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ABSTRACT

The goal of the sensor network localization problem is to de-
termine positions of all the sensor nodes in a network given
certain pairwise noisy distance measurements and inaccurate
anchor node positions. A two-step distributed localization
approach based on second-order cone programming (SOCP)
relaxation is presented. In the first step, the sensor nodes
determine their positions based on local information and in
the second step, the anchor nodes refine their positions us-
ing information from the neighboring nodes. Our numeri-
cal study shows that the sensor and anchor positions cannot
be estimated in a single step; the sensors must be estimated
first for the results to converge. The second step enables an-
chors which are in the convex hull of their neighbors to refine
their positions. Extensive simulation results with inaccurate
anchor positions and noisy distance measurements are pre-
sented. These illustrate the robustness of the algorithm and
the performance gains achievable in terms ofproblem size re-
duction, computational efficiency and localization accuracy.

Index Terms- Distributed algorithms, Relaxation meth-
ods, Convex optimization, Positioning, Localization

1. INTRODUCTION

Recent advances in micro-electro-mechanical systems (MEMS)
and wireless communication technology has made the large-
scale deployment ofwireless sensor networks possible. Some
of the application areas for sensor networks are industrial au-
tomation (process control), military (real-time monitoring of
troop movements), utilities (automated meter reading), build-
ing control and environmental monitoring.

In most applications, the data reported by the sensors is
relevant only iftagged with the accurate location ofthe sensor
nodes. Thus knowledge ofthe node positions becomes imper-
ative. Research efforts are currently focussed on developing
cost-effective techniques to determine node positions using
distance measurements between neighboring nodes. This dis-
tance information can be obtained via time of arrival, received
signal strength or other techniques. We focus on the problem
of finding the node positions given this distance information.

The sensor network localization problem can be stated as
follows. Assuming knowledge ofthe positions of some nodes
(called anchors) and some pairwise distance measurements,
determine the position of all sensor nodes in the network.
(Nodes whose positions are unknown will be referred to as
sensor nodes). In practice, due to resource constraints on
the sensor nodes, the distance measurements are inaccurate
or noisy. In addition, the anchor node positions are inaccu-
rate even when determined with the use ofGPS or other tech-
niques. A number of methods, based on minimizing some
global error function, have been explored to account for the
measurement uncertainties. It is observed that the compu-
tational complexity varies based on the optimization model
chosen. Most approaches in the literature do not account for
inaccuracies in the anchor positions.

The localization problem in its original form is a non-
convex optimization problem (shown in the next section) and
it will be relaxed to a convex problem. Biswas and Ye pro-
posed the semidefinite programming (SDP) relaxation [1]. The
SDP relaxation approach can solve small problems effectively.
The authors report a few seconds of PC execution time for a
50 node network. They have also proposed two techniques to
improve the accuracy of the SDP solution [2]. However, the
number of constraints in the SDP model is 0 (n2), where n
is the number of nodes in the network

Most SDP solvers can handle problems with at most 100
variables, while sensor networks typically have 100's ofnodes
resulting in problem dimensions in the 10,000's. To overcome
this difficulty, Biswas and Ye proposed a distributed method
for solving the SDP [3]. In this iterative distributed scheme,
the anchors are first partitioned into many clusters according
to their physical locations. A sensor is assigned to a clus-
ter if the sensor has a direct link to one of the anchors. Then
semidefinite programs are solved independently for each clus-
ter. The sensors whose position becomes known are used to
iteratively decide the remaining un-positioned sensors. The
authors report a few minutes of PC execution time for a net-
work with 4000 nodes. But, since the clustering is done based
on geographic locations, each cluster may have only partial
connection information for the border sensors if these have
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connections with multiple clusters. Thus border sensors may
not get positioned accurately.

