

Identification of sparse representations of consensus networks

PROBLEM FORMULATION

STOCHASTICALLY FORCED UNDIRECTED NETWORKS

$$y = \begin{bmatrix} (I - (1/n)\mathbb{1}\mathbb{1}^T) \\ -Lx \end{bmatrix} x$$

OBJECTIVE

• Identify **subgraph** that strikes a balance between

OPTIMIZATION PROBLEM

minimize	$J(\hat{L})$	+	$\gamma {f card} (I)$
	\downarrow		\downarrow
	variance amplification		sparsity-pror penalty fun
$\mathbf{card}(\hat{L})$	 number of non-zero elements of \hat{I}		
$\gamma > 0$	 variance amplification vs. sparsity		

APPROACH

CHALLENGES

CONVEX RELAXATION OF CARDINALITY

• Replace card with weighted ℓ_1 norm

minimize
$$J(\hat{L}) + \gamma \sum_{i,j} W_{ij} |\hat{L}_{ij}|$$

Re-weighted algorithm: $W_{ij}^+ := (|\hat{L}_{ij}| + \epsilon)^{-1}$

PERFORMANCE VS. SPARSITY

- Identify a γ -parameterized family of subgraphs

NEIL DHINGRA, FU LIN, MAKAN FARDAD, AND MIHAILO R. JOVANOVIĆ

	Original	Truncation	ADMM
	425	79	79
	3	9	6
th	1.53	3.49	2.88
	0	10.39	4.10
vity	0.307	0.079	0.225