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Large dynamic networks

• OF INCREASING IMPORTANCE IN MODERN TECHNOLOGY

APPLICATIONS:

wind farms micro-cantilevers
aircraft formations
satellite constellations

• INTERACTIONS CAUSE COMPLEX BEHAVIOR

? cannot be predicted by analyzing isolated subsystems

• SPECIAL STRUCTURE

? every subsystem has sensors and actuators
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Structured distributed control
• Blue layer: distributed plant and its interaction links

memoryless structured controller

KEY CHALLENGE:

identification of a signal exchange network

performance vs. sparsity
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Example: Mass-spring system

MEMORYLESS CONTROLLER: u(t) = −
[
Fp Fv

] [ p(t)

v(t)

]

• Objective: design
[
Fp Fv

]
to minimize steady-state variance of p, v, u

OPTIMAL CONTROLLER – LINEAR QUADRATIC REGULATOR
u1(t)

u2(t)

u3(t)

u4(t)

 = −


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


︸ ︷︷ ︸

Fp


p1(t)

p2(t)

p3(t)

p4(t)

 −

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


︸ ︷︷ ︸

Fv


v1(t)

v2(t)

v3(t)

v4(t)
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Structure of optimal controller

position feedback matrix: position gains for middle mass:

• OBSERVATIONS

? Diagonals almost constant (modulo edges)

? Off-diagonal decay of a centralized gain

Bamieh, Paganini, Dahleh, IEEE TAC ’02

Motee & Jadbabaie, IEEE TAC ’08
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Enforcing localization?
• One approach: truncating centralized controller

• POSSIBLE DANGERS

? Performance degradation

? Instability
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Outline

¶ SPARSITY-PROMOTING OPTIMAL CONTROL

? Design of sparse and block sparse feedback gains

? Tools from control theory, optimization, and compressive sensing

· ALGORITHM

? Alternating direction method of multipliers

¸ EXAMPLES

¹ SUMMARY AND OUTLOOK
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SPARSITY-PROMOTING OPTIMAL CONTROL
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State-feedback H2 problem

ẋ = Ax + B1 d + B2 u

z =

[
Q1/2

0

]
x +

[
0

R1/2

]
u

u = −F x

• CLOSED-LOOP H2 NORM

J(F ) = trace

(∫ ∞
0

e(A−B2F )T t
(
Q + FTRF

)
e(A−B2F )t dtB1B

T
1

)

? no structural constraints

globally optimal controller:

ATP + P A − P B2R
−1BT2 P + Q = 0

Fc = R−1BT2 P
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Sparsity-promoting H2 problem

minimize J(F ) + γ card (F )

←
−

←
−

variance
amplification

sparsity-promoting
penalty function

? card (F ) – number of non-zero elements of F

F =

 5.1 −2.3 0 1.5
0 3.2 1.6 0
0 −4.3 1.8 5.2

 ⇒ card (F ) = 8

? γ > 0 – performance vs. sparsity tradeoff

Lin, Fardad, Jovanović, IEEE TAC ’12 (submitted; arXiv:1111.6188v2)

http://arxiv.org/abs/1111.6188
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Convex relaxations of card (F )

`1 norm:
∑
i, j

|Fij|

weighted `1 norm:
∑
i, j

Wij |Fij|, Wij ≥ 0

separable: sum of element-wise functions

• CARDINALITY VS. WEIGHTED `1 NORM

{Wij = 1/|Fij|, Fij 6= 0} ⇒ card (F ) =
∑
i, j

Wij |Fij|

RE-WEIGHTED SCHEME

? Use feedback gains from previous iteration to form weights

W+
ij =

1

|Fij| + ε

Candès, Wakin, Boyd, J. Fourier Anal. Appl. ’08
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A non-convex relaxation of card (F )

sum-of-logs:
∑
i,j

log

(
1 +

|Fij|
ε

)
, 0 < ε � 1

Candès, Wakin, Boyd, J. Fourier Anal. Appl. ’08
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Sparsity-promoting penalty functions

