Stochastic Dynamical Modeling: Structured Matrix Completion of Partially Available Statistics

Mihailo Jovanović

www.umn.edu/~mihailo

joint work with

Armin Zare

Yongxin Chen

Tryphon Georgiou

IMA Workshop on Optimization and Parsimonious Modeling

Motivating application: flow control

technology: shear-stress sensors; surface-deformation actuatorsapplication: turbulence suppression; skin-friction drag reductionchallenge: distributed controller design for complex flow dynamics

Control-oriented modeling

Control-oriented modeling

• OBJECTIVE

- * combine physics-based with data-driven modeling
- * account for statistical signatures of dynamical systems using stochastically-forced linear models

• PROPOSED APPROACH

 $\star\,$ view second-order statistics as data for an inverse problem

- KEY QUESTIONS
 - * Can we identify input statistics to reproduce available statistics?
 - * Can this be done by white in-time stochastic process?

• PROPOSED APPROACH

 $\star\,$ view second-order statistics as data for an inverse problem

- KEY QUESTIONS
 - * Can we identify input statistics to reproduce available statistics?
 - * Can this be done by white in-time stochastic process?

OUR CONTRIBUTION

principled way of embedding statistics in control-oriented models

Response to stochastic inputs

LYAPUNOV EQUATION

 \star propagates white correlation of d into colored statistics of x

$$A X + X A^* = -B W B^*$$

Response to stochastic inputs

LYAPUNOV EQUATION

 \star propagates white correlation of d into colored statistics of x

$$A X + X A^* = -B W B^*$$

 \star colored-in-time d

$$AX + XA^* = -(BH^* + HB^*)$$

white input: H = (1/2) B W

Georgiou, IEEE TAC '02

・ロト ・同ト ・モト ・モト

5/32

Lyapunov equation

discrete-time dynamics: $x_{t+1} = A x_t + B d_t$ white-in-time input: $\mathbf{E} (d_t d_{\tau}^*) = W \delta_{t-\tau}$

LYAPUNOV EQUATION

$$\begin{aligned} X_{t+1} &:= \mathbf{E} \left(x_{t+1} \, x_{t+1}^* \right) \\ &= \mathbf{E} \left(\left(A \, x_t \, + \, B \, d_t \right) \left(x_t^* A^* \, + \, d_t^* B^* \right) \right) \\ &= A \, \mathbf{E} \left(x_t \, x_t^* \right) A^* \, + \, B \, \mathbf{E} \left(d_t \, d_t^* \right) B^* \\ &= A \, \mathbf{X}_t \, A^* \, + \, B \, W B^* \end{aligned}$$

★ continuous-time version

$$\frac{\mathrm{d} X_t}{\mathrm{d} t} = A X_t + X_t A^* + B W B^*$$

Outline

- STRUCTURED COVARIANCE COMPLETION PROBLEM
 - * embed available statistical features in control-oriented models
 - * complete unavailable data (via convex optimization)
- Algorithm
 - * Alternating Minimization Algorithm (AMA)
 - * works as proximal gradient on the dual problem
- CASE STUDY
 - \star turbulent channel flow
 - * verification in linear stochastic simulations
- SUMMARY AND OUTLOOK

Problem setup

known elements of X

PROBLEM DATA

- \star system matrix A
- \star partially available entries of X

UNKNOWNS

- \star missing entries of X
- \star disturbance dynamics Z

input matrix **B**

input power spectrum H

An example

• RESPONSE OF A BOUNDARY LAYER TO FREE-STREAM TURBULENCE

An example

• RESPONSE OF A BOUNDARY LAYER TO FREE-STREAM TURBULENCE

$$AX + XA^* = -\underbrace{(BH^* + HB^*)}_Z$$

number of input channels: limited by the rank of Z

Chen, Jovanović, Georgiou, IEEE CDC '13

Inverse problem

• CONVEX OPTIMIZATION PROBLEM

$$\begin{array}{ll} \underset{X,Z}{\text{minimize}} & -\log \det \left(X \right) \ + \ \gamma \, \| Z \|_{*} \\ \text{subject to} & A \, X \ + \ X \, A^{*} \ + \ Z \ = \ 0 & \text{physics} \\ & X_{ij} \ = \ G_{ij} & \text{for given } i,j & \text{available data} \end{array}$$

Inverse problem

CONVEX OPTIMIZATION PROBLEM

$$\begin{array}{ll} \underset{X,Z}{\text{minimize}} & -\log \det \left(X \right) \, + \, \gamma \, \| Z \|_{*} \\ \text{subject to} & A \, X \, + \, X \, A^{*} \, + \, Z \, = \, 0 & \text{physics} \\ & X_{ij} \, = \, G_{ij} & \text{for given } i, j & \text{available data} \end{array}$$

* nuclear norm: proxy for rank minimization

$$||Z||_* := \sum \sigma_i(Z)$$

Fazel, Boyd, Hindi, Recht, Parrilo, Candès, Chandrasekaran, ...

