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Abstract—Consider a communication system whereby multiple
users share a common frequency band and must choose their
transmit power spectral densities dynamically in response to
physical channel conditions. Due to co-channel interference, the
achievable data rate of each user depends on not only the power
spectral density of its own, but also those of others in the system.
Given any channel condition and assuming Gaussian signaling,
we consider the problem to jointly determine all users’ power
spectral densities so as to maximize a system-wide utility function
(e.g., weighted sum-rate of all users), subject to individual power
constraints. For the discretized version of this nonconvex problem,
we characterize its computational complexity by establishing
the NP-hardness under various practical settings, and identify
subclasses of the problem that are solvable in polynomial time.
Moreover, we consider the Lagrangian dual relaxation of this
nonconvex problem. Using the Lyapunov theorem in functional
analysis, we rigorously prove a result first discovered by Yu and
Lui (2006) that there is a zero duality gap for the continuous
(Lebesgue integral) formulation. Moreover, we show that the
duality gap for the discrete formulation vanishes asymptotically
as the size of discretization decreases to zero.

Index Terms—Complexity, duality, spectrum management, sum-
rate maximization.

I. INTRODUCTION

I N A MULTIUSER communication system such as cogni-
tive radio or digital subscribe lines (DSL), interference mit-

igation is a major design and management objective. A stan-
dard approach to eliminate multiuser interference is to divide the
available spectrum into multiple tones (or bands) and pre-assign
them to the users on a nonoverlapping basis (FDMA). Although
such “orthogonal channelization” approach is well-suited for
high-speed structured communication in which quality of ser-
vice is a major concern, it can lead to high system overhead and
low bandwidth utilization. This is because for such a system a
frequency tone pre-assigned to a user cannot be released to other
users even if it is not needed when the user is idle, or is unusable
due to poor channel conditions.

With the proliferation of various radio devices and ser-
vices, multiple wireless systems sharing a common spectrum
must coexist [10]. In such scenarios, a pre-engineered FDMA
solution may no longer be feasible or desirable, and we are
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naturally led to a situation whereby users can dynamically
adjust their transmit power spectral densities over the entire
shared spectrum, potentially achieving significantly higher
overall throughput. For such a multiuser system, each user’s
performance depends on not only the power allocation (across
spectrum) of its own, but also those of other users in the system.
To mitigate multiuser interference, proper spectrum manage-
ment (i.e., power control) is needed for the maximization of the
overall system performance. Spectrum management problem of
this type also arises in a DSL system where multiple users com-
municate with a central office through separate telephone lines
over a common spectrum. Due to electromagnetic coupling,
signals transmitted over different telephone wires bundled in
close proximity may interfere with each other, resulting in
significant signal distortion. In fact, such crosstalk is known
to be the major source of signal distortion in a high-speed
DSL system [22]. Hence, for both wireless and wireline (DSL)
applications, judicious management of spectrum among com-
peting users can have a major impact on the overall system
performance.

The dynamic spectrum management problem has recently be-
come a topic of intensive research in the signal processing and
digital communication community. From the optimization per-
spective, the problem can be formulated either as a noncoop-
erative Nash game [6], [22] or as a cooperative utility maxi-
mization problem [5], [23]. Several algorithms were proposed
to compute a Nash equilibrium solution (iterative waterfilling
method (IWFA) [6], [22]) or globally optimal power allocations
(dual decomposition method [3], [4], [12], [21]) for the coop-
erative game. Due to the problem’s nonconvex nature, these
algorithms either lack global convergence or may converge to
a poor spectrum sharing strategy. Significant effort has been
made to establish conditions which can ensure the existence and
uniqueness of a Nash equilibrium solution as well as the con-
vergence of IWFA [13], [16], [19], [22]. In an attempt to ana-
lyze the performance of the dual decomposition algorithms, Yu
and Lui [21] studied the duality gap of the continuous weighted
sum-rate maximization problem and showed it to be zero in the
frequency flat case. For the general frequency selective case,
their work suggests that the strong duality should still hold.1 De-

1The duality proof of [21] for the frequency selective case is intuitive but
nonrigorous. First, their formulation did not clearly state the class of feasible
power spectral density functions under consideration. Without specifying this,
one cannot determine if their (limiting) time-sharing solution is feasible or not.
Second, their argument requires an infinitesimal division of the shared spectrum
over which one can assume constant noise spectral density and crosstalk coeffi-
cients and can apply a time-sharing solution result to the resulting infinitesimal
constant channels. It is not clear if the limiting solution remains feasible, or if
the sum-rate achieved still satisfies the time-sharing property. A detailed error
analysis using a well-defined set of admissible power spectral density functions
is needed to justify their claim.
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spite the aforementioned progress, a complete understanding of
the problem’s complexity status and a thorough duality anal-
ysis has not yet emerged. For example, the zero-duality gap re-
sult for the continuous formulation does not readily translate
to asymptotic zero duality for the discrete spectrum manage-
ment problem as the discretization becomes infinitely fine (see
Section IV). The latter is key to study the performance of dual
decomposition algorithms for practical OFDM based multiuser
systems.