original problem:

minimize card (F )

subject to J(F ) ≤ σ
⇒

relaxation:

minimize g(F )

subject to J(F ) ≤ σ

`1 weighted `1 sum-of-logs
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A CLASS OF CONVEX PROBLEMS
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Consensus by distributed computation

is strongly connected (SC) if there is a directed path

connecting any two arbitrary nodes s; t of the graph.6

Lemma 2: (spectral localization) Let G be a strongly

connected digraph on n nodes. Then rankðLÞ ¼ n	 1 and

all nontrivial eigenvalues of L have positive real parts.

Furthermore, suppose G has c � 1 strongly connected

components, then rankðLÞ ¼ n	 c.
Proof: The proof of the rank property for digraphs is

given in [10]. The proof for undirected graphs is available

in the algebraic graph theory literature [23]. The positivity

of the real parts of the eigenvalues follow from the fact that

all eigenvalues are located in a Gershgorin disk in the

closed right-hand plane that touches the imaginary axis at

zero. The second part follows from the first part after

relabeling the nodes of the digraph so that its Laplacian
becomes a block diagonal matrix. h

Remark 1: Lemma 2 holds under a weaker condition of

existence of a directed spanning tree for G. G has a directed

spanning tree if there exists a node r (a root) such that all
other nodes can be linked to r via a directed path. This type

of condition on existence of directed spanning trees have

appeared in [13]–[15]. The root node is commonly known

as a leader [13].

The essential results regarding convergence and deci-

sion value of Laplacian-based consensus algorithms for

directed networks with a fixed topology are summarized in

the following theorem. Before stating this theorem, we
need to define an important class of digraphs that appear

frequently throughout this section.

Definition 1: (balanced digraphs [10]) A digraph G is

called balanced if
P

j6¼i aij ¼
P

j6¼i aji for all i 2 V.

In a balanced digraph, the total weight of edges

entering a node and leaving the same node are equal for all

nodes. The most important property of balanced digraphs
is that w ¼ 1 is also a left eigenvector of their Laplacian

(or 1TL ¼ 0).

Theorem 1: Consider a network of n agents with topol-

ogy G applying the following consensus algorithm:

_xiðtÞ ¼
X
j2Ni

aij xjðtÞ 	 xiðtÞ
� �

; xð0Þ ¼ z: (14)

Suppose G is a strongly connected digraph. Let L be the

Laplacian of G with a left eigenvector � ¼ ð�1; . . . ; �nÞ
satisfying �TL ¼ 0. Then

i) a consensus is asymptotically reached for all

initial states;

ii) the algorithm solves the f -consensus problem with

the linear function fðzÞ ¼ ð�TzÞ=ð�T1Þ, i.e., the

group decision is � ¼
P

i wizi with
P

i wi ¼ 1;

iii) if the digraph is balanced, an average-consensus is

asymptotically reached and � ¼ ð
P

i xið0ÞÞ=n.
Proof: The convergence of the consensus algorithm

follows from Lemma 2. To show part ii), note that the

collective dynamics of the network is _x ¼ 	Lx. This means

that y ¼ �Tx is an invariant quantity due to _y ¼ 	�TLx ¼
0; 8 x. Thus, limt!1 yðtÞ ¼ yð0Þ, or �Tð�1Þ ¼ �Txð0Þ that

implies the group decision is � ¼ ð�TzÞ=
P

i �i. Setting

wi ¼ �i=
P

i �i, we get � ¼ wTz. Part iii) follows as a special

case of the statement in part ii) because for a balanced
digraph � ¼ 1 and wi ¼ 1=n; 8i. h

Remark 2: In [10], it is shown that a necessary and suf-
ficient condition for L to have a left eigenvector of � ¼ 1 is

that G must be a balanced digraph.