We consider the second-order cone programming (SOCP)
relaxation due to its simpler structure and the potential to be
solved faster. The SOCP relaxation for the localization prob-
lem was first studied by Tseng [4]. We propose a technique
that enables the SOCP relaxation problem to be solved in a
completely distributed fashion. In the first step, each sensor
node executes the localization algorithm independently using
distance information to the anchors and sensors with which
it is directly linked (or which are within its communication
range). In a second step, the anchors use the position infor-
mation from the neighboring nodes and the associated dis-
tance information to refine their positions. The results show
that this second step results in a significant improvement in
positioning of the inner anchors. The problem dimension is
reduced to a linear function of the number of neighbors of a
node, which enables each sensor node to determine its loca-
tion. The performance gains are achieved without sacrificing
localization accuracy.

2. SENSOR NETWORK LOCALIZATION:
PROBLEM FORMULATION

The localization problem is mathematically formulated as fol-
lows. Consider n distinct points in Rd (d > 1). Given the
positions of the last (n -n) points (or anchors) Xm+1, Xn
and the Euclidean distances dij between neighboring points
i and j where (i, j) C A. A is the neighbor set defined as
A {(i, j) x1 j < RadioRange} 1, we need to
estimate the positions of the first m points (sensors). This
can be formulated as the following non-convex minimization
problem:

min E x x- 2 (1)
(ij)CA

where denotes the Euclidean norm.

3. SECOND-ORDER CONE PROGRAMMING
RELAXATION

which is an SOCP. Tseng has shown in [4] that even though
the SOCP relaxation is weaker than the SDP relaxation, it can
accurately position (up to square distance error) a large per-
centage of the sensors. The problem in (2) can equivalently
be written as:

min Et.t
X1 ).. xXm xij )tij ( )e

s.t.yij > IX,i - xj 2

tij > Yij - d'2
V(i,j) C A (3)

V(i,j) C A

A distributed localization algorithm is presented next.

4. DISTRIBUTED ALGORITHM AND
IMPLEMENTATION

In a distributed algorithm, implemented over multiple pro-
cessors, the algorithm is divided into "phases". During each
phase, every processor must execute a number of computa-
tions that depend on the results of the computations of other
processors in previous phases. However, the timing of com-
putations at any one processor during a phase can be inde-
pendent of the timing of the computations at other processors
within the same phase. All interactions between processors
takes place at the end of the phases. Such distributed algo-
rithms are also called synchronous. Here we show how the
SOCP relaxation for the sensor network localization problem
can be formulated as a synchronous distributed algorithm.

Let NA(i) {j (i,j) A} be the neighbor set for node
xi. The problem in (3) can be solved independently over the
m sensor nodes xi, where each node uses information (xj,
dij) from its neighboring nodes xj, j C NA (i). The informa-
tion exchange between a node and its neighbors takes place at
the end of each iteration (or phase). Thus (3) decomposes to
the following distributed formulation:

min E tij
rrQtv%at,Xi, v

jGN (i

s.t.yij > Xi-j 2

tij>lYij-dt2j
Vj C NA(i) (4)

Vj C NA(i)

The original problem (1) is non-convex but can be reformu-
lated in convex form using relaxation techniques. As a first
step, (1) can equivalently be written as:

min E lyij-d' s.t. yij = lxi-xjl2,V(i,j) C A
tV)vS2(i j)GA

Relaxing the equality constraints to ">" inequality con-
straints yields the following convex problem:

min E yij- s.t. yij > xi-xj 2,V(i,j) C A
XI- ,Xa,Y

i
l a (i j)GA

(2)

'The set A is undirected: (i, j) (j, i), V(i, j) E A

This can be written in standard SOCP form as:

mi
t tEij

XiYj'It3 jCNA(i)

s.t. (ij + t )2 > (Lij t )2 2 (5)

tij > yYij - d2j Vj C NA(i)

ti =1

The obvious way to solve the localization problem is to
solve (5) simultaneously at each of the sensors and anchors.
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We ran a few simulation test cases using this approach, but
the results did not converge in each of those cases 2. Hence
we adopt a two-step approach. In the first step, each sensor
node estimates its position using distance information from
its neighbors and in the second step, the anchor nodes use
information from their neighbors to refine their positions.