In this paper, we present a systematic study of the dynamic
spectrum management problem, covering two key theoretical
aspects: complexity and duality. Specifically, we determine the
complexity status of the spectrum management problem under
various practical settings as well as different choices of system
utility functions, and identify subclasses which are polynomial
time solvable. In so doing, we clearly delineate the set of compu-
tationally tractable problems within the general class of NP-hard
spectrum management problems. Furthermore, we rigorously
establish the zero-duality gap result of Yu and Lui [21] for the
continuous formulation when the interference channels are fre-
quency selective. The key steps in our analysis are to cast the
continuous formulation under the Lebesgue integral framework
and to use the Lyapunov theorem [14] from functional analysis.
The latter theorem says that the integral of any set-valued func-
tion over a nonatomic measure space (in our case finite inter-
vals) is convex, even if the individual values of the function
are not convex. Finally, we show that the duality gap for the
discretized spectrum management problem vanishes when the
size of discretization approaches zero. This is the case even if
the system utility is nonlinear (but nonetheless concave). This
asymptotic strong duality property does not readily follow from
the zero-duality result for the continuous formulation, and its
proof requires a substantial effort. From a practical standpoint,
asymptotic strong duality is more valuable than the strong du-
ality for the continuous formulation. It suggests that the La-
grangian dual decomposition approach [3], [4], [12], [21] may
be a viable way to reach approximate optimality for finely dis-
cretized spectrum management problems.

II. PROBLEM FORMULATION

Consider a multi-user communication system consisting of
transmitter-receiver pairs sharing a common frequency band

. For simplicity, we will call each of such transmitter-
receiver pair a “user.” Upon normalization, we can assume to
be the unit interval in , namely, . Each user has a
fixed transmit power budget which it can allocate across so as
to maximize its own utility. Let denote the
power spectral density (or power allocation) function of user .
The transmit power budget of user can be represented as

where is a given constant. Due to multi-user interfer-
ence, user ’s utility depends on not only its own allocation

function , but also those of others . Let
user ’s utility function be denoted by

where is a Lebesgue integrable, possibly
nonconcave function.

Due to the complex coupling between users’ utility func-
tions, it is generally impossible to maximize the utility functions

simultaneously. Instead, we seek to maximize
a system-wide utility which carefully balances
the interests of all users in the system. This leads to the following
spectrum management problem:

...

The subscript in the notation “ ” signifies the continuous
domain of the formulation. The maximum value of is called
the social optimum.

There are four commonly used choices for the system utility
function .

i) Sum-rate utility: .
ii) Proportional fairness utility:

(equivalent to maximizing ).
iii) Harmonic-rate utility:

(equivalent to maximizing
).

iv) Min-rate utility: .
In general, these utility functions can be ordered

In terms of user fairness, the order is reversed.
The spectrum management problem is in general

nonconvex due to the nonconcavity of utility functions
. Moreover, it is defined in continuous do-

main (infinite dimensional), with spectral density functions
as decision variables. As such, the

spectrum management problem is a difficult infinite
dimensional nonlinear optimization problem.

To facilitate numerical solution, we typically discretize the
frequency band so that . In this
way, the continuous formulation of the frequency management
problem can be discretized by replacing Lebesque measure
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with a discrete uniform measure on . In particular, user ’s
spectral density becomes

and the corresponding utility is

The corresponding social optimum is achieved by maximizing
the total system utility

...

We use to denote this discretized problem. Intuitively,
as , namely, as the discretization be-

comes infinitely fine, the discrete problem coincides with the
continuous spectrum management problem. However, as we see
in Section IV, this “limiting” argument can be problematic due
to a mismatch between Riemann and Lebesgue integrals.

Rate Maximization: Let denote the transmitted complex
Gaussian signal from user (consisting of a transmitter and
receiver pair) at tone , and let denote its power.
For an AWGN channel, the received signal is given by

where denotes the complex Gaussian channel
noise with zero mean and variance , and the complex scalars

represent channel gain coefficients. In practice, can
be determined by the distance between transmitter and receiver

. The capacity region of this interference channel is still un-
known. So it is reasonable (and natural) to treat the interference
as white noise, especially if users do not have direct knowledge
of the code/modulation schemes of other users in the system. In

this way, we can write transmitter ’s achievable data rate
at tone [7] as

Upon normalizing the channel coefficients, we obtain

(1)

where denotes the normalized background
noise power, and is the normalized
crosstalk coefficient from transmitter to receiver at tone .
Due to normalization, we have for all .

Notice that unlike the frequency flat case considered in [8],
the channel coefficients vary according to tone index due
to frequency selectivity, resulting in a nonconstant normalized
noise power across tones. As it turns out, this crucial differ-
ence greatly complicates the spectrum management problem in
the frequency selective case, making an otherwise convex opti-
mization problem computationally intractable; see Section III.

