Dynamics and control of distributed systems

Mihailo Jovanović

www.umn.edu/~mihailo

ICME Colloquium, Stanford University; April 8, 2013

Part 1: Large dynamic networks

1

FUNDAMENTAL PERFORMANCE LIMITATIONS

- Network coherence
 - ***** can local feedback provide robustness to external disturbances?
- Roles of topology and spatial dimension
 - * 1D vs 2D vs 3D

OPTIMAL DESIGN

- Sparsity-promoting optimal control
 - ***** performance vs sparsity

Part 2: Fluids

DYNAMICS AND CONTROL OF SHEAR FLOWS

- The early stages of transition
 - ***** initiated by high flow sensitivity
- Controlling the onset of turbulence
 - ***** simulation-free design for reducing sensitivity

SUMMARY AND OUTLOOK

Key issue: high flow sensitivity

Consensus by distributed averaging

• CHALLENGE

***** how to quantify performance of large dynamic networks

RELATIVE INFORMATION EXCHANGE WITH NEIGHBORS

***** simplest distributed averaging algorithm

$$\dot{x}_i(t) = -\sum_{j \in \mathcal{N}_i} \left(x_i(t) - x_j(t) \right)$$

Convergence and convergence rate

- NETWORK DYNAMICS
 - \star diffusion on a graph with Laplacian $L = L^T$

$$\begin{bmatrix} \dot{x}_1(t) \\ \vdots \\ \dot{x}_M(t) \end{bmatrix} = \begin{bmatrix} -L \\ \vdots \\ x_M(t) \end{bmatrix}$$

* e-values of L: $0 = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_M$

connected networkconvergence to the average $\lambda_2(L) > 0$ \Rightarrow $x_i(t) \xrightarrow{t \to \infty} \bar{x}(t) := \frac{1}{M} \sum x_i(t)$

convergence time
$$\sim \frac{1}{\lambda_2(L)}$$
 (network time constant)

Consensus with stochastic disturbances

$$\dot{x}_i(t) = -\sum_{j \in \mathcal{N}_i} \left(x_i(t) - x_j(t) \right) + d_i(t)$$

white noise

- **NETWORK AVERAGE**
 - * undergoes random walk

 $\lambda_2(L) > 0 \Rightarrow \begin{cases} \text{ each } x_i(t) \text{ fluctuates around } \bar{x}(t) \\ \text{ deviation from average: } \tilde{x}_i(t) := x_i(t) - \bar{x}(t) \end{cases}$

Variance of the deviation from average

$$\lim_{t \to \infty} \sum \mathcal{E}\left(\tilde{x}_i^2(t)\right) = \sum_{n \neq 1} \frac{1}{2\lambda_n(L)}$$

- AS NETWORK SIZE GROWS
 - ***** spectrum clusters towards stability boundary
 - **A**SYMPTOTICS OF VARIANCES
 - ***** determined by accumulation of e-values around zero

SCALING DEPENDS ON NETWORK'S TOPOLOGY

asymptotic scaling for regular lattices:

Spatial dimension	0-0-0-0-0			d-dimensional lattice ($d \ge 4$)
Time constant	M^2	M	$M^{2/3}$	$M^{2/d}$
Variance (per node)	M	$\log\left(M\right)$	bounded	bounded

Questions

- CAN WE DO BETTER BY
 - ***** going deeper into the lattice?

***** optimizing edge weights?

$$\dot{x}_i(t) = -\sum_{j \in \mathcal{N}_i} K_{ij} \left(x_i(t) - x_j(t) \right) + d_i(t)$$

- ROLES OF
 - ***** node dynamics
 - ***** spatial dimension

Cooperative control of formations

• Coherence: similarity between large formation and solid object

1D:

et Jr.S. A. Scott, / www.nhpa.co.uk

snow geese formation

herd migration

fish schools

An example: Vehicular strings

AUTOMATED CONTROL OF EACH VEHICLE tight spacing at highway speeds

KEY ISSUES (also in: control of swarms, flocks, formation flight)

- ★ Is it enough to only look at neighbors?
- ★ How does performance scale with size?
- ★ Fundamental limitations?