Primal and dual problems

• PRIMAL

$$\begin{array}{ll} \underset{X,Z}{\text{minimize}} & -\log \det \left(X \right) \, + \, \gamma \, \| Z \|_{*} \\ \text{subject to} & \mathcal{A} \, X \, + \, \mathcal{B} \, Z \, - \, \mathcal{C} \, = \, 0 \end{array}$$

Primal and dual problems

 $\begin{array}{ll} \underset{X,Z}{\text{minimize}} & -\log \det \left(X \right) \ + \ \gamma \, \| Z \|_{*} \\ \text{subject to} & \mathcal{A} \, X \ + \ \mathcal{B} \, Z \ - \ \mathcal{C} \ = \ 0 \end{array}$

• PRIMAL

$$\begin{array}{ll} \underset{Y_1, Y_2}{\text{maximize}} & \log \det \left(\mathcal{A}^{\dagger} Y \right) \; - \; \langle G, Y_2 \rangle \\ \text{subject to} & \| Y_1 \|_2 \; \leq \; \gamma \end{array}$$

$$\mathcal{A}^{\dagger} - ext{adjoint of } \mathcal{A}; \quad Y := egin{bmatrix} Y_1 \ Y_2 \end{bmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

SDP characterization

$$Z = Z_+ - Z_-, \quad Z_+ \succeq 0, \quad Z_- \succeq 0$$

 $\begin{array}{rl} \underset{X, Z_{+}, Z_{-}}{\text{minimize}} & -\log \det \left(X \right) \ + \ \gamma \operatorname{trace} \left(Z_{+} \ + \ Z_{-} \right) \\ \text{subject to} & \mathcal{A} X \ + \ \mathcal{B} Z \ - \ \mathcal{C} \ = \ 0 \\ & Z_{+} \ \succeq \ 0, \quad Z_{-} \ \succeq \ 0 \end{array}$

Customized algorithms

• ALTERNATING DIRECTION METHOD OF MULTIPLIERS (ADMM)

Boyd et al., Found. Trends Mach. Learn. '11

• ALTERNATING MINIMIZATION ALGORITHM (AMA)

Tseng, SIAM J. Control Optim. '91

Augmented Lagrangian

 $\mathcal{L}_{\rho}(X,Z;Y) = -\log \det (X) + \gamma ||Z||_{*} + \langle Y, \mathcal{A}X + \mathcal{B}Z - \mathcal{C} \rangle$ $+ \frac{\rho}{2} ||\mathcal{A}X + \mathcal{B}Z - \mathcal{C}||_{F}^{2}$

Augmented Lagrangian

 $\mathcal{L}_{\rho}(X,Z;Y) = -\log \det (X) + \gamma ||Z||_{*} + \langle Y, \mathcal{A}X + \mathcal{B}Z - \mathcal{C} \rangle$ $+ \frac{\rho}{2} ||\mathcal{A}X + \mathcal{B}Z - \mathcal{C}||_{F}^{2}$

- METHOD OF MULTIPLIERS
 - \star minimizes \mathcal{L}_{ρ} jointly over X and Z

$$(X^{k+1}, Z^{k+1}) := \operatorname{argmin}_{X, Z} \mathcal{L}_{\rho}(X, Z; Y^{k})$$

$$Y^{k+1} := Y^{k} + \rho \left(\mathcal{A} X^{k+1} + \mathcal{B} Z^{k+1} - \mathcal{C} \right)$$

14/32

ADMM vs AMA

• ADMM

$$X^{k+1} := \underset{X}{\operatorname{argmin}} \mathcal{L}_{\rho}(X, Z^{k}; Y^{k})$$
$$Z^{k+1} := \underset{Z}{\operatorname{argmin}} \mathcal{L}_{\rho}(X^{k+1}, Z; Y^{k})$$
$$Y^{k+1} := Y^{k} + \rho \left(\mathcal{A} X^{k+1} + \mathcal{B} Z^{k+1} - \mathcal{C}\right)$$