A challenging problem is to analyze convergence of a

consensus algorithm for a dynamic network with a switching
topology GðtÞ that is time-varying. Various aspects of this
problem has been addressed by several groups during the

recent years [10], [13]–[15] and will be discussed in detail.

6The notion of strong connectivity applies to directed graphs (or
digraphs). For undirected graphs SC is the same as connectivity.

Fig. 2. Examples of networks with n ¼ 20 nodes: (a) a regular network

with 80 links and (b) a random network with 45 links.

Olfati-Saber et al. : Consensus and Cooperation in Networked Multi-Agent Systems

Vol. 95, No. 1, January 2007 | Proceedings of the IEEE 221

• RELATIVE INFORMATION EXCHANGE WITH NEIGHBORS

? simple distributed averaging algorithm

ẋi(t) = −
∑
j ∈Ni

(
xi(t) − xj(t)

)

connected network ⇒ convergence to the average value
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Consensus with stochastic disturbances

ẋi(t) = −
∑
j ∈Ni

(
xi(t) − xj(t)

)
+ di(t)

• Average mode: x̄(t) =
1

N

N∑
i=1

xi(t) : undergoes random walk

If other modes are stable, xi(t) fluctuates around x̄(t)

deviation from average: x̃i(t) = xi(t) − x̄(t)

steady-state variance: lim
t→∞

E
(
x̃T (t) x̃(t)

)
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Design of undirected networks of single integrators

• Convex optimization problem

minimize trace
(
Q1/2 (F + 11T/N)−1Q1/2 + RF

)
+ γ ‖W ◦ F‖`1

subject to F 1 = 0

F + 11T/N � 0

can be formulated as SDP:

minimize trace (X + RF ) + γ 1T Y 1

subject to

[
X Q1/2

Q1/2 F + 11T/N

]
� 0

−Y ≤ W ◦ F ≤ Y

F 1 = 0
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Sparsity-promoting consensus algorithm

• UNDIRECTED NETWORK WITH STOCHASTIC DISTURBANCES

local performance graph: identified communication graph:

z =


Q

1/2
loc x(

I − 1
N 11T

)
x

u

 card (F ) /card (Fc) = 7%

(J − Jc) /Jc = 14%
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Parameterized family of feedback gains

F (γ) := arg min
F

(J(F ) + γ g(F ))
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Alternating direction method of multipliers

minimize J(F ) + γ g(F )

• Step 1: introduce additional variable/constraint

minimize J(F ) + γ g(G)

subject to F − G = 0

benefit: decouples J and g

• Step 2: introduce augmented Lagrangian

Lρ(F,G,Λ) = J(F ) + γ g(G) + trace
(
ΛT (F − G)

)
+

ρ

2
‖F − G‖2F
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• Step 3: use ADMM for augmented Lagrangian minimization

Lρ(F,G,Λ) = J(F ) + γ g(G) + trace
(
ΛT (F −G)

)
+
ρ

2
‖F −G‖2F

ADMM:

F k+1 := arg min
F

Lρ(F ,Gk,Λk)

Gk+1 := arg min
G

Lρ(F k+1, G,Λk)

Λk+1 := Λk + ρ (F k+1 − Gk+1)

MANY MODERN APPLICATIONS

? distributed computing

? distributed signal processing

? image denoising

? machine learning

Eckstein & Bertsekas, ’92; Boyd et al., ’11
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• Step 4: Polishing – back to structured optimal design

? ADMM

{
identifies sparsity patterns

provides good initial condition for structured design

? NECESSARY CONDITIONS FOR OPTIMALITY OF THE STRUCTURED PROBLEM

(A − B2F )TP + P (A − B2F ) = −
(
Q + FTRF

)
(A − B2F )L + L (A − B2F )T = −B1B

T
1[(

RF − BT2 P
)
L
]
◦ IS = 0

Newton’s method + conjugate gradient

IS - structural identity

F =


∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗

 ⇒ IS =


1 1
1 1 1

1 1 1
1 1
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EXAMPLES

www.umn.edu/∼mihailo/software/lqrsp/

http://www.ece.umn.edu/users/mihailo/software/lqrsp/
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Mass-spring system

diag (Fv):