FUNDAMENTALLY DIFFICULT PROBLEM

★ scales poorly with size

Problem formulation in 1d

• OPEN-LOOP DYNAMICS

$$\begin{bmatrix} \ddot{p}_1 \\ \vdots \\ \ddot{p}_N \end{bmatrix} = \begin{bmatrix} u_1 \\ \vdots \\ u_N \end{bmatrix} + \begin{bmatrix} d_1 \\ \vdots \\ d_N \end{bmatrix}$$

• STATE-FEEDBACK CONTROLLER

$$u(t) = -K_p p(t) - K_v v(t)$$

• CLOSED-LOOP SYSTEM

$$\begin{bmatrix} \dot{p} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} 0 & I \\ -K_p & -K_v \end{bmatrix} \begin{bmatrix} p \\ v \end{bmatrix} + \begin{bmatrix} 0 \\ I \end{bmatrix} d$$

***** e.g., use a simple strategy:

Incoherence phenomenon

trajectories of every other vehicle:

\bullet Small-scale behavior $\,\approx\,$ well-regulated

***** no collisions

zoomed in trajectories:

time

Poor design or fundamental limitation?

Optimal centralized design

***** not immune to some of these issues!

minimize
$$\int_0^\infty \sum_n \left(\left(p_n(t) - p_{n-1}(t) \right)^2 + v_n^2(t) + u_n^2(t) \right) dt$$

- ORIGINAL FORMULATIONS
 - ★ Levine & Athans, IEEE TAC '66
 - * Melzer & Kuo, Automatica '71
- **R**EVISITED

* Jovanović & Bamieh, IEEE TAC '05

Closed-loop spectrum with K_{opt}

• FOR LARGE FORMATIONS

***** e-values accumulate towards imaginary axis

PROBLEMATIC MODES

- ***** slow temporal scale
- ***** long spatial wavelength

Spatially invariant lattices

• EXPLICIT RESULTS FOR

* d-dimensional torus \mathbb{Z}_N^d with $M = N^d$ vehicles

- STRUCTURAL FEATURES
- ***** spatially-localized feedback
- ***** mirror symmetry in feedback gains

relative vs absolute measurements:

$$u_n(t) = -K_p^-(p_n(t) - p_{n-1}(t)) - K_p^+(p_n(t) - p_{n+1}(t))$$

- $K_v^-(v_n(t) - v_{n-1}(t)) - K_v^+(v_n(t) - v_{n+1}(t))$
- $K_p^0 p_n(t) - K_v^0 v_n(t)$

Performance measures

Microscopic: local position deviation

$$V_{\text{micro}} := \lim_{t \to \infty} \mathcal{E}\left(\sum_{n} \left(p_n(t) - p_{n-1}(t)\right)^2\right)$$

Macroscopic: deviation from average

$$V_{\text{macro}} := \lim_{t \to \infty} \mathcal{E}\left(\sum_{n} \left(p_n(t) - \bar{p}(t)\right)^2\right)$$

Performance in 1D

asymptotic scaling (per vehicle):

Feedback type	Microscopic performance	Macroscopic performance
absolute position absolute velocity	bounded	bounded
relative position absolute velocity	bounded	M
relative position relative velocity	M	M^3

large coherent formations: impossible in 1D!

Role of dimensionality: variance per vehicle

- Lower bounds for any spatially-invariant stabilizing local feedback with:
 - \star bounded control effort at each vehicle: $\mathcal{E}\left(u_n^2\right) \leq U_{\max}$

Feedback type	Microscopic performance	Macroscopic performance
absolute position	1	1
absolute velocity	$\overline{U_{\max}}$	$\overline{U_{ ext{max}}}$
relative position absolute velocity	$rac{1}{U_{ ext{max}}}$	$\frac{1}{U_{\max}} \begin{cases} M & d = 1\\ \log(M) & d = 2\\ 1 & d \ge 3 \end{cases}$
relative position relative velocity	$\frac{1}{U_{\max}^2} \begin{cases} M & d = 1\\ \log\left(M\right) & d = 2\\ 1 & d \ge 3 \end{cases}$	$\frac{1}{U_{\max}^2} \begin{cases} M^3 & d = 1\\ M & d = 2\\ M^{1/3} & d = 3\\ \log(M) & d = 4\\ 1 & d \ge 5 \end{cases}$

asymptotic scaling:

Bamieh, Jovanović, Mitra, Patterson, IEEE Trans. Automat. Control '12

Connections

- SIMILAR SCALING TRENDS OBSERVED IN
 - ***** distributed estimation from relative measurements
 - ★ effective resistance in electrical networks
 - ★ global mean first-passage time of random walks
 - \star statistical mechanics of harmonic solids
 - ★ Wiener index of a molecule

• RESISTIVE NETWORK ANALOGY

Net resistance = $O(\log(M))$

Net resistance is *bounded*!

I		
\downarrow		\downarrow
local feedback	VS	network coherence
	↓ local feedback	↓ local feedback vs

WITH SHORT RANGE INTERACTIONS	(impossible in 1D and 2D
LONG RANGE ORDER IS:	achievable in 3D

★ a *d*-dimensional lattice of masses and springs

DESIGN OF NETWORKS

Sparsity-promoting optimal control

$$\star \gamma > 0$$
 – performance vs sparsity tradeoff

 $\star W_{ij} \geq 0$ – weights (for additional flexibility)

Lin, Fardad, Jovanović, IEEE TAC '13 (also: arXiv:1111.6188)

Design of undirected networks

dynamics: $\dot{x} = d + u$

objective function: $J := \lim_{t \to \infty} \mathcal{E} \left(x^T(t) Q x(t) + u^T(t) R u(t) \right)$

performance weights: $Q \succeq 0, R \succ 0$

can be formulated as an SDP:

minimize trace
$$(X + RK) + \gamma \mathbb{1}^T Y \mathbb{1}$$

subject to $\begin{bmatrix} X & Q^{1/2} \\ Q^{1/2} & K + \mathbb{1}\mathbb{1}^T/N \end{bmatrix} \succeq 0$
 $-Y \leq W \circ K \leq Y$
 $K\mathbb{1} = 0$

• SPARSITY-PROMOTING CONSENSUS ALGORITHM

local performance graph:

$$Q := Q_{\text{loc}} + \left(I - \frac{1}{N}\mathbb{1}\mathbb{1}^T\right)$$

identified communication graph:

 $\frac{J - J_{\rm c}}{J_{\rm c}} \approx 11\%$

Structured distributed control

• Blue layer: distributed plant and its interaction links

memoryless structured controller

KEY CHALLENGE:

identification of a signal exchange network

performance vs sparsity

Parameterized family of feedback gains

ALGORITHM: alternating direction method of multipliers

Boyd et al., Foundations and Trends in Machine Learning '11

DYNAMICS AND CONTROL OF FLUIDS

- Objective
 - ***** controlling the onset of turbulence
- Transition initiated by
 - ★ high flow sensitivity
- Control strategy
 - ★ reduce flow sensitivity

Jovanović & Bamieh, J. Fluid Mech. '05 Moarref & Jovanović, J. Fluid Mech. '10 Lieu, Moarref, Jovanović, J. Fluid Mech. '10 Moarref & Jovanović, J. Fluid Mech. '12

Transition to turbulence

- LINEAR STABILITY
 - $\star Re \geq Re_c \Rightarrow exp. growing normal modes$

corresponding e-functions

(Tollmien-Schlichting waves)

exp. growing flow structures

- EXPERIMENTAL ONSET OF TURBULENCE
 - ★ much before instability
 - \star no sharp value for Re_c

streamwise streaks

streamwise direction

Matsubara & Alfredsson, J. Fluid Mech. '01

Bypass transition

- Triggered by high flow sensitivity
 - ★ large transient responses
 - ★ large noise amplification
 - ★ small stability margins

TO COUNTER THIS SENSITIVITY: must account for modeling imperfections

Farrell, Ioannou, Trefethen, Henningson, Schmid, Kim, Bewley, Bamieh, etc.

Tools for quantifying sensitivity

• INPUT-OUTPUT ANALYSIS: spatio-temporal frequency responses

IMPLICATIONS FOR:

transition: insight into mechanisms

control: control-oriented modeling

Response to stochastic forcing

white in t and y
harmonic in x and z
$$\right\} \Rightarrow \mathbf{d}(x, y, z, t) = \hat{\mathbf{d}}(k_x, y, k_z, t) e^{\mathbf{i}k_x x} e^{\mathbf{i}k_z z}$$

- LYAPUNOV EQUATION
 - \star propagates white correlation of $\hat{\mathbf{d}}$ into colored statistics of $\hat{\mathbf{v}}$

$$\mathbf{A}(\boldsymbol{\kappa}) \, \mathbf{X}(\boldsymbol{\kappa}) \; + \; \mathbf{X}(\boldsymbol{\kappa}) \, \mathbf{A}^*(\boldsymbol{\kappa}) \; = \; - \mathbf{I}$$

*** variance amplification**

$$E(\boldsymbol{\kappa}) := \lim_{t \to \infty} \int_{-1}^{1} \mathcal{E}\left(\hat{\mathbf{v}}^{*}(\boldsymbol{\kappa}, y, t) \,\hat{\mathbf{v}}(\boldsymbol{\kappa}, y, t)\right) dy$$
$$= \operatorname{trace}\left(\mathbf{X}(\boldsymbol{\kappa})\right)$$

 $\boldsymbol{\kappa} := (k_x, k_z)$

Variance amplification

 Dominance of streamwise elongated structures streamwise streaks!

Jovanović & Bamieh, J. Fluid Mech. '05

Amplification mechanism

STREAMWISE-CONSTANT MODEL

$$\begin{bmatrix} \psi_{1t} \\ \psi_{2t} \end{bmatrix} = \begin{bmatrix} A_{os} & 0 \\ Re A_{cp} & A_{sq} \end{bmatrix} \begin{bmatrix} \psi_{1} \\ \psi_{2} \end{bmatrix} + \begin{bmatrix} 0 & B_{2} & B_{3} \\ B_{1} & 0 & 0 \end{bmatrix} \begin{bmatrix} d_{1} \\ d_{2} \\ d_{3} \end{bmatrix}$$
$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} 0 & C_{u} \\ C_{v} & 0 \\ C_{w} & 0 \end{bmatrix} \begin{bmatrix} \psi_{1} \\ \psi_{2} \end{bmatrix}$$

E-VALUES: misleading measure of E-VALUES: misleading measure of stability margins

• HIGHEST AMPLIFICATION: $(d_2, d_3) \rightarrow u$

 \star dynamics of normal vorticity ψ_2

$$\psi_{2t} = \Delta \psi_2 + \operatorname{Re} A_{cp} \psi_1 \qquad A_{cp} = -(ik_z) U'(y)$$

 \downarrow

spanwise
variations
background
shear

Jovanović & Bamieh, J. Fluid Mech. '05

FLOW CONTROL

Sensor-free flow control

Geometry modifications	Wall oscillations	Body forces
riblets super-hydrophobic surfaces	transverse oscillations	oscillatory forces traveling waves

COMMON THEME: PDEs with spatially or temporally periodic coefficients

Blowing and suction along the walls

Min, Kang, Speyer, Kim, J. Fluid Mech. '06 Hœpffner & Fukagata, J. Fluid Mech. '09

• NOMINAL VELOCITY

***** small amplitude blowing/suction

 $\alpha \ll 1 \Rightarrow$ weakly-nonlinear analysis

 $U(\bar{x}, y) = U_{0}(\bar{y}) + \alpha^{2} U_{20}(\bar{y}) + \alpha (U_{1c}(y) \cos(\omega_{x}\bar{x}) + U_{1s}(y) \sin(\omega_{x}\bar{x})) + \alpha^{2} (U_{2c}(y) \cos(2\omega_{x}\bar{x}) + U_{2s}(y) \sin(2\omega_{x}\bar{x})) + O(\alpha^{3})$

- DESIRED EFFECTS OF CONTROL
 - ★ net efficiency >>
 - ★ fluctuations' energy _

7550 $c = -2, \omega_x = 0.5$ $25 \mid c = 5, \omega_x = 2$ 0 -25 benefit \leftarrow -50 -75 0.02 0.04 0.06 0.08 0.1() wave amplitude

RELATIVE TO: uncontrolled turbulent flow net efficiency %

44

Nonlinear simulations: avoidance/promotion of turbulence

Lieu, Moarref, Jovanović, J. Fluid Mech. '10

Frequency representation of controlled flow

Odeh & Keller '64, J. Math. Phys.

Evolution model

 \star parameterized by spatial wavenumbers $\kappa := (\theta, k_z)$

$$\tilde{\boldsymbol{\psi}}_t(\boldsymbol{\kappa}, y, t) = \left[\mathcal{A}(\boldsymbol{\kappa}) \, \tilde{\boldsymbol{\psi}}(\boldsymbol{\kappa}, \cdot, t) \right] (y) + \tilde{\mathbf{d}}(\boldsymbol{\kappa}, y, t)$$

bi-infinite

(periodicity in \bar{x}) operator-valued (in y) • Simulation-free approach to determining energy density

***** Lyapunov equation

$$\mathcal{A}(\boldsymbol{\kappa}) \,\mathcal{X}(\boldsymbol{\kappa}) \,+\, \mathcal{X}(\boldsymbol{\kappa}) \,\mathcal{A}^*(\boldsymbol{\kappa}) \,=\, -\,\mathcal{I}$$
$$E\left(\boldsymbol{\kappa}\right) \,=\, \mathrm{trace}\left(\mathcal{X}(\boldsymbol{\kappa})\right)$$