For the continuous formulation, can represent the data
rate achievable by user at frequency (in the sense of Shannon
[7])

(2)

where signifies the noise power at user on fre-
quency , and denotes the normalized path loss co-
efficient for the channel between user and user on frequency

. Clearly, the rate function and the utility function
are both nonconcave. The spectrum management problem can
be stated as shown in the equation at the bottom of the next page.

In practice (e.g., IEEE 802.11x standards), the available spec-
trum is divided into multiple tones (or bands) and shared by
the users. In this way and assuming , the spec-
trum management problem is discretized and becomes

Authorized licensed use limited to: University of Minnesota. Downloaded on May 22, 2009 at 15:00 from IEEE Xplore.  Restrictions apply.



60 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 2, NO. 1, FEBRUARY 2008

The main challenges of spectrum management are i) non-
convexity, ii) problem size , and iii)
distributed optimization. A popular spectrum management ap-
proach is frequency division multiple access (FDMA) whereby
the available tones (or bands) are shared by all the users on
a nonoverlapping basis. Such ‘orthogonal channelization’ ap-
proach is well-suited for high speed structured communication
in which quality of service is a major concern. Mathematically,
FDMA solutions can be described as

FDMA solutions are not necessarily vertex solutions.

III. DISCRETE FREQUENCIES: COMPLEXITY ANALYSIS

In this section, we investigate the complexity status of the
spectrum management problem under various practical
settings as well as different choices of system utility functions.
We provide a complete analysis on when the problem is NP-hard
and also identify subclasses of the problem that are solvable in
polynomial time. We will consider two separate cases: the case
of many users and few tones (large and fixed ), and the case
of few users and many tones (fixed and large ).

A. The Case of Many Users and Few Tones

In this section, we fix and analyze the complexity of the
spectrum management problem for large and for various
choices of system utility functions.

1) Maximization of Sum-Rate: Let us first consider the
problem of maximizing the total system throughput or
sum-rate. This corresponds to choosing a system utility
function . We show below
that the resulting spectrum management problem is NP-hard
for any fixed .

The discrete sum-rate maximization problem is given by
. We specialize to the case

Notice that, for simplicity, we have dropped the constant factor
from the objective function and removed the superscript

in our notations since . The resulting problem corre-
sponds to the practical situation whereby multiple users share a
single frequency band (say, a control channel), and wish to co-
operate in order to maximize the sum-rate of all users.

Theorem 1: For the sum-rate utility function
, the spec-

trum management problem is strongly NP-hard for any
fixed .

The proof is based on a polynomial time reduction from the
maximum independent set problem. The details are relegated

to Appendix A. Intuitively, if all cross talk coefficients are ei-
ther 0 or , then the optimal solution of will have ei-
ther or , for all users . In this way, maxi-
mizing the sum-rate is equivalent to finding the largest subset
of users which are mutually noninterfering, which is further
equivalent to the maximum independent set problem in com-
binatorial optimization. The complexity analysis for has
an interesting consequence. It is well known that the maximum
independent set problem is not only difficult to optimize, but
also hard to approximate (cf. Trevisan [18]). In particular, for
a -node graph, there is a constant such that if there is
a polynomial-time -approximation algorithm2 for the max-
imum independent set problem then . This inapprox-
imability result, coupled with the polynomial transformation
outlined in the preceding complexity analysis, implies that the
sum-rate maximization problem cannot be well approximated
even to within a factor of when the number of tones is 1.

2) Maximization of Min-Rate Utility: We now study the com-
plexity status of the spectrum management problem when
the system utility function is the minimum of all users’ rates:

. As we see next, unlike the sum-rate case
considered earlier, the spectrum management problem becomes
a convex optimization problem when .

Let and consider the min-rate utility function
. The corresponding spectrum management

problem becomes (after dropping the superscript )

which, by the monotonicity of function, is equivalent to

This is known as a generalized fractional linear programming
problem and can be solved by parametric linear programming.
In particular, introducing an auxiliary variable , we obtain the
following equivalent formulation

which can be easily solved using a binary search on . This
shows that the case of is polynomial time solvable.
However, if then the problem remains NP-hard.

Theorem 2: For the min-rate system utility function
, the spectrum management problem is polyno-

mial time solvable (in fact equivalent to a parametric linear pro-
gram) when , and is strongly NP-hard when .

The Proof of Theorem 2 consists of a polynomial time reduc-
tion from the 3-colorability problem, i.e., the problem to deter-
mine if the nodes of a given graph can be assigned one of the

2For a maximization problem max H(f) with H(f) nonnegative, we
say f̂ is an �-approximate solution if H(f̂) � �max H(f).
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three colors so that no two adjacent nodes are colored the same.
The 3-colorability problem is known to be NP-hard. Intuitively,
for any given graph, we can think of nodes in the graph as users,
and colors as frequency tones. If we set the normalized crosstalk
coefficients to be either a (sufficiently large) constant or
zero, depending on if nodes and are adjacent or not. In this
way, the min-rate optimal solution for the corresponding spec-
trum management problem will try to assign frequency tones to
users so that each tone is utilized by at least one user in a non-
interfering manner. This then leads to a solution to the coloring
problem. We provide details of the analysis in Appendix B.