ADMM vs AMA

• ADMM

$$X^{k+1} := \operatorname{argmin}_{X} \mathcal{L}_{\rho}(X, Z^{k}; Y^{k})$$
$$Z^{k+1} := \operatorname{argmin}_{Z} \mathcal{L}_{\rho}(X^{k+1}, Z; Y^{k})$$
$$Y^{k+1} := Y^{k} + \rho \left(\mathcal{A} X^{k+1} + \mathcal{B} Z^{k+1} - \mathcal{C}\right)$$

• AMA

$$\begin{aligned} X^{k+1} &:= \underset{X}{\operatorname{argmin}} \ \mathcal{L}_{0}(X, Z^{k}; Y^{k}) \\ Z^{k+1} &:= \underset{Z}{\operatorname{argmin}} \ \mathcal{L}_{\rho}(X^{k+1}, Z; Y^{k}) \\ Y^{k+1} &:= Y^{k} + \rho_{k} \left(\mathcal{A} X^{k+1} + \mathcal{B} Z^{k+1} - \mathcal{C} \right) \end{aligned}$$

Z-update

 $\begin{array}{rcl} \underset{Z}{\text{minimize}} & \gamma \|Z\|_* \ + \ \frac{\rho}{2} \|Z \ - \ V^k\|_F^2 \\ V^k & \coloneqq & -\left(\mathcal{A}_1 X^{k+1} \ + \ (1/\rho) \, Y_1^k\right) \\ & = & U \, \Sigma \, U^* \qquad \qquad \text{svd} \end{array}$

Z-update

$$Z^{k+1} = U \mathcal{S}_{\gamma/\rho}(\Sigma) U^*$$

X-update in AMA

$$\underset{X}{\text{minimize}} - \log \det \left(X \right) + \left\langle Y^k, \mathcal{A} X \right\rangle$$

explicit solution: $X^{k+1} = (\mathcal{A}^{\dagger} Y^k)^{-1}$

 \mathcal{A}^{\dagger} – adjoint of \mathcal{A}

complexity: $O(n^3)$

X-update in ADMM

$$\underset{X}{\text{minimize}} - \log \det \left(X \right) + \frac{\rho}{2} \| \mathcal{A} X - U^k \|_F^2$$

optimality condition: $-X^{-1} + \rho \mathcal{A}^{\dagger} (\mathcal{A} X - U^k) = 0$

challenge: non-unitary Asolution: proximal gradient algorithm

• PROXIMAL ALGORITHM

$$\star \,\,$$
 linearize $rac{
ho}{2} \, \| \mathcal{A} \, X \, - \, U^k \|_F^2$ around X_i

$$\star$$
 add proximal term $rac{\mu}{2} \|X - X_i\|_F^2$

optimality condition:

$$\mu X - X^{-1} = (\mu I - \rho \mathcal{A}^{\dagger} \mathcal{A}) X_{i} + \rho \mathcal{A}^{\dagger} (U^{k})$$
$$= V \Lambda V^{*}$$

PROXIMAL ALGORITHM

$$\star \,\,$$
 linearize $rac{
ho}{2} \, \| \mathcal{A} X \, - \, U^k \|_F^2$ around X_i

 \star add proximal term $\frac{\mu}{2} \|X - X_i\|_F^2$

optimality condition:

$$\mu X - X^{-1} = (\mu I - \rho \mathcal{A}^{\dagger} \mathcal{A}) X_i + \rho \mathcal{A}^{\dagger} (U^k)$$
$$= V \Lambda V^*$$

explicit solution: $X_{i+1} = V \operatorname{diag}(g) V^*$

$$g_j = \frac{\lambda_j}{2\mu} + \sqrt{\left(\frac{\lambda_j}{2\mu}\right)^2 + \frac{1}{\mu}}$$

complexity per iteration: $O(n^3)$

19/32

Y-update in AMA

$$Y_1^{k+1} = \operatorname{sat}_{\gamma} \left(Y_1^k + \rho_k \mathcal{A}_1 X^{k+1} \right) \longrightarrow ||Y_1||_2 \leq \gamma$$

$$Y_2^{k+1} = Y_2^k + \rho_k \left(\mathcal{A}_2 X^{k+1} - G \right)$$

Y-update in AMA

$$Y_1^{k+1} = \operatorname{sat}_{\gamma} \left(Y_1^k + \rho_k \mathcal{A}_1 X^{k+1} \right) \longrightarrow ||Y_1||_2 \leq \gamma$$

$$Y_2^{k+1} = Y_2^k + \rho_k \left(\mathcal{A}_2 X^{k+1} - G \right)$$

saturation operator

$$\operatorname{sat}_{\gamma}(M) = M - \mathcal{S}_{\gamma}(M)$$

Properties of AMA

- COVARIANCE COMPLETION VIA AMA
 - * proximal gradient on the dual problem
 - $\star\,$ sub-linear convergence with constant step-size

Properties of AMA

- COVARIANCE COMPLETION VIA AMA
 - * proximal gradient on the dual problem
 - * sub-linear convergence with constant step-size

STEP-SIZE SELECTION

- * Barzilla-Borwein initialization followed by backtracking
- \star positive definiteness of X^{k+1}
- * sufficient dual ascent

Dalal & Rajaratnam, arXiv:1405.3034

Zare, Chen, Jovanović, Georgiou, arXiv:1412.3399

Filter design

* white-in-time input

$$\mathbf{E}(w(t_1) w^*(t_2)) = \Omega \,\delta(t_1 - t_2)$$

* filter dynamics

$$A_f = A + BC_f$$

$$C_f = \left(H^* - \frac{1}{2}\Omega B^*\right)X^{-1}$$

22/32

• LINEAR SYSTEM WITH FILTER

$$\begin{bmatrix} \dot{x} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} A & BC_f \\ 0 & A + BC_f \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} + \begin{bmatrix} B \\ B \end{bmatrix} w$$
$$y = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix}$$

• LINEAR SYSTEM WITH FILTER

$$\begin{bmatrix} \dot{x} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} A & BC_f \\ 0 & A + BC_f \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} + \begin{bmatrix} B \\ B \end{bmatrix} w$$
$$y = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix}$$

* coordinate transformation

$$\left[\begin{array}{c} x\\q \end{array}\right] = \left[\begin{array}{cc} I & 0\\-I & I \end{array}\right] \left[\begin{array}{c} x\\z \end{array}\right]$$

* reduced-order representation

$$\begin{bmatrix} \dot{x} \\ \dot{q} \end{bmatrix} = \begin{bmatrix} A + BC_f & BC_f \\ 0 & A \end{bmatrix} \begin{bmatrix} x \\ q \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} w$$
$$y = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x \\ q \end{bmatrix}$$

23/32

Low-rank modification

colored input: $\dot{x} = Ax + Bd$

Low-rank modification

low-rank modification: $\dot{x} = (A + BC_f)x + Bw$

APPLICATION TO FLUIDS

please see Armin's poster for additional info

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Turbulent channel flow

output covariance:

$$\begin{split} \Phi(\mathbf{k}) &:= \lim_{t \to \infty} \mathbf{E} \left(\mathbf{v}(t, \mathbf{k}) \, \mathbf{v}^*(t, \mathbf{k}) \right) \\ \mathbf{v} &= [u \ v \ w]^T \end{split}$$

 \mathbf{k} - horizontal wavenumbers

known elements of $\Phi(\mathbf{k})$

$$A = \begin{bmatrix} A_{11} & 0 \\ A_{12} & A_{22} \end{bmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

KEY OBSERVATION

* white-in-time input: too restrictive

 $\lambda_i \left(A X_{\rm ns} + X_{\rm ns} A^* \right)$

Jovanović & Georgiou, APS DFD '10

One-point correlations

28/32

Importance of physics

• COVARIANCE COMPLETION PROBLEM

$$\begin{array}{ll} \underset{X,Z}{\text{minimize}} & -\log \det \left(X \right) \ + \ \gamma \left\| Z \right\|_{*} \\ \text{subject to} & AX \ + \ XA^{*} \ + \ Z \ = \ 0 & \text{physics} \\ & (CXC^{*})_{ij} \ = \ G_{ij} & \text{for given } i,j & \text{available data} \end{array}$$

Two-point correlations

nonlinear simulations

covariance completion

30/32

Challenges

THEORETICAL

- $\star\,$ conditions for exact recovery
- ⋆ convergence rate of AMA with BB step-size initialization

• Algorithmic

* alternative rank approximations

(e.g., iterative re-weighting, matrix factorization)

* improving scalability

• APPLICATION

- ★ development of turbulence closure models
- ★ design of flow estimators/controllers

Summary

- CUSTOMIZED ALGORITHMS FOR COVARIANCE COMPLETION
 - * ADMM vs AMA
 - $\star\,$ AMA works as a proximal gradient on the dual problem
- THEORETICAL AND ALGORITHMIC DEVELOPMENTS
 - * Chen, Jovanović, Georgiou, IEEE CDC '13
 - * Zare, Chen, Jovanović, Georgiou, arXiv:1412.3399
- APPLICATION TO TURBULENT FLOWS
 - * Zare, Jovanović, Georgiou, ACC '14
 - * Zare, Jovanović, Georgiou, 2014 Summer Program, CTR Stanford