***** effect of small wave amplitude

 $\frac{\text{energy density with control}}{\text{energy density w/o control}} = 1 + \underbrace{\alpha^2}_{\text{small}} g_2(\kappa; Re; \omega_x, c) + O(\alpha^4)$

\star computationally efficient way for determining g_2

Moarref & Jovanović, J. Fluid Mech. '10

Variance amplification: controlled flow with Re = 2000

explicit formula:

upstream

$$(c = -2, \omega_x = 0.5)$$

downstream

$$(c = 5, \omega_x = 2)$$

Summary

• CONTROLLING THE ONSET OF TURBULENCE

facts revealed by perturbation analysis:

DOWNSTREAM WAVES: reduce variance amplification ✓ UPSTREAM WAVES: promote variance amplification

• POWERFUL SIMULATION-FREE APPROACH TO PREDICTING FULL-SCALE RESULTS

***** verification in simulations of nonlinear flow dynamics

Moarref & Jovanović, J. Fluid Mech. '10

Lieu, Moarref, Jovanović, J. Fluid Mech. '10

SUMMARY AND OUTLOOK

Summary: Early stages of transition

STABILITY	AMPLIFICATION
$oldsymbol{\psi}_t=\mathbf{A}oldsymbol{\psi}$	$\mathbf{v} = \mathbf{H} \mathbf{d}$
e-values of \mathbf{A}	singular values of H

- CHALLENGES
 - *** Complex fluids**
 - *** Complex geometries**
 - ***** Later stages of transition
 - ***** Control-oriented modeling of turbulent flows

• COMPLEX FLUIDS

***** dynamics of viscoelastic fluids

- * Lieu, Jovanović, Kumar, J. Fluid Mech. '13
- * Jovanović & Kumar, JNNFM '11
- * Jovanović & Kumar, Phys. Fluids '10
- * Hoda, Jovanović, Kumar, J. Fluid Mech. '08, '09

- COMPLEX GEOMETRIES
 - ***** iterative schemes for computing singular values
- LATER STAGES OF TRANSITION
 - ***** interplay between flow sensitivity and nonlinearity

- CONTROL-ORIENTED MODELING OF TURBULENT FLOWS
 - *** reproduce** turbulent statistics by shaping forcing statistics

Outlook: Feedback flow control

technology: shear-stress sensors; surface-deformation actuators
application: turbulence suppression; skin-friction drag reduction
challenge: distributed controller design for complex flow dynamics

Outlook: Model-based sensor-free flow control

Geometry modifications	Wall oscillations	Body forces
riblets super-hydrophobic surfaces	transverse oscillations	oscillatory forces traveling waves

- USE DEVELOPED THEORY TO DESIGN GEOMETRIES AND WAVEFORMS FOR
 * control of transition/skin-friction drag reduction
- CHALLENGE

Outlook: Network design

- SPARSITY-PROMOTING OPTIMAL CONTROL
 - ★ Performance vs sparsity tradeoff

Lin, Fardad, Jovanović, IEEE TAC '13 (also: arXiv:1111.6188)

★ Software

www.umn.edu/~mihailo/software/lqrsp/

- ONGOING EFFORT
 - Leader selection in large dynamic networks
 Lin, Fardad, Jovanović, IEEE TAC '13 (conditionally accepted; arXiv:1302.0450)
 - Optimal synchronization of sparse oscillator networks
 Fardad, Lin, Jovanović, IEEE TAC '13 (submitted; arXiv:1302.0449)
 - ★ Optimal dissemination of information in social networks

Fardad, Zhang, Lin, Jovanović, CDC '12

★ Wide-area control of power networks

Dörfler, Jovanović, Chertkov, Bullo, ACC '13

Outlook: Performance of large-scale networks

• OPEN QUESTION: fundamental limitations for networks with

formations with a leader

spatially-varying nearest-neighbor feedback

improved scaling trends in 1D! $O\left(\sqrt{M}\right)$ vs $O\left(M\right)$

Lin, Fardad, Jovanović, IEEE TAC '12

VEHICULAR STRINGS

- * need global interactions to address coherence
- ★ even then, convergence of Merge & Split Maneuvers scales poorly with size

Jovanović, Fowler, Bamieh, D'Andrea, Syst. Control Lett. '08