There is still a missing case of that is not covered
by Theorem 2. While we have not been able to characterize its
complexity, we can reduce it to a simple optimization problem
involving a single variable.

Theorem 3: For the min-rate utility function
and , the spectrum management problem

is equivalent to a single-variable optimization problem.
Proof: When , the maximization of min-rate utility

becomes

By a bisection search on the objective function, this maximiza-
tion problem can always be broken down to a series of feasibility
problems (see first equation at the bottom of the page). We claim
that for a fixed , then it takes polynomial-time to check
if is feasible or not. In fact, is equivalent to the exis-
tence of such that

which amounts to checking the feasibility of the system (see
second equation at the bottom of the page) and this leads

to solving the following parameterized convex optimization
problem:

Denote the optimal value of to be . Maximizing
is equivalent to finding the maximum of for , i.e.,

.
3) Maximization of Harmonic-Rate Utility: When the system

utility function is given by
, the spectrum management problem is equivalent to

Similar to the min-rate utility case, we have the following
complexity characterization result.

Theorem 4: For the harmonic-rate utility function
, the spectrum management problem is

a convex optimization problem (thus polynomially solvable)
when , and is strongly NP-hard when .

Proof: We only consider the case of . The NP-hard-
ness proof for can be found in Appendix C. When

, problem becomes (after dropping the superscript
)
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Introducing new variables , we can rewrite the above problem
as

By a nonlinear variable transformation,
can be equivalently turned into

It is well known that
is a convex function in . Moreover, it can checked easily that

is convex over . Consequently, is
a convex program, hence solvable in polynomial-time in terms
of the dimension and the required solution precision.

We remark that the complexity status of remains un-
known when .

4) Maximization of Proportional Fairness Utility: Consider
the system utility function .
Notice that maximizing (the geometric mean of
users’ data rates) is equivalent to maximizing . Thus,
the spectrum management problem becomes

Below is our complexity characterization result for the propor-
tional fairness utility maximization problem.

Theorem 5: For the proportional fairness utility function
, the spectrum management problem

is convex when and is NP-hard for .
Proof: For , the corresponding spectrum manage-

ment problem becomes

Similar to the Proof of Theorem 4, let us introduce some auxil-
iary variables and the constraints

which can be equivalently written as

By the variable transformation ,
we rewrite the above inequality as

(3)

It can be checked that the function
is convex. This shows that constraints of the type in (3) are

convex. Since can be equivalently written as

it is therefore a convex optimization problem.
The NP-hardness proof is similar to the harmonic rate case

(consisting of a reduction from 3-colorability problem), and is
given in Appendix D.

The complexity status remains unknown for the two-tone case
with proportional fairness criterion.

B. The Case of Many Tones and Few Users

So far we have analyzed the computational complexity of the
spectrum management problem for various choices of system
utility functions when the number of users is large while the
number of tones is small and fixed. In what follows, we con-
sider the other case when the number of users is small and
fixed while the number of frequency tones grows to infinity.
For the sum-rate maximization problem (corresponding to the
system utility function ), the re-
cent work of [9] shows that the resulting spectrum management
problem is NP-hard even when there are only two users in the
system. This NP-hardness result effectively shatters any hope to
efficiently compute the exact optimal spectrum sharing strategy.
The combinatorial growth of possible frequency assignments
simply renders the problem intractable. Below we generalize
this result to other system utility functions.

Theorem 6: The two-user spectrum management problem
is NP-hard when the system utility function

is given by the following choices:
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TABLE I
SUMMARY OF THE COMPLEXITY STATUS OF THE DISCRETE SPECTRUM MANAGEMENT PROBLEM (P )

(sum-rate), (proportional fair-
ness), (harmonic-rate), or

(min-rate).
The proof of this complexity characterization relies on a re-

duction from the so called equipartition problem: given an even
number of integers, determine if they can be partitioned into
two subsets of same size such that the sum of integers in the
two subsets are equal. To see how the equipartition problem is
related to the spectrum management problem, let us imagine a
situation whereby two users with the same noise power spec-
trum are to share a common set of frequency tones. Assume
that the crosstalk coefficients are sufficiently strong on every
tone. It follows from [9] that the optimal sum-rate spectrum
sharing strategy must be FDMA. To maximize the system utility
(defined by any of the mentioned utility functions) among all
FDMA strategies, the two users should partition the tones in a
way that best balances the total noise power across the frequency
tones assigned to the two users. In this way, deciding on which
user should get exactly which subset of tones becomes essen-
tially the aforementioned equipartition problem. The details of
the proof are relegated to Appendix E.