γ = 10−4 γ = 0.03 γ = 0.1
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• Performance comparison: sparse vs. centralized

(J − Jc) /Jc:

γ

card (F ) /card (Fc) (J − Jc) /Jc

10% 0.75%
6% 2.4%
2% 7.8%
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Formation of vehicles

? Each vehicle: relative information exchange

ui = −
∑
j 6= i

Fij (xi − xj) , i ∈ {2, . . . , N − 1}

? Leaders: equipped with GPS devices

u1 = −
∑
j 6=1

F1j (x1 − xj) − F11 x1

uN = −
∑
j 6=N

FNj (xN − xj) − FNN xN
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IDENTIFIED COMMUNICATION ARCHITECTURES:

γ = 0 γ = 0.01 γ = 0.05

all-to-all
nearest neighbors

+
leaders-to-all

nearest neighbors
+

leaders-to-some
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Network with 100 nodes

[
ṗi
v̇i

]
=

[
1 1

1 2

] [
pi
vi

]
︸ ︷︷ ︸

unstable
dynamics

+
∑
j 6= i

e−α(i,j)
[
pj
vj

]
︸ ︷︷ ︸

coupling

+

[
0

1

]
(di + ui)

α(i, j): Euclidean distance between nodes i and j

Motee & Jadbabaie, IEEE TAC ’08
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• Performance comparison: sparse vs. centralized

(J − Jc) /Jc: (J − Jc) /Jc:

γ card (F ) /card (Fc)
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identified communication graph:

γ = 5

card (F ) /card (Fc) = 8.8%

(J − Jc) /Jc = 24.6%
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identified communication graph:

γ = 11

card (F ) /card (Fc) = 5.1%

(J − Jc) /Jc = 40.9%



D
ra

ft

32

identified communication graph:

γ = 18

card (F ) /card (Fc) = 3.4%

(J − Jc) /Jc = 48.7%
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identified communication graph:

γ = 30

card (F ) /card (Fc) = 2.4%

(J − Jc) /Jc = 54.8%
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communication graph of a truncated centralized gain:

card (F ) = 7380 (36.9%)

non-stabilizing
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Extension: Block sparsity

• cardb (F ) – number of non-zero blocks of F

cardb (F ) =
∑
i,j

card (‖Fij‖F )

• PENALTY FUNCTIONS THAT PROMOTE BLOCK SPARSITY

? generalized `1, weighted `1, sum-of-logs
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An example from biochemical reactions

• CYCLIC INTERCONNECTION STRUCTURE

M. JOVANOVIĆ, U OF M 2

Cyclic biochemical networks with inhibitory feedback
CELLULAR SIGNALING
Kholodenko ’00; Shvartsman et al. ’01

Cyclic Biochemical Networks with Inhibitory Feedback

Gene Regulation:  Jacob & Monod (‘61), Goodwin (‘65), Elowitz & Leibler (2000)

:  DNA          :  mRNA         :  enzyme         :  endproduct

Cellular Signaling:  Kholodenko (2000), Shvartsman et al. (2001), and others

Kinase

M3
P

Phosphatase

M3
M2

Phosphatase

M2
M1

Phosphatase

M1P
P

Metabolic Pathways:  Morales and McKay (‘67), Stephanopoulos       et al. (‘98)

GENE REGULATION
Jacob & Monod ’61; Goodwin ’65; Elowitz & Leibler ’00

Cyclic Biochemical Networks with Inhibitory Feedback

Gene Regulation:  Jacob & Monod (‘61), Goodwin (‘65), Elowitz & Leibler (2000)

