated, and only two real vectors are stored. (These vec-
tors store the smallest obtained values for the minimization problems
in (5).) The candidate bit-vectors are generated by Bernoulli trials,
the probabilities of which are determined from the solution of a sin-
gle SDP per channel use, and from the extrinsic information from
the previous iteration of the decoder. The single SDP arises from
the semidefinite relaxation of a binary quadratic problem, and is de-
scribed in the next section.

3. SOLVING BINARY QUADRATIC PROBLEMS VIA SDR

For simplicity, we consider the real-valued equivalent model for (1)
where QPSK signalling is used: ỹ = H̃b + ṽ, where ỹ and ṽ are
concatenations of the real and imaginary parts of y and v in (1),
respectively. The minimization ofD(b) can be formulated as

min
b∈{+1,−1}2Nt

D(b) = min
b̃∈{+1,−1}2Nt+1

b̃T Qb̃, (6)

where

b̃ �
»
b̆
c

–
, b̆ � cb, Q �

»
H̃T H̃ a
aT 0

–
, a � −H̃T ỹ − 0.5σ2λ,

and c ∈ {+1,−1}. (In the proposed demodulator, this problem will
be solved only at the first iteration, and hence λ = 0.) To construct
an approximate solution to (6), we first solve the following SDP,
which is a (matrix) relaxation of (6), [12, 13],

min Trace(XQ) (7a)
s.t. X � 0, Xii = 1, i = 1, . . . , 2Nt + 1. (7b)

The standard randomization procedure [12, 13] can then be used to
extract an approximation of the solution to (6) from the optimal so-
lution to (7), Xopt. That procedure involves the construction of a
(Cholesky) factor V of Xopt, (i.e., Xopt = VT V), and the genera-
tion of a sequence of random vectors u from the uniform distribution
on the unit hypersphere. We set x̃ � sign(VT u) and define the vec-
tor x̂ � [x̃]2Nt+1 x̃ to ensure that the last entry is +1. We repeat
this procedure and at each step we retain the bit-vector b = [x̂]1:2Nt

that generates the smallest value forD(b). A key feature of the SDR
approach is that the expected value ofD(b) over the randomizations
is guaranteed to be within a (reasonably small) constant factor of the
optimal value of (6), [13]. Hence, the generated bit-vectors appear
to be good candidates for constructing the list L̂ used to approxi-
mate the LLR values in (4) or (5), [7]. An interesting property of the
randomization procedure is that an analytic expression is available
for the mean value of each element of x̂. In particular, if we let m
denote the vector of means, and if we denote the 2Nt + 1 columns
ofV by vk, then [12, 13]

[m]k =
2

π
arcsin

`
vT

k v2Nt+1

´
. (8)

4. ITERATIVE QUASI-MAP DEMODULATOR

The first observation in the development of the proposed demodu-
lator is that the expression in (8) suggests that for the purposes of
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Fig. 2. The proposed quasi-MAP demodulator.

soft demodulation, one could consider generating a sequence of bit
vectors with properties similar to those generated by the formal ran-
domization process by making the approximation that each element
of x̂ is independent, and generating each element of x̂ via a scalar
(antipodal) Bernoulli trial. This approach avoids the cost of comput-
ingVT u in each instance of the formal randomization procedure.

The second observation is that this Bernoulli trial approach pro-
vides an opportunity to separate the processing of the information
provided by the channel output from the processing of the extrinsic
information fed back from the previous iteration of the decoder. At
each iteration, the decoder updates the extrinsic information that it
provides to the demodulator (which we have denoted by λ). The ex-
pression for D(b) in (3) suggests that the demodulation procedure
needs to be repeated at each iteration (as it is in [2, 3, 7]), but as
we will show below, the Bernoulli trial approach to randomization
allows us to extract the SDP from the iterative demodulation and
decoding loop so that we need only solve one SDP per channel use.

The architecture of the proposed quasi-MAP soft demodulator
is illustrated in Fig. 2. It consists of an SDR demodulator (which
is invoked only in the first iteration), and a randomized soft de-
modulator. The randomized soft demodulator takes two inputs: (i)
a vector L containing the mean values in (8) in LLR form, i.e.,
[L]k = log

`
(1 + [m]k)/(1 − [m]k)

´
; and (ii) the vector LA1 con-

taining the extrinsic information (in LLR form) from the previous
iteration of the decoder, see Fig. 2. The randomized demodulator
then computes a Bernoulli distribution that reflects these inputs, and
generates a sequence of random binary vectors according to that dis-
tribution. Each vector, and its neighbors, is then used to (possibly)
update the demodulator’s output.

By construction, the extrinsic information provided by the de-
coder is independent of the soft information from the channel [17].
Therefore, if the randomized demodulator is to generate candidate
bit-vectors via Bernoulli trials that reflect both the information from
the channel and the extrinsic information from the decoder, the LLR
representation of the mean of that Bernoulli distribution should be

LB = L + LA1. (9)

The k-th entry of the corresponding mean vector mB is [mB]k =
1 − 2/(1 + exp([LB ]k)). Having computed mB , the randomized
demodulator generates a sequence ofM bit-vectors according to the
corresponding Bernoulli distribution. The value of D(b) for each
bit-vector is computed in sequence, and the smallest encountered
values for the two problems in (5) are stored. Using insight from [8],
before evaluating the next randomly generated bit-vector, we eval-
uate the neighbors of the current bit-vector; i.e., all those vectors
within a given Hamming distance. In this paper we will consider
those vectors at a Hamming distance of one, as they can be gener-
ated by simply flipping one of the bits in the current bit-vector. For
convenience, we have summarized the algorithm for the proposed
randomized soft demodulator in Table 1.

Table 1. Algorithm for randomized soft demodulator

• Data: L, LA1 ,M
• Output: LD1

1. Compute LB in (9) and subsequentlymB .
2. Initialize f+1 = {+∞}2Nt , f−1 = {+∞}2Nt ,m = 0

3. Ifm = 0, set b = sign(mB). Otherwise, generate each [b]k independently
according to the (antipodal) Bernoulli distribution with mean [mB ]k .

4. ComputeD(b). For each k = 1, 2, . . . , 2Nt, ifbk = 1 then set [f+1]k =
min{[f+1]k, D(b)}, else set [f−1]k = min{[f−1]k, D(b)}.

5. For each i = 1, 2, . . . , 2Nt, set b̌(i) = b and then [b̌(i)]i = −[b]i.
Repeat Step 4 for b̌(i) .

6. Increment m. If m < M return to 3. Otherwise, return LD1 =
`
f+1 −

f−1
´
/(2σ2).

As mentioned in the introduction, an advantage of SDRmethods
over tree search methods, such as sphere decoding, is their polyno-
mial (worst-case) complexity. An advantage of the particular SDR-
based soft demodulator that we have proposed here in is that its com-
putational (and memory) costs are lower than those of existing SDR-
based soft demodulators. In particular, if we let ε denote the accuracy
to which the SDP is solved, and if we perform K demodulation-
decoding iterations, then the computational cost per channel use of
the proposed demodulator is

O(N3.5
t log ε−1) + O(KMN3

t ),

where the first term represents the complexity of solving the SDP and
the second term represents the cost of computingD(b) for each bit-
vector generated in the randomization step. In contrast, the compu-
tational costs of the List-SDRmethod [7] and the multi-SDRmethod
[6] areO(KN3.5

t log ε−1)+O(KMN3
t ) andO(KN4.5

t log ε−1)+
O(KMN3

t ), respectively. These expressions obscure the fact that
the generation of the candidate bit-vectors in the randomization pro-
cedure of the proposed method is somewhat simpler than that in the
List-SDR and multi-SDR methods, but they do reveal the computa-
tional advantage of only solving one SDP per channel use. In addi-
tion, the proposed method does not require memory to be allocated
to store a list of bit-vectors, as is required by the List-SDR method.
Since it does not require this memory allocation, the proposed de-
modulator can dynamically adjust its performance-complexity trade-
off (e.g., by adjusting ε andM ) in response to changes in the latency
requirements or variations in the channel SNR.

In the form of the algorithm in Table 1, the compromise that we
have made in order to avoid the need to store the list is that there may
be some repetitions of the bit-vectors generated by the Bernoulli trial
in Step 3, and hence repeated computation ofD(b) in Steps 4 and 5.
However, hashing techniques can be used to avoid this repeated com-
putation while requiring only a small amount of additional memory
(at most M integers) and a computational cost of only O(KMNt)
per channel use.

5. SIMULATION RESULTS

In this section we compare the performance of the proposed “sin-
gle SDR” demodulator with several existing demodulators. We con-
sider a MIMO BICM system with V-BLAST transmission of QPSK
over a MIMO i.i.d. Rayleigh block fading channel. The transceiver
parameters, including those of the outer (Turbo) codes and the iter-
ative demodulation and decoding algorithm are chosen from those
used in [1, 3]. We will compare the performance of the proposed
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demodulator with that of the following methods: i) the Multi-SDR
method [6], which solves several hard demodulation problems in
each demodulation iteration to approximate the max-log problems in
(5), ii) the List-SDR method [7], which solves one SDR per demod-
ulation iteration and generates candidate bit-vectors using standard
randomization iterations, and iii) the sphere decoding method of [3].

For the outer code we use a rate 1/2 punctured parallel concate-
nated turbo code with the (5, 7) recursive systematic convolutional
code as the component codes and an (input) block length of 8192.
We use the conventional BCJR algorithm to decode the constituent
convolutional codes of the turbo code, and 8 turbo decoding iter-
ations are performed before we pass extrinsic information back to
the demodulator. Figs 3 and 4 compare the bit error rate (BER) per-
formance of these methods after 1, 2 and 4 demodulation-decoding
iterations for 4 × 4 and 8 × 8 MIMO systems, respectively. In the
4 × 4 set up the full list size is 256, and instead of using the sphere
decoder we perform the max-log approximation on the full list. Each
of these curves demonstrates that the proposed soft demodulator pro-
vides BER performance close to that of the other methods. To com-
plement our previous analysis of the rate of growth of the computa-
tional cost, we explicitly computed the average number of floating
point operations (FLOPs) per channel use (Fpcu) for the 8 × 8 case
in Fig. 4 at an SNR of 2.75dB. The Single-SDR method required
around 1.2 × 105 Fpcu, the List-SDR method required 4.1 × 105

Fpcu, and the Multi-SDR and Sphere decoding methods required
around 5.7 × 106 and 2.5 × 106 Fpcu, respectively.
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