For a single user system , there is no multiuser inter-
ference, so the optimal spectrum management problem becomes
convex, as long as is concave. In fact, in this case, all four
system utility functions and coincide, and the
optimal solution can be found via the well-known waterfilling
algorithm in polynomial time. Shown in Table I is a summary
of the complexity status of the discrete spectrum management
problem .

In this table, the column “Sum-Rate H (FDMA solution)”
represents the optimization model where the objective is to max-
imize the total rates, while the users’ power spectrums are con-
strained to have no overlap. The second column “Sum-Rate
(arithmetic mean)” represents the model with the same objec-
tive but the FDMA constraints are removed.

IV. DUALITY

The discrete rate-maximization problems considered in
Section III are mostly NP-hard. This motivates us to consider
efficient algorithms which can find high quality approximate
solutions for the rate-maximization problem in polynomial

time. One natural approach is to consider the dual formulation
and apply Lagrangian relaxation.

Consider the discrete rate-maximization problem

The corresponding Lagrangian function is given by

and the dual function is given by

Thus, the Lagrangian dual of can be written as
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where is the convex conjugate dual function of defined
by

(4)

The conjugate function can be computed explicitly for
various choices of system utility functions. It is relatively easy
to verify the following.

1) For weighted sum-rate function , the conju-
gate function for and
when .

2) For the proportional fairness system utility func-
tion , the conjugate function

.
3) For the min-rate utility function ,

the conjugate function if , and
otherwise.

4) For the harmonic-rate utility function
, the conjugate function if
, and otherwise.

Unlike the original problem , its dual is convex
which is potentially easy to solve. Let and denote their
respective optimal values. It follows from weak duality that

. It is known from Section III that is typi-
cally NP-hard, suggesting that the primal and the dual

are in general not equivalent. Indeed, the following ex-
ample suggests that the duality gap is typically pos-
itive.

Example: Consider a case with two users sharing one fre-
quency. The corresponding sum-rate maximization problem is
given by

(5)

where is the power budget for user . Let
the optimal value of the above problem be . We show
below that is not concave function of ,
which implies that the duality gap is positive. [This concavity
property of was called time-sharing property in [21].]

Note that the objective is actually equivalent to maximizing
, which is a quasi-convex

function on its domain (see [1]). Therefore, its maximum value
is attained at the vertices. In other words

(6)

So, if , then which is attained
by or (FDMA solution). However, the
corresponding dual formulation of (5) can be written as

(7)

where

Notice that is a convex function that is symmetric
with respect to and . Thus, if , then the
dual objective function in (7) is symmetric with respect to

and . It follows that the optimal dual solution must
have . Direct computation of (via KKT con-
dition) shows that, when , the associated
primal power levels must be either or .
Moreover, the subdifferential of at is equal to

. Plugging
these values into (7), we see that the dual optimality condition

is satisfied at .
Therefore, we obtain the optimal dual solutions ,
and the minimum dual objective value which is
strictly larger than the primal objective value .

When (weighted sum-rate), a so called
time-sharing property was introduced in [21] which can
ensure zero duality gap . This prop-
erty essentially requires the region of achievable rates

to
be convex, where each is defined in . Mathematically,
the time-sharing property is equivalent to the concavity of
the mapping . Unfortunately, time-sharing property
does not hold in general. For instance, consider the preceding
example where is given by (6). Simple calculation
shows that

if and only if . Similarly,

if and only if . Let
. We have

for . Now we
see that cannot be concave in , since, for instance
its Hessian at an interior point of , is given by

which is clearly not negative semidefinite.
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A. Asymptotic Strong Duality

When the duality gap is nonzero, the dual problem
is not equivalent to the primal problem . Nonethe-

less, may still provide a close approximation of .
This motivates us to find an upper bound on the duality gap be-
tween and . Notice that, for the continuous spectrum
management problem (corresponding to ), the duality
gap , as was established in [21] in the context
of sum-rate maximization. This suggests that the duality gap

for finite should vanish asymptotically as
for general system utility functions. In this section, we show that
this asymptotic strong duality result indeed holds true for gen-
eral system utility functions, thanks to a hidden convexity re-
sulting from the frequency set being an interval (rather than a
finite discrete set). The key in our analysis is the so-called Lya-
punov theorem for vector measures [14].

Definition: A measure is nonatomic if every set of nonzero
measure has a subset with strictly less nonzero measure.

The standard Lebesgue measure is nonatomic, while the uni-
form measure on a finite set is atomic. The following is a con-
venient form of Lyapunov Theorem due to Blackwell [2].

Lemma 1: Let be a nonatomic measure on a Borel field
generated from subsets of a space . Let be compat-
ible with -measurable function (i.e., if is -mea-
surable then is -measurable), . Then

...

is a convex set.
It is important to notice that there is no assumption on the

convexity of functions or the set . The convexity of the
image of the integral mapping is due to the nonatomic property
of measure . We now use Lemma 1 to argue the asymptotic
strong duality for the continuous formulation of the spectrum
management problem.

Suppose that the system utility function is monotonically
nondecreasing componentwise and jointly concave. We can
equivalently rewrite as shown at the bottom of the next
page.

The following theorem follows from Lemma 1.

Theorem 7: Let be the optimal value of (also
known as the perturbation function of ). Suppose that is
monotonically increasing componentwise and jointly concave.
Then is a concave function in .

Proof: Let and be two parameter vectors. Let
and be optimal solutions for with parameters and

respectively. Let

Then, by Lemma 1, there exist nonnegative Lebesgue measur-
able functions such that

Therefore, the optimal value of with parameter
satisfies

where the second inequality is due to concavity of .
A consequence of Theorem 7 is that the Lagrangian dual

problem admits no duality gap with the original problem.
Specifically, define the following Lagrangian function

...
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(8)

Let

Since is separated from , we may simplify the expression for
by using the conjugate dual function of [cf. (4)] which

is convex. We have

where (see the equation at bottom of next page).
Clearly, is convex jointly in and . The Lagrangian

dual problem of is defined as

Due to Theorem 7, the perturbation function is concave.
By a well known result in convex analysis [15, Sec. 34], this im-
mediately implies that the duality gap is zero; see also Theorem
1 in Yu and Lui [21].

Corollary 1: Suppose that the system utility function
is jointly concave in and is

nondecreasing in each . Then, the optimal values of and
are equal; i.e., the strong duality relation holds.

Since the concavity and monotonicity assumptions in Corol-
lary 1 are satisfied by the min-rate, harmonic-rate, proportional
fairness rate and sum-rate functions, it follows that the duality
gap between and is zero for all of these choices of
system utility functions. By a “continuity” argument, this should
imply that the duality gap between the discrete primal-dual pair

and should vanish when . This is what we
establish in the next theorem.

Theorem 8: Suppose the system utility function
is jointly concave and continuous in

, and is monotonically nondecreasing in each
argument. Moreover, assume each user’s utility function
is given by , with
nonnegative and Lebesgue measurable, where is the
nonnegative and Lebesgue integrable power spectral density
function of user . Let and denote the optimal values of

and respectively. Then the duality gap
vanishes asymptotically in the sense that

In light of Corollary 1, we only need to show that the op-
timal values of and converge respectively to those
of and , respectively, as . The main diffi-
culty with the proof is that the continuous formulations
and involve Lebesgue integrals while the discrete formu-
lations and involve Riemann sum of Lebesgue in-
tegrals. It is well known that we cannot in general approximate
the value of a Lebesgue integral by a Riemann integral. The mis-
match of integrals arise because Lyapunov theorem works only
for Lebesgue integrals while in spectral management applica-
tions we are confined to Riemann sum type of discrete formu-
lations. Fortunately, for the optimization problems considered
here, the mismatch can be resolved. We leave the details of the
proof to Appendix F.

V. DISCUSSIONS

For a communication system in which users must share a
common bandwidth, dynamic spectrum management (DSM) of-
fers a great potential to significantly improve total system per-
formance and spectral efficiency. This paper considers the com-
putational challenges associated with DSM. If the potential ben-
efits of DSM are to be realized, these challenges must be prop-
erly addressed. The complexity results of this paper suggest that
for a given channel condition, computing the optimal spectrum
sharing strategy is generally difficult, unless either the number
of users in the system or the number of shared frequency tones
is small (1 or 2). Even for a moderately sized problem (with
10–20 users and 1000–2000 frequency tones), finding the glob-
ally optimal spectrum sharing strategy can be computationally
prohibitive. Consequently, our goal for DSM should be more re-
alistic. The most that we can hope for is to be able to efficiently
determine an approximately optimal spectrum sharing strategy
with provably good quality.

One efficient approach to find high quality approximately
optimal spectrum sharing strategies is through Lagrangian
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relaxation. This is because the dual formulation of the spectrum
management problem is always convex and is amenable to
distributed implementation. The duality analysis in this paper
shows that the duality gap vanishes as the size of discretization
decreases to zero, suggesting that the optimal spectrum man-
agement problem is asymptotically convex. The main reason
for the vanishing duality gap is a hidden convexity associated
with the continuous formulation due to the Lyapunov theorem
in functional analysis. The asymptotic strong duality suggests
that it may be possible to devise a polynomial time approx-
imation scheme for the continuous spectrum management
problem . That is, it may be possible to find an -optimal
spectrum sharing strategy for in time that is polynomial
in and , where . However, to achieve this goal, it
will be necessary to develop a strengthened duality analysis
which explicitly bounds the size of duality gap for any finite
discretization. We plan to address these and other related issues
in a forthcoming paper.

A number of extensions to the current work are possible. For
example, rather than maximizing a system-wide utility function
as in the formulation , a telecom system operator may wish
to minimize the total transmission power while ensuring a given
data rate for each user. This leads to the following QoS (quality
of service) constrained optimization:

where is the required data rate for user . The corresponding
discretized version becomes

For the one-tone case , the discrete formulation is
simply a linear program (solvable in polynomial time). Also,
if only one user is present , then the problem is solved
by the iterative water-filling procedure. For other general cases
( or ), the proof techniques of Section III can be
easily adapted to show the NP-hardness of the above QoS con-
strained problem. Moreover, Lyapunov theorem can again be
applied to the above pair of continuous-discrete formulations
and the asymptotic strong duality still holds.

Our work can also be extended to other resource management
problems in multiuser communication such as transmission time
management. In the latter case, we only need to change “

, etc.” to “ ,” respectively. Management
of hybrid resources such as time-frequency sharing can also be
treated similarly.

APPENDIX

A. Proof of Theorem 1

We now present a polynomial transformation of the max-
imum independent set problem on a graph to . Since the
former is NP-hard, this will imply the NP-hardness of and

. Suppose that is an undirected graph. An in-
dependent set of is a subset such that no two nodes
in are connected: for any . To find an
independent set with a given size is NP-hard.

Consider a connected graph with vertices, i.e., .
For each , let

where is any positive number greater than , and
. In this way, the feasible set becomes

a Cartesian product of probability simplices. We claim that
has a maximum independent set of size if and only if the
corresponding has an optimal value satisfying

If has a maximum independent set , then by letting

we have a solution for with an objective value equal to
.

On the other hand, suppose that one has an optimal solution
for with optimal value . By a direct computation, we

have

Since is connected, so the second sum is not vacuous and the
definition of ensures that for all feasible
vector . Thus, the objective function is convex with re-
spect to every component of (though not jointly convex in ).
Since the maximum of a convex function over a polytope is al-
ways attainable at a vertex, it follows that we can assume that

is a 0–1 vector. Let

Let be a maximum independent set contained in . Then, it
follows from the property that
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where the strict inequality is due to the connectedness of
which implies that . Thus, we
have

establishing our claim.
In case , we consider copies of graph , called it

, defined as follows: for any
, and iff , where

. Then, an independent set
in corresponds to an independent set in , and vice versa.
Hence, is in general strongly NP-hard for any fixed integer

.

B. Proof of Theorem 2

The case has been treated earlier. We only need to
prove the problem is strongly NP-hard for . The general
case of by setting and , for all
and all , where

is a constant. With this choice, it can be checked that all tones
numbered are too noisy to be used by any user in the
system. In this case, the general case is reduced to a
three tone case.

When , the spectrum management problem be-
comes

To prove the strong NP-hardness, we construct a polynomial
transformation from the so called vertex 3-coloring problem to

. Given a connected graph with vertices,
(i.e., ), the 3-coloring problem requires the determina-
tion of whether or not there is a partition (mu-
tually exclusive) such that are all independent sets
of the graph. For each graph , we define a corresponding spec-
trum management problem as follows: for , let

Also, set and , for all .
We claim that graph is 3-colorable if and only if has an

optimal value greater or equal than . If a 3-coloring solution
exists, then we may let

with . This achieves an objective value for
.

Now suppose that we have a solution for with an objec-
tive value at least . Let

Clearly, we have . We claim that each
must be an independent set. To see this, suppose the contrary
so that there are two nodes (for some )
which are adjacent in . Then the above definition of im-
plies that

where we have used the definitions of and . Combining
these two inequalities yields

which implies that . This is a contradiction, so the nodes
and cannot be adjacent.
Notice that the sets may be overlapping. In this

case, we can redefine the sets as
. In this way, forms

a partition and gives a 3-color solution for . Since the above
transformation involves only numbers that are at most polyno-
mial in (in fact constant in ), this establishes the strong
NP-hardness of the original spectrum management problem.

C. Proof of Theorem 4

The proof of strongly NP-hardness for the case is
similar to the min-rate case considered in Theorem 2, and we
only provide an outline below. Consider a graph
with . We need to show that the graph is 3-colorable if
and only if the optimal value of the is at least . Let

(9)
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and for , and . We claim that
is 3-colorable if and only if the following problem:

(10)

has an optimal value at least .
“ ”: If the graph is indeed 3-colorable, then there is a par-

tition of the vertices, say , such that is
an independent set, . Let

with . Clearly this is a feasible solution of the
above problem, whose objective value equals .

“ ”: Let be the optimal value of (10) with
. Let us define

(11)

Since is an optimal solution
for (10) with optimal value , for each given , it
follows that

By the above inequality and (11), we have . What
remains to be seen is that each forms an independent set. For
this purpose, take any two vertices , and we wish to
show that . First, we note, due to , that

and similarly, , since . Suppose by contradiction
that and so . Then,

which is clearly a contradiction.

Finally, we notice that the sets may be overlap-
ping. In this case, we can redefine the sets as

. In this way,
forms a partition and gives a 3-color solution for . Since the
polynomial transformation outlined above involves only num-
bers that are polynomial in , we conclude the original spec-
trum management problem is strongly NP-hard.