:  DNA          :  mRNA         :  enzyme         :  endproduct

Cellular Signaling:  Kholodenko (2000), Shvartsman et al. (2001), and others

Kinase

M3
P

Phosphatase

M3
M2

Phosphatase

M2
M1

Phosphatase

M1P
P

Metabolic Pathways:  Morales and McKay (‘67), Stephanopoulos       et al. (‘98)METABOLIC PATHWAYS
Morales & McKay ’67; Stephanopoulos et al. ’98

ẋi = [A]ii xi + [B1]ii di + [B2]ii ui

[A]ii =

 −1 0 −3
3 −1 0
0 3 −1

 , [B1]ii =

 1 0 0
0 1 0
0 0 1

 , [B2]ii =

 1
0
0
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• NONSYMMETRIC BIDIRECTIONAL COUPLING

ẋi = [A]ii xi −
N∑
j=1

(i− j) (xi − xj) + [B1]ii di + [B2]ii ui
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Block sparse vs. sparse

block sparse design:

sparse design:

small difference in performance:
Jbs − Js
Js

< 1%
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ALGORITHM: DETAILS
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Separability of G-minimization problem

minimize
G

γ g(G) +
ρ

2
‖G− V ‖2F

V := F k+1 + (1/ρ)Λk

weighted `1: minimize
Gij

∑
i, j

(
γ Wij |Gij| +

ρ

2
(Gij − Vij)

2
)

sum-of-logs: minimize
Gij

∑
i, j

(
γ log

(
1 +

|Gij|
ε

)
+

ρ

2
(Gij − Vij)

2

)

cardinality: minimize
Gij

∑
i, j

(
γ card (Gij) +

ρ

2
(Gij − Vij)

2
)

separability ⇒ element-wise analytical solution
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Solution to G-minimization problem

weighted `1: shrinkage cardinality: truncation

a = (γ/ρ)Wij b =
√

2γ/ρ

sum-of-logs (with ρ = 100, ε = 0.1):

γ = 0.1 γ = 1 γ = 10
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Solution to F -minimization problem

minimize
F

J(F ) +
ρ

2
‖F − U‖2F

U := Gk − (1/ρ)Λk

NECESSARY CONDITIONS FOR OPTIMALITY:

(A − B2F )L + L(A − B2F )T = −B1B
T
1

(A − B2F )TP + P (A − B2F ) = − (Q + FTRF )

FL + ρ(2R)−1F = R−1BT2 PL + ρ(2R)−1U

• ITERATIVE SCHEME

Given F0 solve for {L1, P1} → F1 → {L2, P2} → F2 · · ·
descent direction + line search ⇒ convergence
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Summary and outlook

• SPARSITY-PROMOTING OPTIMAL CONTROL

? Performance vs. sparsity tradeoff
Lin, Fardad, Jovanović, IEEE TAC ’12 (submitted; arXiv:1111.6188v2)

• RELATED WORK

? Leader selection in large dynamic networks
Lin, Fardad, Jovanović, IEEE TAC ’12 (submitted)

? Optimal synchronization of sparse oscillator networks
Fardad, Lin, Jovanović, ACC ’12

? Optimal dissemination of information in social networks
Fardad, Zhang, Lin, Jovanović, CDC ’12 (to appear)

? Wide-area control of power systems
Dörfler, Jovanović, Chertkov, Bullo, ACC ’13 (submitted)

http://arxiv.org/abs/1111.6188
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• SOFTWARE

? www.umn.edu/∼mihailo/software/lqrsp/

>> solpath = lqrsp(A,B1,B2,Q,R,options);

• ONGOING RESEARCH

? Design of sparse optimal estimators

? Observer-based sparse optimal design

? Identification of sparse dynamics

? Finite horizon problems

• WISH LIST

? Performance bounds on structured feedback design

? Distributed implementation of ADMM

? Identification of convex problems

http://www.ece.umn.edu/users/mihailo/software/lqrsp/
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