Let Ni (= INA (i) ), represent the cardinality of set NA (i).
The SOCP (5) has 2Ni + 3 variables, 2Ni conic constraints
and 1 equality constraint. In sensor networks, due to the rel-
atively short radio range of the sensors, the number of neigh-
bors of a given node is a small fraction ofthe total number of
nodes in the network. Thus (5) results in significantly smaller
problem sizes than approaches proposed in the literature. The
SOCP (5) can be efficiently solved in practice by interior point
methods. Here we use SeDuMi [5] to solve this problem.

5. SIMULATION RESULTS

In this section, we present simulation results based on the
SOCP relaxation (5). We generate the true positions of the
sensors and the anchors xt, , t independently according
to a uniform distribution on the unit square [-0.5, 0.5]2.

A = {(i,j): t _ x < RadioRange}
dij = tx xt max{0,1+cij nfd} V(i,j) C A

xi = xi * max{0, 1+ cij * nfa} Vi = (m + 1) ..., n.

where cij is a random variable representing measurement noise
(normally distributed), RadioRange C (0, 1), nffa and nfd
C [0,1] are the noise factors for anchor positions and distance
measurements, respectively. p is the percentage of anchors.

We wrote the code in Matlab to solve the SOCP relax-
ation. Our code calls SeDuMi (Version 1.1) [5]. Simulations
were carried out on a PC with 3 GHz Pentium 4 processor and
2 GB RAM running Matlab 7.2.0 (R2006a).

Table 1 lists the input parameter values for the different
test cases. Also reported are the maximum SOCP (5) di-
mension and the corresponding CPU time per sensor node
(excluding the time for computing the relative distances dij).
Comparing with the SOCP dimensions reported by Tseng in
[4] for similar network sizes, the dimensions reported here
are smaller by at least two orders of magnitude. The SOCP
dimension, which depends on number of neighboring nodes,
scales well with the network size. As a result, the cpu time
and per node computational burden is significantly reduced.

To check the accuracy of our algorithm, we compute the
average positioning error for the sensor and anchor nodes.
Figure 1 shows that the error increases slightly for nfd larger
than 0.05. We fixed nfd = 0.01 for the rest ofthe simulations
to understand the effect of the other parameters.

2Due to space constraints, we are unable to elaborate on the results show-
ing divergence under simultaneous algorithm execution at the anchors and
sensors.

Test n nfa Max. SOCP CPU time per
Case dimension node (in sec)

1 500 0.10 115 x 169 1.03
2 500 0.20 127 x 187 1.02
3 500 0.30 107 x 157 1.06
4 1000 0.10 175 x 259 1.22
5 1000 0.20 191 x 283 1.24
6 1000 0.30 175 x 259 1.27
7 2000 0.10 339 x 505 1.43
8 2000 0.20 375 x 559 1.56
9 2000 0.30 339 x 505 1.57

Table 1. SOCP relaxation (5) dimensions with corresponding
CPU times. (p = 0.20, RadioRange = 0.10, nfd 0.01)

The true and the estimated node positions for test case 5
are shown in Figure 2. There is a close match between the es-
timated and true positions for sensors which lie in the convex
hull of their neighbors. The estimated positions become less
accurate as we move towards the boundary.

Figure 3 shows the effect of noise factor nffa and network
size (n) on the average error. The average error increases
slightly as nfa increases from 0.10 (i.e., each anchor coor-
dinate has up to ±10% error) to 0.30. As the network size (n)
increases resulting in higher node connectivity, the average er-
ror decreases. Figure 4 shows that increasing the percentage
ofanchors lowers the positioning error for both the sensor and
anchor nodes. The estimated positions are on average within
5-6% of the true positions over a range of parameter values.

6. FUTURE RESEARCH DIRECTION

The algorithm presented refines the anchor positions in the
second step. This improvement is significant only for the in-

Fig. 1. Average positioning error as a function of the Noise
Factor nfd.(n = 1000, RadioRange = 0.10, p = 0.20 and
nfa = 0.10)
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Fig. 2. Results for Test Case 5. True positions of sensors (o)
and anchors (c>) with the estimated positions (+). Solid lines
indicate error between the estimated and true node positions.
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Fig. 4. Average positioning error as a function of nfa and p.

(n = 2000 and nfd = 0.01)
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