D. Proof of Theorem 5

For the case , we use a polynomial time reduction
(similar to the one used in Theorem 2) to transform the 3-col-
orability problem to . Consider a graph with

. Let

(12)

and .
We claim that the graph is 3-colorable if and only if the fol-

lowing problem:

(13)

has an optimal value at least . “ ”: If the graph is
indeed 3-colorable, then there is a partition of the vertices, say

, such that is an independent set,
. Let

with . Clearly this is a feasible solution of (13),
whose objective value equals . “ ”: Let be the
optimal value of the above problem with . Let
us define

(14)

Notice that for any feasible solution of (13), it holds that
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for all . Suppose that
is an optimal solution for with optimal value

. Then, for each given , it follows that

By the above inequality and (14), we have . What
remains to be seen is that each forms an independent set. For
this purpose, take any two vertices , and we wish
to show that in this case it . First, we note that

and similarly, . Suppose by contradiction that
and so . Then

which is clearly a contradiction. Thus, the vertices in
are independent, establishing the NP-hardness as de-

sired. [Notice that we cannot claim strong NP-hardness since
the transformation outlined above involves exponentially large
numbers (in terms of ), although their binary lengths remain
polynomial.]

E. Proof of Theorem 6

Let . The case of
(sum-rate) has been considered in [9]. Below, we treat the other
three cases using the same polynomial transformation from the
equipartition problem: given a set of (even) positive inte-
gers , determine if there exists a subset

of numbers such that

Recall that it has been shown [9] that if

then the optimal solution of the two-user sum-rate maximiza-
tion problem must be FDMA, satisfying , for all .
Furthermore, given an even integer and a set of posi-
tive integers , we can construct a two-user com-
munication system as follows: let there be a total of fre-
quency tones, and let the channel noise powers for the two users
be , for . We also set the
crosstalk coefficients for all , and let

, with . In
this case, problem is reduced to the following:

(15)

where . Let denote the optimal rates of user 1
and user 2 respectively. Next we consider a convex relaxation of
(15), with , by dropping the nonconvex FDMA constraint

, and by combining the two separate power constraints as
a single one

(16)

Notice that the relaxed problem (16) is a standard single
user rate maximization problem, so can be eval-
uated easily using convex optimization (or the classical
Karush-Kuhn-Tucker optimality condition). For the case

(sum-rate maximization), it was shown [9] that

and the equality holds if and only if . Moreover, the
latter holds if and only if the equipartition problem has a ‘yes”
answer. For other three cases of system utility functions

, we have

for all , where the equalities hold if and only if
. Thus, for , we can conclude that ,

with equality holding exactly when , or equivalently
when the equipartition problem has a “yes” answer. This im-
plies the NP-hardness of the spectrum management problem

in the two-user case for all three system utility functions
and .

F. Proof of Theorem 8

In what follows, we only prove that the optimal value of
converges to that of , as the dual case is similar. Let
and denote the optimal values of and respec-
tively. Suppose is attained at Lebesgue integrable func-
tions . Then, we have and
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By the definition of Lebesgue integral, for each , there
exists some and a partition of the nonnegative real line

such that

where denotes the Lebesgue measure and is the inverse
image of interval under mapping

Notice that the sets are Lebesgue mea-
surable and together they form a partition of the unit interval

. Similarly, there exists some and a
partition of the nonnegative real line

such that

where is the inverse image of interval under
mapping

Thus, each user has two partitions
of the unit interval

. By a further refinement of these partitions for all if
necessary, we assume that the partitions are identical for all
users. For simplicity, let denote the parti-
tion common for all users. Then we have

(17)

(18)

where and
for . Since is constant over and is de-
fined by the values of over which are , we
have

(19)

Let

Since each is Lebesgue measurable, it follows that there ex-
ists a finite union of disjoint intervals which
form an almost exact approximation of in the sense that

where denotes set difference operator. This implies that

(20)

Consider a uniform partition of the unit
. We need to approxi-

mate the end points of the intervals simultaneously by
rational numbers of the form . By Dirichlet theorem for
simultaneous Diophantine approximation, there exists a suffi-
ciently large integer such that for all (multiples
of ) each interval can be well-approximated by a
finite interval of the form , with

being integers in the interval , such that

(21)

In this way, we have

where the last step follows from (20)–(21). Therefore, we obtain

In other words, each set can be approximated by a finite
union of intervals of the form taken from a uniform parti-
tion of unit interval , provided is sufficiently large (and
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multiple of ). Substituting these approximations into integral
estimates (17)–(18), we obtain

where for all . Sim-
ilarly, we have

where for all , which
further implies

(22)

Moreover, it follows from (19) that

which implies

Since the objective function is continuous,
the above estimate and (22) show that

where as . In a similar fashion, there exists
such that

Since (Corollary 1), it follows that

Letting , we obtain as
desired.
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