Sparsity-Promoting Optimal Control of Distributed Systems

www.umn.edu/~mihailo

joint work with: Makan Fardad Fu Lin

UNIVERSITY OF MINNESOTA

LIDS Seminar, MIT; Nov 6, 2012

Large dynamic networks

• OF INCREASING IMPORTANCE IN MODERN TECHNOLOGY

APPLICATIONS:

wind farms	micro-cantilevers	aircraft formations satellite constellations

- INTERACTIONS CAUSE COMPLEX BEHAVIOR
 - ***** cannot be predicted by analyzing isolated subsystems
- SPECIAL STRUCTURE
 - ***** every subsystem has sensors and actuators

Structured distributed control

• Blue layer: distributed plant and its interaction links

memoryless structured controller

KEY CHALLENGE:

identification of a signal exchange network

performance vs. sparsity

Example: Mass-spring system

• Objective: design $\begin{bmatrix} F_p & F_v \end{bmatrix}$ to minimize steady-state variance of p, v, u

OPTIMAL CONTROLLER – LINEAR QUADRATIC REGULATOR

Structure of optimal controller

position feedback matrix:

position gains for middle mass:

OBSERVATIONS

- ★ Diagonals almost constant (modulo edges)
- ★ Off-diagonal decay of a centralized gain

Bamieh, Paganini, Dahleh, IEEE TAC '02

Motee & Jadbabaie, IEEE TAC '08

Structure of optimal controller

position feedback matrix:

position gains for middle mass:

• Observations

- ★ Diagonals almost constant (modulo edges)
- ★ Off-diagonal decay of a centralized gain

Bamieh, Paganini, Dahleh, IEEE TAC '02

Motee & Jadbabaie, IEEE TAC '08

Enforcing localization?

• One approach: truncating centralized controller

- Possible dangers
 - ***** Performance degradation
 - ★ Instability

Outline

- **1** SPARSITY-PROMOTING OPTIMAL CONTROL
 - ★ Design of sparse and block sparse feedback gains
 - ***** Tools from control theory, optimization, and compressive sensing

- **2** Algorithm
 - ***** Alternating direction method of multipliers

S EXAMPLES

SPARSITY-PROMOTING OPTIMAL CONTROL

State-feedback H_2 problem

$$\dot{x} = Ax + B_1 d + B_2 u$$

$$z = \begin{bmatrix} Q^{1/2} \\ 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ R^{1/2} \end{bmatrix} u$$

$$u = -Fx$$

• Closed-loop H_2 Norm

$$J(F) = \operatorname{trace}\left(\int_0^\infty e^{(A-B_2F)^T t} \left(Q + F^T RF\right) e^{(A-B_2F)t} dt B_1 B_1^T\right)$$

***** no structural constraints

globally optimal controller:

$$A^T P + P A - P B_2 R^{-1} B_2^T P + Q = 0$$

 $F_c = R^{-1} B_2^T P$

Sparsity-promoting H_2 **problem**

 $\star \operatorname{\mathbf{card}}(F)$ – number of non-zero elements of F

$$F = \begin{bmatrix} 5.1 & -2.3 & 0 & 1.5 \\ 0 & 3.2 & 1.6 & 0 \\ 0 & -4.3 & 1.8 & 5.2 \end{bmatrix} \Rightarrow \operatorname{card}(F) = 8$$

 $\star \gamma > 0$ – performance vs. sparsity tradeoff

Lin, Fardad, Jovanović, IEEE TAC '12 (submitted; arXiv:1111.6188v2)

Convex relaxations of card(F)

Separable. Sum of element-wise function

• Cardinality vs. weighted ℓ_1 norm

$$\{W_{ij} = 1/|F_{ij}|, F_{ij} \neq 0\} \Rightarrow \operatorname{card}(F) = \sum_{i,j} W_{ij} |F_{ij}|$$

RE-WEIGHTED SCHEME

***** Use feedback gains from previous iteration to form weights

$$W_{ij}^+ = \frac{1}{|F_{ij}| + \varepsilon}$$

Candès, Wakin, Boyd, J. Fourier Anal. Appl. '08

A non-convex relaxation of card(F)

Candès, Wakin, Boyd, J. Fourier Anal. Appl. '08

Sparsity-promoting penalty functions

A CLASS OF CONVEX PROBLEMS

Consensus by distributed computation

- RELATIVE INFORMATION EXCHANGE WITH NEIGHBORS
 - ***** simple distributed averaging algorithm

$$\dot{x}_i(t) = -\sum_{j \in \mathcal{N}_i} \left(x_i(t) - x_j(t) \right)$$

connected network \Rightarrow convergence to the average value

Consensus with stochastic disturbances

$$\dot{x}_i(t) = -\sum_{j \in \mathcal{N}_i} \left(x_i(t) - x_j(t) \right) + d_i(t)$$

• Average mode:

 $\bar{x}(t) = \frac{1}{N} \sum_{i=1}^{N} x_i(t)$: undergoes random walk

If other modes are stable, $x_i(t)$ fluctuates around $\bar{x}(t)$

deviation from average: $\tilde{x}_i(t) = x_i(t) - \bar{x}(t)$ steady-state variance: $\lim_{t \to \infty} \mathcal{E}\left(\tilde{x}^T(t)\,\tilde{x}(t)\right)$

Design of undirected networks of single integrators

Convex optimization problem

minimize trace $\left(Q^{1/2} \left(F + \mathbb{1}\mathbb{1}^T/N\right)^{-1} Q^{1/2} + RF\right) + \gamma \|W \circ F\|_{\ell_1}$ subject to $F \mathbb{1} = 0$ $F + \mathbb{1}\mathbb{1}^T/N \succ 0$

can be formulated as SDP:

minimize	trace $(X + RF) + \gamma \mathbb{1}^T Y \mathbb{1}$
subject to	$\begin{bmatrix} X & Q^{1/2} \\ Q^{1/2} & F + \mathbb{1}\mathbb{1}^T/N \end{bmatrix} \succeq 0$
	$-Y \leq W \circ F \leq Y$
	$F\mathbb{1} = 0$

Sparsity-promoting consensus algorithm

• UNDIRECTED NETWORK WITH STOCHASTIC DISTURBANCES

local performance graph:

identified communication graph:

card (F) /card (F_c) = 7% (J - J_c) /J_c = 14%

Parameterized family of feedback gains

 $F(\gamma) := \arg\min_{F} \left(J(F) + \gamma g(F) \right)$

Alternating direction method of multipliers

minimize $J(F) + \gamma g(F)$

• Step 1: introduce additional variable/constraint

minimize $J(F) + \gamma g(G)$ subject to F - G = 0

benefit: decouples J and g

• Step 2: introduce augmented Lagrangian

$$\mathcal{L}_{\rho}(F,G,\Lambda) = J(F) + \gamma g(G) + \operatorname{trace}\left(\Lambda^{T}(F-G)\right) + \frac{\rho}{2} \|F-G\|_{F}^{2}$$

Step 3: use ADMM for augmented Lagrangian minimization

$$\mathcal{L}_{\rho}(F,G,\Lambda) = J(F) + \gamma g(G) + \operatorname{trace}\left(\Lambda^{T}(F-G)\right) + \frac{\rho}{2} \|F-G\|_{F}^{2}$$

ADMM:

$$F^{k+1} := \operatorname{arg\,min}_{F} \mathcal{L}_{\rho}(F, G^{k}, \Lambda^{k})$$
$$G^{k+1} := \operatorname{arg\,min}_{G} \mathcal{L}_{\rho}(F^{k+1}, G, \Lambda^{k})$$
$$\Lambda^{k+1} := \Lambda^{k} + \rho \left(F^{k+1} - G^{k+1}\right)$$

MANY MODERN APPLICATIONS

- ★ distributed computing
- ★ distributed signal processing
- ★ image denoising
- ★ machine learning

Eckstein & Bertsekas, '92; Boyd et al., '11

Step 4: Polishing – back to structured optimal design

* ADMM { identifies sparsity patterns provides good initial condition for structured design

* NECESSARY CONDITIONS FOR OPTIMALITY OF THE STRUCTURED PROBLEM

$$(A - B_2 \mathbf{F})^T \mathbf{P} + \mathbf{P} (A - B_2 \mathbf{F}) = -(Q + \mathbf{F}^T R \mathbf{F})$$
$$(A - B_2 \mathbf{F}) \mathbf{L} + \mathbf{L} (A - B_2 \mathbf{F})^T = -B_1 B_1^T$$
$$[(R \mathbf{F} - B_2^T \mathbf{P}) \mathbf{L}] \circ I_{\mathcal{S}} = 0$$

Newton's method + conjugate gradient

 $I_{\mathcal{S}}$ - structural identity

www.umn.edu/~mihailo/software/lqrsp/

Mass-spring system

• Performance comparison: sparse vs. centralized

Formation of vehicles

*** Each vehicle: relative information exchange**

$$u_i = -\sum_{j \neq i} F_{ij} (x_i - x_j), \quad i \in \{2, \dots, N-1\}$$

*** Leaders:** equipped with GPS devices

$$u_{1} = -\sum_{j \neq 1} F_{1j} \left(x_{1} - x_{j} \right) - F_{11} x_{1}$$

$$u_N = -\sum_{j \neq N} F_{Nj} \left(x_N - x_j \right) - F_{NN} x_N$$

IDENTIFIED COMMUNICATION ARCHITECTURES:

Network with 100 nodes

 $\alpha(i, j)$: Euclidean distance between nodes *i* and *j*

Motee & Jadbabaie, IEEE TAC '08

• Performance comparison: sparse vs. centralized

communication graph of a truncated centralized gain:

card(F) = 7380 (36.9%)

non-stabilizing

Extension: Block sparsity

• $card_{b}(F)$ – number of non-zero blocks of F

$$\operatorname{card}_{\mathrm{b}}(F) = \sum_{i,j} \operatorname{card}(\|F_{ij}\|_F)$$

• PENALTY FUNCTIONS THAT PROMOTE BLOCK SPARSITY

 \star generalized ℓ_1 , weighted ℓ_1 , sum-of-logs

An example from biochemical reactions

• CYCLIC INTERCONNECTION STRUCTURE

$$\dot{x}_i = [A]_{ii} x_i + [B_1]_{ii} d_i + [B_2]_{ii} u_i$$

$$[A]_{ii} = \begin{bmatrix} -1 & 0 & -3 \\ 3 & -1 & 0 \\ 0 & 3 & -1 \end{bmatrix}, \quad [B_1]_{ii} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad [B_2]_{ii} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

• NONSYMMETRIC BIDIRECTIONAL COUPLING

$$\dot{x}_i = [A]_{ii} x_i - \sum_{j=1}^N (i-j) (x_i - x_j) + [B_1]_{ii} d_i + [B_2]_{ii} u_i$$

Block sparse vs. sparse

block sparse design:

sparse design:

small difference in performance:

ALGORITHM: DETAILS

Separability of *G***-minimization problem**

$$\underset{G}{\mathsf{minimize}} \quad \gamma \, g(G) \, + \, \frac{\rho}{2} \, \|G - V\|_F^2$$

$$V := F^{k+1} + (1/\rho)\Lambda^k$$

weighted
$$\ell_1$$
: minimize $\sum_{i,j} \left(\gamma W_{ij} |G_{ij}| + \frac{\rho}{2} (G_{ij} - V_{ij})^2 \right)$
sum-of-logs: minimize $\sum_{i,j} \left(\gamma \log \left(1 + \frac{|G_{ij}|}{\varepsilon} \right) + \frac{\rho}{2} (G_{ij} - V_{ij})^2 \right)$
cardinality: minimize $\sum_{i,j} \left(\gamma \operatorname{card} (G_{ij}) + \frac{\rho}{2} (G_{ij} - V_{ij})^2 \right)$
separability \Rightarrow element-wise analytical solution

Solution to *G***-minimization problem**

sum-of-logs (with $\rho = 100$, $\varepsilon = 0.1$):

Solution to *F***-minimization problem**

$$\begin{array}{ll} \mbox{minimize} & J(F) \,+\, \frac{\rho}{2} \,\|F-U\|_F^2 \\ \\ U \,:=\, G^k \,-\, (1/\rho)\Lambda^k \end{array}$$

NECESSARY CONDITIONS FOR OPTIMALITY:

$$(A - B_2 F)L + L(A - B_2 F)^T = -B_1 B_1^T$$

$$(A - B_2 F)^T P + P(A - B_2 F) = -(Q + F^T R F)$$

$$FL + \rho(2R)^{-1}F = R^{-1} B_2^T PL + \rho(2R)^{-1} U$$

ITERATIVE SCHEME

Given F_0 solve for $\{L_1, P_1\} \rightarrow F_1 \rightarrow \{L_2, P_2\} \rightarrow F_2 \cdots$ descent direction + line search \Rightarrow convergence

Summary and outlook

- SPARSITY-PROMOTING OPTIMAL CONTROL
 - ★ Performance vs. sparsity tradeoff

Lin, Fardad, Jovanović, IEEE TAC '12 (submitted; arXiv:1111.6188v2)

- Related work
 - ★ Leader selection in large dynamic networks

Lin, Fardad, Jovanović, IEEE TAC '12 (submitted)

★ Optimal synchronization of sparse oscillator networks

Fardad, Lin, Jovanović, ACC '12

* Optimal dissemination of information in social networks

Fardad, Zhang, Lin, Jovanović, CDC '12 (to appear)

★ Wide-area control of power systems

Dörfler, Jovanović, Chertkov, Bullo, ACC '13 (submitted)

• SOFTWARE

* www.umn.edu/~mihailo/software/lqrsp/

>> solpath = lqrsp(A, B1, B2, Q, R, options);

• ONGOING RESEARCH

- ★ Design of sparse optimal estimators
- ★ Observer-based sparse optimal design
- ★ Identification of sparse dynamics
- ★ Finite horizon problems
- WISH LIST
 - ★ Performance bounds on structured feedback design
 - ★ Distributed implementation of ADMM
 - ★ Identification of convex problems

Acknowledgments

Makan Fardad (Syracuse University)

Fu Lin (U of M)

SUPPORT:

NSF CAREER Award CMMI-06-44793

NSF Award CMMI-09-27720

DISCUSSIONS:

Stephen Boyd

Roland Glowinski

TEAM: