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Why Feedback?

I
u +$+ y
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e Why use feedback?

e Consider the problem described by the block diagram. It depicts a
simplified version of cruise control problem in automobiles. The car transfer
function between the fuel flow u and the speed y is given by a constant 10.
This is the model when the road is flat.
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When the road has a gradient the discrepancy is modelled by adding 0.5d
to the fuel flow (downhill is positive d.)

Typically not much is known about the gradient of the road; thus the fuel
flow has to be designed assuming a flat road. Thus if we want y to track a
given reference r we determine the flow as 0.1r which results in y = r when
no gradient is present.

The speed in the presence of the gradient y is given by

y = 10(0.5d + 0.17) = r + 5d.

Under no disturbance d the open loop controller K = 0.1 yield ideal
tracking.

However, under the disturbance (road gradient) the performance can be
unsatisfactory.
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Why Feedback?

r

e Consider the closed loop configuration shown in the figure.

e In the above setup
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e Itis clear that if K is chosen large then 25 ~ 0 and 50 ~= 1 and thus

YT

making it insensitive to d. For example choose K = 100 then the
contribution of d to y is 2:d which is much smaller than 54 that exists for
the open loop case.

e Note that now even when d = 0, y is not equal to r as was the case with the
open loop design.

e Evaluate the performance of the closed and the open loop when the plant
model by the constant 10 is uncertain.

e Note that to implement the closed loop design one needs to sense the
speed of the car so that it can be fed back. This involves sensors.



PRELIMINARIES

Furthermore the sensors are typically noisy and they do not yield the exact
measurement of the car speed. Note that such effects of sensor noise are

absent from the open loop design.

e Feedback controllers can stabilize unstable plants. However, bad controller
design can lead to unstable closed loop systems even when the plant is
stable.
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Primary Reasons For Feedback Control

e The primary reasons for feedback are

* Model uncertainty
* Signal Uncertainty
* Stabilization
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Single Input Single Output Interconnections:
Stability
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SISO Feedback Interconnection

e + d + €1
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Consider the unity negative feedback interconnection shown in Figure (a).

Definition 1. The interconnection in Figure is said to be well posed if for any
signals r and d there exist unique signals e, and e, that satisfy the
loop-conditions implied by the interconnections.

Note that
d + KGQ
r —Gey

€1

®
V)
|



SISO STABILITY

That is
I —K €1 . d
G I eo )\ r
The following Theorem follows immediately:

Theorem 1. The interconnection is well posed if and only if there exists
some sq such that G(sg) K (sg) + 1 # 0.

Let G(s) = =2 and K (s) = 2% where ny, d, and ng, dx are coprime
g K
polynomial pairs (no common factors).

It is evident that if the interconnection is well posed ( we will assume this
throughout unless mentioned otherwise) then

(2)-(a ) (%)

10
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and thus

(Z>:I+1GK(I—G f)(f)

Definition 2. The interconnection is stable if the map

(+)= (%)

is bounded input bounded output.
The following theorem follows immediately

Theorem 2. The interconnection is stable if and only if

- +g 7 T fé = and - Jfé = have no poles in the right half complex plane.

Theorem 3. The interconnection is stable if and only if the polynomial
dadix + ngng has no zeros in the right half complex plane.

11
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Proof:(«<) Suppose dadx + ngnk has no zeros in the right half complex
plane. Note that

€1 _ 1 dc;dK dGnK d
€9 dadi +neng —dgng dodg r

As the poles of all transfer functions are included in the zeros of the
polynomial dadx + ngn we have that all transfer functions are stable.

(=) Suppose there is a sg with Re(so) > 0 and (deK + nang)(sg) = 0. If the
interconnection is stable then —+, 1+GKdand ey hive all the polis in the

strict left half plane. This implies that o ifaw deKi;;nK and deKi;;ﬂf{
have no poles in the right half plane.

This implies that da(so)dx (sg) = na(so)dx(so) = da(so)nk(sg) = 0 as the
unstable pole at sy has to be cancelled by the respective numerator
polynomials.
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Note that as dg(so)di(sg) = 0 at least one of the terms d¢(sg) or dx (sg) has
to be zero. Lets assume that da(sg) # 0. In this case dx (sg) = 0. We also
have that da(sp)nk(so) = 0. As we have assumed that dg(sg) # 0 we have
nk(so) = 0. Thus we have that di (sg) = nx(sg) = 0 which is a contradiction
as we assumed that nx and dx are coprime polynomials (no common
factors).

Similar conclusion can be reached if one assumes that dx(so) # 0 in which
case ng(sg) = dg(sg) = 0.

In case both dg(sg) = di(sg) = 0 then as ng(so)na(so) + da(so)dk(sg) = 0 it
follows that nx(so)na(so) = 0. This will again lead to the conclusion that either

the plant or the controller representation is not coprime leading to a
contradiction.

This proves the theorem. N

Theorem 4. The interconnection is stable if and only if



SISO STABILITY 14

1. I + L with L = GK has all zeros in the strict left half plane

2. There are no unstable pole-zero cancellations while forming the product
GK = ”G”K That is there no sq in the right half plane with

n(;(S())nK(SQ) = da(so)dx(sg) = 0.

Proof:(=-) Let the interconnection be stable. This implies that ngnx + dgdk

has no zeros in the right half plane. This implies that I + L = “G"6HCGAK has

no zeros in the right half plane and thus (1) is satisfied. Also as
na(so)nk(so) + da(so)di(sg) # 0 for all elements sq in the right half plane it
follows that there can be no unstable pole zero cancellation in forming the
product GK. This establishes (2).

(<) Assume (1) and (2) are satisfied. Then it follows that I + [ = “emsteads
has no zeros in the right half plane. Suppose there exists a s in the right half
plane such that ng(sg)nk(so) + dag(so)dr(so) = 0. Then this unstable pole has

to be cancelled by the numerator i.e. dg(so)dx(so) = 0. This in turn would
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imply nx (so)ng(so) = 0 and an unstable pole-zero cancellation will ensue.
This is a contradiction to (2).

This proves the theorem.

15
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Nyquist Plots

e Consider a transfer function H(s). In the Nyquist plot of H, the imaginary
part of H(jw) is plotted against the real part of H(jw).

Consider the transfer function G(s) = s — a. We will consider two cases

e What happens to the phase of G(s) when s is traversed on a circle in the
clockwise direction that does not contain a.

e What happens to the phase of G(s) when s is traversed on a circle in the
clockwise direction that contain a.
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Argument Principle

%

e In the case when a is is outside the contour (a circle in the figure) then
/H(s) = /(s — a) remains less than 360 deg as s is made to traverse the
circle in the clockwise direction.

e In the case when a is is inside the contour (a circle in the figure) then
/H(s) = /(s —a) is equal to 360 deg as s is made to traverse the circle in
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the clockwise direction starting from s; and returning to s;. As s is made
traverse the circle in the clockwise direction the point G(s) traverses around
the origin in the clockwise direction.

e Similarly the contour of G(s) encircles the origin in the counterclockwise
direction if G(s) has a pole inside the countour that s traverses (note that
/(s —a)=—/().

Ss—a

18
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The Argument Principle: The contour map of a complex function G(s) will
encircle the origin Z — P times in the clockwise direction when the contour
itself is traversed in the clockwise direction where Z and P are the number of
zeros and poles respectively of G(s) that are inside the contour.

19
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Nyquist Plot: Argument Principle used to Determine Stability

d
(reference)
il u > P =£,g>

TK
Ym
4

+ T
(measurement noise)

e The closed loop poles are the zeros of 1 + KG(s). Let the number of RHP
zeros of 1 + KG be Z.

e The poles of L := KG are same as the poles of 1 + KG =1+ L which can
be determined as K and G are known quantities. Let the number of right
hand plane poles of L be P.
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v

Consider a contour that covers the entire RHP (called the Nyquist

contour;shown above).

The map of 1 + L will encircle the origin N = Z — P times where P is a
known quantity.

This implies that L will encircle the origin N = Z — P times.

For stability we need Z = 0.

21
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Theorem 5. The interconnection is stable if and only if

1. The Nyquist plot of L encircles the —1 point in the counter-clockwise
direction N number of times where N is equal to the poles of L. = GK.

2. There are no unstable pole-zero cancellations while forming the product
GK = Zggg . That is there no sq in the right half plane with

naG(so)ni(so) = dg(so)dk(sg) = 0.

22
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Bode Plots

e Bode plot for a given frequency response function H (jw) consists of two
subplots

~ the gain plot where the log,, |H (jw)| is plotted against log,, w for positive
w
~ the phase / H(jw) is plotted against log,, w for positive w.

23
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Bode Plots

e Given a plant that is stable the bode plot can be obtained by following the
following steps

* Give G an input u(t) = Asin(wt) and obtaining the steady state output
y(t). If the system is linear then y(¢) will be a sinusoid of the same
frequency w.

* Let y(t) = y, sin(wt + ¢y).

» QObtain the ratio |%|. This will be the magnitude of the frequency
response G(jw) at frequency w.

*x Set /(G(jw)) = ¢

~ Repeat the steps for various frequencies to obtain G(jw).

Note that Spectrum Analyzers obtains the frequency response by

24
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essentially following the above steps and often provide G(jw) as a complex
number (Example: HP 3565 A).

e If the plant is not stable then first it needs to be stabilized by some
controller. The closed-loop system can now be used in the steps given
above. In steady state all the internal signals in the plant controller
interconnection will be sinusoidal with the same frequency as the frequency
of the sinusoidal input to the closed loop system. The input and the output
sinusoids of the plant G can be employed to determine G(jw).
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Bode plot of s

o y=20logy,|G(jw)| = 20log;, |jw| = 2010g;( |w| = 20z,

o /(G(Jw)) =90 deg.

26
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Bode plot Contd: plot of 1/s

o y =20log,, |G(jw)

o /(G(jw)) = —90 deg.

BODE PLOT OF 1/s

27
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Asymptotes

Bode plot Contd: plot of s + 2

BODE PLOT OF s+2

Gjw)=jw+2 = 2if|lw| <2
Jw if |w| > 2.

28
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Bode plot of 1/(s + 2)

Bode plot for 1/(s+2)

Magnitude (dB)

______________

Phase (deg)

Asymptotes

Frequency (rad/sec)

o
-
&

[

|

L = lif|w[ <2
= j%if|w\>2.
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Bode’s Criterion For Stability

d
(reference) g y
r U > P » >

TK
Ym
+

+ ™
(measurement noise)

Typical Case

e Let K be a positive scalar constant. A typical case is that the closed loop
poles are all in the LHP for small enough K.

e As K is increased at least one of the closed-loop poles migrates into the
RHP . The value of K when atleast one of the poles is on the imaginary
axis is when K is neutrally stable.
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At this value of K = K,
1+ KnG(jwlgo) =0 and

|KnG(jW180)‘ — 1 and Z(KnG<jw180) = Z(G(jwlg()) = —180.
Note that w5 Is determined by G alone.

e Any value of K less than the neutral value leads to a stable closed loop
system.

e This leads to the following conclusions: For all values of K that lead to
stable closed loop maps K < K,, which is true if and only if
[KG(jwiso)| < [KnG(jwiso)| = 1.

e Thus the rule in this case is that K leads to a stable closed loop map if

|KG(jwiso)| < 1 where wig is defined by G(jwisg) = —180.
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Assumption is that |G(jw)| = 1 for a unique value of w.

e Note that G(jw) is the frequency response of the system.

32
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Gain Cross Over Frequency

Definition 3. Gain crossover frequency for the unity feedback configuration
shown is defined to be the frequency w. which satisfies

L(jw) =1

where L .= GK.



SISO STABILITY 34

Phase Cross Over Frequency

Definition 4. Phase crossover frequency for the unity feedback configuration
shown is defined to be the frequency w.sy which satisfies

/ (L(jwlgo)) = —180

where L .= GK.
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Stability Margins

e (Gain Margin) The factor by which the gain can be raised before instability

occurs. This is given by .

L(jw180)
where wqgg is the phase crossover frequency. Clearly the the closed loop
system is unstable if GM < 1. Typically a GM > 2 is desired.

GM = |

e (Phase Margin) The phase that can be added at the gain crossover w,
frequency before instability occurs. That is

PM := /(L(jw.)) + 180

where w. Is the gain crossover frequency. The closed loop system is
unstable if GM is negative.
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Magnitude (dB)

Phase (deg)

Stability Margins On the Nyquist Plot

Bode Diagram
Gm =7.9637 dB (at 0.41248 rad/sec), Pm = 48.448 deg (at 0.20372 rad/sec)

10 L T T

-45

-90

-135

-180

-225

=270
10

Frequency (rad/sec)
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Nyquist Diagram

Imaginary Axis

Real Axis

e Phase and Gain margins for L = —0.12<S+éf1_)?;5120.2> on the Nyquist plot.

Note that P = 0 and thus N has to be zero for stability.

37
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Gain-Phase Relationship For Minimum Phase Systems

Suppose G is a LTl system that is such that G(s) is analytic in the RHP (that is
it is stable) and is minimum phase (that is it has no time delays or RHP zeros).
Then the following identity holds

> dl ' 1
JGtiog = [ TICUN, o] 1,
oo dlnw  lw—wgl|lw
N(w)

Thus the phase for such plants is completely determined by its gain |G(jw)].
Also, any other system which has the same gain as |G(jw)| has at least as
much phase as /G(jw). That is why the system G is termed minimum phase.

e ltis clear that In ‘Zf—gg takes large values near w = wg and thus N(w) can
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be approximated by N (wg). Thus

ZG(]WO) ~ [OO N(WO) In

1 r

w + Wy
W — Wy

e Note that N(w) is the slope of magnitude in the bode plot (that is

N(w) =
log;ow).

dln |G(jw)|

dlnw

and in the bode plot log,, |G(jw)| is plotted against

39
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Single Input Single Output Systems:
Performance Measures

40
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Unity Negative Feedback Configuration

d
(reference)
r Yy
»> > —>

TK “ P
Ym
+

+ T
(measurement noise)

e y,, =y + n where y,, is the measured signal which is typically corrupted by
noise n.

e ¢ =y — r Where ¢ is the error signal. Note that e = y,,, — r as is done in
most treatments. v = y,,, — r IS the input to the controller. The error signal is
the difference between to be what is desired (r) and what the actual output
is (that is y).

e u Is the controller output
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e (F4d is a disturbance (typically has low frequency content).
e (G Is the plant

e K is the controller.

42
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Important Closed Loop Transfer Functions
o y=Gu+Gyd, u=K(r —ym), Yym =y + n.
e Thisimpliesthaty = GK(r — ypm) + Ggd = GKr — GKy — GKn + G4d
o Thus (I + GK)y = GKr — GKn + Gyd.
e Thus the output y is given by

y=UI+GK)"'GKr—(I1+GK)""GKn+ (I+GK)* Gqd.
T T 5

o We have defined two important closed loop transfer functions

Sensitivity transfer function S = (I + GK)~1
Complimentary transfer function T'= (I + GK) " 'GK.

43
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Notethat S+ 7 = (I + GK) ‘(I + GK) = I.
e Note thattheerrore=y —r = (T —I)r — Tn + SG4d Thus

e=—Sr—Tn+ SG4d.

Note that we have shownthat S +7 = 1.

It is worthwhile remembering that

e The sensitivity transfer function S is the map between the reference and the
error. Thus small sensitivity S would imply good tracking.

e Small sensitivity S would imply good disturbance rejection.

e The complimentary transfer function is the map between the noise n and
the error. Thus small complimentary sensitivity 7" would imply good noise
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rejection. Note that the noise n is absent in the open loop designs and thus
closed-loop designs should be careful to minimize the effects of n typically
caused by the sensor (otherwise the closed-loop can yield worse
performance than the open-loop).

Remember: Minimize S for good tracking and good disturbance
rejection, minimize 7" for good noise rejection.

e We have shown that S + 71 = 1. Thus it is clear that it is not possible to
achieve small S and small T" in the same frequency region.

e The reference trajectories to be tracked have low frequency content.

e The noise n effects only in the high bandwidth region (in the low bandwidth
region as the noise is random there is time to average out the effect of
noise).
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e Thus S needs to be low in the low frequency region.
e T needs to be low in the high frequency region.

e Thus a tradeoff can be made between S and T as the objectives on S and
T are in different frequency regions.

46
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Shaping Closed Loop Transfer Functions

Typical Requirements on Sensitivity Transfer Function S.

o Minimum bandwidth frequency w3, defined as the frequency where S(jw)
crosses 0.707 from below.

e S(jw) not to exceed certain prespecified values at given frequencies
w=uw,...,w, (Maximum tracking error requirement at certain

frequencies).

e Sis to have a maximum peak magnitude M (robustness requirement as we
will see later).

Mathematically the requirements can be captured by choosing and
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appropriate upper bound w,(jw) such that

, 1
U= TG ™

The above condition holds if and only if
S (jw)wp(jw)] < 17w
which holds if and only if

sup S (ju)uw,(jw)| < 1.

w

For any function f(s) analytic in the RHP the H., norm is defined as

[l = Sgp\f(jW)l-

48
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Thus the specifications on the sensitivity transfer function S takes the form

lwpS][# < 1.

49
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Weight Selection on S

Suppose the weight needs to capture the following specifications
o [[SllHo < Mp.

o |S(jw)| < my forw < w,,.

Let w,(s) = 222t Then

Stwpmyp

imposes all the needed conditions.

50
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Shaping Closed Loop Transfer Functions

Typical Requirements on Sensitivity Transfer Function S.

o Minimum bandwidth frequency w3, defined as the frequency where S(jw)
crosses 0.707 from below.

e S(jw) not to exceed certain prespecified values at given frequencies
w=uw,...,w, (Maximum tracking error requirement at certain

frequencies).

e S is to have a maximum peak magnitude M (robustness requirement).
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Weight Selection For S

Bode Diagram

Magnitude (dB)

(deg)

Phase

For example with M, = 6, m, = le — 3 and wp = 2827 (wp = 27 f where the
bandwidth is f = 450H z.) we have

s/M,+w, 0.1667s+ 2827
 s4wym, s+ 2.827

Wp

52
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The bode plot of wLp is shown.

93
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Shaping Closed Loop Transfer Functions

Typical Requirements on Complimentary Sensitivity Transfer Function T'. Note
that the weight on 7" should ensure that 7" is small at high frequencies.

o |T(jw)| < 1/Apforallw < wp — Aw
o |T(jw)| < Apforallw > wr + Aw

where typically 1/A4, ~ 1 and thus does not conflict with the sensitivity
weighting, A, is small forcing 7" to be small in the high frequency region. A
typical weighting function has the form

w _S—I—(l/Ag)wT
B Aps + wr .
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The specifications on 1" can be achieved by imposing

1
T(iw)| < : for all w
TN < or Gl

which holds if and only if
JwrT |3, <1

Typical Requirements on K S. The weight on KS'is to restrict the magnitude of
the control signal u = K.S(r — G4d). Thus we need

, 1
IS o

which is satisfied if and only if

95
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Thus the requirements on the closed loop maps translate into the following
conditions

o lwrT||x, <1
o [[w,KS|n, <1

Note that the search of a controller that satisfies the above constraints is not
what the standard H ., software solves. Instead the problem of finding a
controller to satisfy the stacked constraint

WpS
wrT <1
Wy, K S
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Is solved where the H,, norm for a vector valued transfer function f : C — C™
IS defined as

1 f 110 == supT(f(jw)).

w

57
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Generalized Plant: The LFT Framework

W > Z>
P

e w : exogenous variables. This consists of all external signals including the
reference signal.

e 2 :regulated variables. These are the signals which have to be controlled.
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For example the error signal, the control signals.

e v : measured variables. These consist of the inputs to the controller.
Usually the sensor output is fed to the controller.

e u : control variable. This is the output of the controller.

99
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Generalized Plant: Example

60
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d
V 4—1 y
| ' +

r—>+0 K — G |/
- u
Ym
+O
I
P + 1 Z
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r
n
) A
. + +y
G +O———|—.O - (@)
u K - \V/

v
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o w=|[rnd,

o z:y—r:Gu—l—d—r:[—IOIG][Z]

cv=r—yp=r—y—-n=r—Gu—d-n=\I -1 —1 —G][

w
u

|
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-

Generalized Plant: Example Contd.

--------------------------------------------------------------------

- c |—R 1 = Yy
u K - \/

r Z

n 101 G

d I -1 -l -G v

u | -
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Generalized Plant For The Stacked Problem

z z, Z
il T T
A A A
I’—-t yﬁ‘
Vv K Y G
P —Wp —§_>Zl
r W1 Z,
W _._.Zs
G -y 5
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Generalized Plant For The Stacked Problem
e The transfer function between r and z; is WpS.
e The transfer function between r and z, is W T.

e The transfer function between r and z3 is W, K S.

Thus the above setup describes the performance objectives.

The regulated outputs are given by

21 W,(r — Gu)
2=\ 20 | = WrGu :
23 Wuu
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and the generalized plant, P is described by

\ =

W, —-W,G ]
0 WrG
0 W

[ G

=P
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Nanopositioning: A Quick Introduction to H
Control Design
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Case Study: Nanopositioning

slot for LVDT AFM head top plate

sampl holder
l slot for piezostacks base plate

flexure stage

(a) (b)
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Serpentine Stage: Unassembled View

69



CASE STUuDY
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Serpentine Stage: Working Principle

l] |'l LVDT

—

—

sample holder

[—
—|
flexure stage
grooves ‘
frame —

' . I
(84

stack piezo
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Evaluation Stage

-,
!

photo diode

deflection signal

laser diode

sample

=

support

micro-cantilever
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Piezo Actuators

flexure stage

i piezo-stack frame
i > amplifier L *DL

5

10 to oV | x
(@) (b)
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Actuation
System

Block Diagram

AFM Head

1

Flexure
Stage

control

Detection
System

System
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Control Implementation

T1 M44 DSP

to actuation system

P + | !
—»prefiltera?‘» Controll Y pac [

from detection system
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Obtaining a Model

Comparasion of Model and Experimental Data

10+ -

o
T
|

Magnitude (dB)

10° 10" 10° 10°
Frequency in Hz

—-100 -

in Deg

‘o —200

Phase

—-300 -

—400 (o) ‘ ‘ ‘ ‘ — 1 ‘ ‘ ‘ ‘ — 2 ‘ ‘ ‘ ‘ — 3
10 10 10 10
Frequency in Hz

e The frequency response of the plant with the input being the low voltage
signal to the amplifier for the piezo actuators and the output being the LVDT
sensor voltage was obatined. HP 3563 A control system analyzer was
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employed.

e This system analyzer stores a complex number corresponding to each
frequency w. Each complex number H(jw) is the frequency response of the
system at frequency w.

e Matlab routine invfregs can be used to fit a model to the frequency data.

77
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Matlab Code

freq=load('freq.txt’); % defines the frequency vector

mag=load(’'mag1.ixt’); %defines the magnitude in dB (corresponding to the
freq vector)

pha=load('phase1.ixt’);
freqr=freq*2*pi; mag=10.(ma9/20).
phar=unwrap(pha*pi/180);
H=mag.*exp(i*phar);
[num,den]=invireqgs(H,freqr,2,4);
Hfit=freqs(num,den,freqr);

magfit=abs(Hfit);

78
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phafit=unwrap(angle(Hfit))*180/pi;

figure;

subplot(2,1,1)

hold on;

plot(freq,mag,freq,magfit);

title(Comparasion of Model and Experimental Data’);
xlabel(’Frequency in HZ');

ylabel('Magnitude’);

subplot(2,1,2);

hold on;

plot(freq,phar*180/pi,freq,phafit);
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xlabel(’Frequency in HZ');
ylabel('Phase in Deg’);
G=tf(num,den);
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CASE STUuDY

e The transfer function is given by

G(s) =

07030.7242(s2 — 1.44¢004s + 1.06e008)

e The poles and zeros are at

(1.0e + 003)

[ —1.8647 + 4.49584,
—1.8647 — 4.4958¢,
—0.0117 + 1.5206¢,

| —0.0117 — 1.52064

e Presence of right half plane zeros.

Y

(1.0e + 003)

(s2 + 23.43s + 2.312€006) (52 + 37295 + 2.369¢007)

7.1993 + 7.3616¢,
7.1993 — 7.3616¢
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Generalized Plant For The Stacked Problem
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i Z, Z
i T T
Wp Wu WT
A A A
y .
v K 0 G -
P W, _.21
Wr |——2
W, __.Zs
G ~b |
u K= Vv
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CASE STUuDY

e The transfer function between r» and z; is WpS.

e The transfer function between r» and 2, is W T.

e The transfer function between r and z3 is W, K S.

The regulated outputs are given by

[ W,(r — Gu)

WTG’LL
W, u
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and the generalized plant, P is described by

\ =

W, —-W,G ]
0 WrG
0 W

[ G

=P
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Weight Selection
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CASE STUuDY

e The transfer function, W, is chosen such that it has high gains at low
frequencies and low gains at high frequencies. This scaling ensures that
the sensitivity function is small at low frequencies, thus guaranteeing good
tracking at the concerned frequencies. W,, was chosen to be a first order
transfer function,

0.1667s + 2827
Wp=Wils) = — 57

e This transfer function is designed so that its inverse (an upper bound on the
sensitivity function) has a gain of 0.1% at low frequencies (< 1 Hz) and a
gain of ~ 5% around 200 H z.

e The weighting function W, puts a lower bound on the bandwidth of the
closed loop system but does not allow us to specify the roll off of the open
loop system to prevent high frequency noise amplification and to limit the
bandwidth to be below Nyquist frequency.

e Piezoactuators do not have any backlash or friction and therefore have very
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fine resolution. The resolution of the device, therefore, depends on the
experimental environment and it is limited by thermal and electronic noise.

e In any closed loop framework the high resolution of the piezoactuators may
be compromised due the introduction of the sensor noise (in this case the
LVDT) into the system. Clearly this effect is absent in the open loop case.

e Inthe H., paradigm these concerns of sensor noise rejection are reflected
by introducing a weighted measure of the complementary sensitivity
function, T, (which is the transfer function between the noise and the
position y).

e In this case this weight was chosen to be

s+ 235.6
0.01s + 1414

Wr = Wy =
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which has high gains at high frequencies (note that noise is in the high
frequency region).

e There is another interesting interpretation of this weighting function. It
decides the resolution of the device. Resolution is defined as the variance
of the output signal y, when the device is solely driven by the noise n; i.e.,
resolution is equal to the variance of Tn.

o Wy that guarantees lower roll off frequencies gives finer resolution. In this
way, the trade-off between conflicting design requirements of high
bandwidth tracking (characterized by low S, T' ~ 1) and fine resolutions
(characterized by low T') are translated to the design of weighting transfer
functions W,, and Wr.

e The transfer function, K'S was scaled by a constant weighting W,, = 0.1, to
restrict the magnitude of the input signals such that they are within the
saturation limits. This weighting constant gives control signals that are at
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most six times the reference signals.
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Matlab Code Defining the weights wbp=2*pi*450;

Mp=6;mp=1e-3;
mth=1e-2;mtl=1/6;wbt=0.5*wbp;
Mu=1e4;

muv=1/10; red=200;

nump=[1/Mp wbp];denp=[1 wbp*mp];
numt=[1 mtl*wbt];,dent=[mth*1 wbt];
numu=[0 muv];denu=[0 1];
sysWp=tf(hump,denp);
sysWi=tf(numt,dent);

sysWu=tf(numu,denu);
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P=[sysWp -sysWp*G;0 sysWt*G;0 sysWu;1 -CJ;
ssP=minreal(ss(P));

[aP,bP,cP,dP]=ssdata(ssP);

pckP=pck(aP,bP,cP,dP);
gt=1;gmin=0.1;gmax=15;tol=1e-3;epr=1e-12;epp=1e-8;rm=2;
nc=1:nm=1;
[K,cl,gf,ax,ay,hx,hy]=hinfsyn(pckP,nm,nc,gmin,gmax,tol,rm,epr,epp,qt);
[aK,bK,cK,dK]=unpck(K);

ssK=ss(aK,bK,cK,dK);

ttK=tf(ssK);

zpkK=zpk(tfK);
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e The optimal v value returned is 2.416. Note that this implies that

W,S
WrT < 2.416.
W.KS

Hoo

Thus it is not guaranteed that
IWpSlHe < 1, [[WrT |3, <1 and [Wyul#,, < 1.

e The controller transfer function is given by

(s + 1.414e5)(s* + 23.43s + 2.31e6) (s> + 3729s + 2.37e7)

277030168.45 .
(s + 1.15e7)(s + 1.414e5)(s + 5643)(s + 2.827)(s2 + 31355 + 3.66€7)

Another Matlab routine is based on the hinfopt and hinfroutines. The code to
use these functions is



CASE STUuDY

% Assuming that the weights (sysWp, sysWt, sysWu) and the plant transfer
function G are defined as tf objects

ssG=ss(G);
TSS=augtf(ssG,sysWp,sysWu,sysWit);
[gammaopt,ssf,sscl]=hinfopt(TSS);

% gammopt is the optimal gamma value, ssf is the optimal controller (an ss
object) and sscl is the optimal closed loop map (again an ss object)
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e This yields an optimal ~ value of 1/0.4102 = 2.438. Note that the gammaopt
value returned by the hinfopt command is the reciprocal of the gamma
value returned by the hinfsyn command. Also, the optimal controllers as
provided by the hinfsyn and hinfopt commands are not the same. The H
optimal controllers are not unique.

e The results provided are for the controller associated with the x control tool
box (the function hinfsyn).
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Controller and Closed loop Transfer Functions
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controller transfer function
100 ‘ ‘ . . : : ,

(dB)

Phase Magnitude
(deg)
%

i — | | Z

-100

Magnitude
(dB)
N
o
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Hysteresis
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Position am)

30
20
E
3
c
S 0
2
o
_20
-1.5 0 1.5
input (V) Reference (V)
openloop closed loop
max. out. hyst.  max.inp.hyst. oy out. hyst.
1 074um(7.2%) 0.14V (5.8%) 62.3 nm (0.14 %)
2 209 um(9.3%) 0.36V (7.5%) max. inp. hys.:
3 346 um(9.8%) 056V (7.7 %) 2mV (0.07 %)
4 493 um(10.0%) 0.73V (7.6 %)
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Creep

0.2r-
o= 0.84nm
ﬂ |
_o2} with Hs controller
-4

positionr (1 m)
&
2o

4;_ open loop

_14)

167 p(t) = —0.43(1 + 0.55l09(2t))

18, ” p 30 0 50 6

time {sec)
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Imaging: Closed and Open Loop
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Imaging: Closed and open loop
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Reading Assignment
Read the paper

S. Salapaka, A. Sebastian, J. P. Cleveland and M. V. Salapaka, "High
Bandwidth Nano-positioner: A Robust Control Approach”, Review of Scientific
Instruments, Vol. 73, no. 9, pp. 3232-3241.



Fundamental Limitations For Single-input
Single-output Systems
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Definition 5. (Analytic functions, holomorphic functions) Let 1" be a domain
in C and let f be a function defined onI'. Then f is said to be analytic or
holomorphic at sq in C' if %(50) exists. It is analytic or holomorphic in T if it
analytic or holomorphic at all elements of I.

Definition 6. (Entire functions) A function is said to be entire if it is analytic
on C.

Example 1. Rational functions on the complex plane are analytic everywhere
on the the complex plane except at the poles.

Definition 7. (Rectifiable curve, simple curve, closed curve) A set T in the
complex plane C' is a rectifiable curve if there exists a continuously
differentiable function ~ : |a,b] C R — C such thatT" = ~(|a, b]).

A rectifiable curve I is a simple curve if it does not intersect itself. That is the
associated function v is such that v(x) # ~(y) ifx # y for all x,y € (a,b).

A rectifiable curve is closed if v(a) = v(b).
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Definition 8. (Contour) A contourT' is a collection of rectifiable curves I’ ;
such that the final point of I; is the initial point of I';,. Closed and simple

contours are analogously defined as the corresponding definitions for curves.

Definition 9. (Integral) For a function f that is continuous on the domain S
the integral along a rectifiable curve I" C S is defined as

/F f(s)ds = / bfw(x))j—;(x)dx,

The integral over a contour is defined as

where v(|a,b]) =T.

[ s ds—z m DL ()
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whereI'; = v;(|a;,b;]), j =1,...n forms the contourT.

Definition 10. (Positively oriented contour)

Consider a simple, closed contour formed by rectifiable curves
Fj = vj([aj, bj]), ] = ]., R I

Let zy be such that z € |a;,b;] such that%(xo) # 0

If the vector obtained by rotating the tangent vector at xo given by %(xo) by
90 degrees anticlockwise points to the inside of the contour then the closed
simple contour is positively oriented.
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Maximum Modulus Theorem

Theorem 6. (Maximum Modulus theorem) Suppose that () is a non-empty,
open, connected set in the complex plane and F' is a function that is analytic
in 2. Suppose that F is not equal to a constant. Then |F| does not attain its
maximum value at an interior point of {2

A simple application of the above theorem is the following fact for a stable
transfer function F:

[F 1o = sup [F(jw)| = sup [F(s)].
weR Re(s)>0
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Cauchy’s Theorem

Theorem 7. (Cauchy’s theorem) Consider the simply connected domain S
that contains the simple, closed contour I' that is positively oriented. If f is

analytic in S then
/ f(s)ds = 0.
r

Also, for any point s; € S

L /F 5) 45 = f(s0).

277 Jr (s — So)
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Weighted Cauchy’s Theorem

Theorem 8. Let I’ be analytic and of bounded magnitude on
{s € C|Re(s) > 0}. Let s) = = + jy be a point such that x > 0. Then

F(sg) = l/OO F(jw) ’ dw.

T J - x2+(w—y)2

Proof: Consider the Nyquist Contour D(r) of radius r that includes sq. From
Cauchy’s theorem we have that

F(SO)ZL,/D() F(s) ds.

27 (s — s0)

Note that —s) = —x + jy is in the strict left half plane and thus is not inside the
Nyquist Contour. This implies that the function - (S> is analytic inside D(r).
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Thus using Cauchy’s theorem it follows that

RNt
27Tj D(r) (S_l__

So)

Subtracting the two integrals

ds = 0.
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F(so)

1 1 1
275 fD(r) F(S)(m - W)ds

1 r . 1 1 .
~5r7 f/_; F(]w?(m — m)jdw-l- |
o [Ty Fred®) (= — mrpsy el do

a7 | F ) (Gomsg) Gaagy T At

1 /2 F(T@jg)( 2x )rjej9d9

(red?—s0)(rel?+30)

= [1 F(jw) i dw+

T “+(w=y)?
m —7/2 F(’f'@j )((TGjQ—SO)(TejQ—FEQ) )T@j do

11(7“) + ]2(7“)

Note that as r — oo, I1(r) — % [* F(jw)—rr—dw.

=00 22+ (w—y)?
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Note that

/2
L] < 1[0, 1F@re)

L — )r=1de

|(I(ej‘)—?“‘lso)l [(e79+r=150)]

/2 T
< Y Flle [T, e I

7T/2 |(e99—r—1sg)| |(e794+r—150)|

< (Const x %

Thus Ir(r) — 0as r — oc.

Thus

. L[~ T

This proves the lemma. u
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All-pass and Minimum Phase Transfer Function

Definition 11. (All pass transfer function) A stable proper rational function G
is all pass if
G(jw)| = 1,Vw € R.

It can be shown that if GG is an all pass transfer function then sq is a pole of G if
and only if =5, is a zero. Thus all pass functions have the form

S+ S,
S_Sn

G(s) =11},

Definition 12. (Minimum-phase transfer functions) A proper rational function
Is minimum phase if all its zeros are in the strict left half plane.
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All-pass/Minimum Phase Factorization

Theorem 9. (All-pass/minimum phase factorization) Every stable proper
rational function G admits a factorization of the form

G = GapGump

where G, Is all pass and G, Is minimum phase.

Proof: Let G(s) = K (==24==21 As G is stable it is clear that p; are all in the
left half plane. Without loss of generality assume that 24, 2», .. ., z,,, are the
zeros in the right half plane (we will assume that there are no zeros on the jw

axis). Then it is clear that

s — Zz] [KH?;(S + Ei)H?:m—H(S — 2;)
S+ zi, . 1‘[,’;21(3 — i)

gl ~
Gap Gmp

G(S> — [Hgl ]7

7
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where as z; is in the strict right half plane, —z; is in the strict left half plane.

Clearly G, is all pass and G,,, is minimum phase.
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A Lemma

Lemma 1. Let G(s) be a stable proper transfer function with the factorization
G = GopGmp With G, being all-pass and G,,,, being minimum phase. Let
so = x + jy be in the strict right half plane. Then

X

1 oo
log |G, = — log |G(j dw.
08 [Gonpls0)| =+ [ 10g|Gw)| s

Proof: Let F' := log(G,,,). As G, is @analytic in the right half plane and has
no zeros in the right half plane it follows that F' is analytic in the right half
plane. Applying Lemma ¢ it follows that
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Taking the real part on both sides we have

X

Re(F(s0)) = — / " Re(F(jw)) d. (1)

T J - :U2—|—(w—y)2

Note that G,,,, = ef’ = effelf)eilmd(F) Thus |G,,,| = e#F) and
log |Gmp| = Re(F).

It follows from () that

1 [~ , T
108 |Grp(s0)] = | 108 |Gunpl) gz
Noting that |G,,,,(jw)| = |G(jw)| it follows that
08 |Grnpls0) = = [ 108G
g1 mplSo e . g Jw :132+(w—y)2 Ww.
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Fundamental Limitations on Performance

d
(reference)
T U | P :J}ﬂ’

K
Ym
4

+ T
(measurement noise)

Let L := GK.

e We have seen that typical performance requirements need S = ﬁ to be
small for good tracking and disturbance rejection.

o ltis desired that 7' =1 — S be small for good noise rejection.

Given a certain set of objectives it is desirable to evaluate the feasibility of the
specifications that are targeted.
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Cautionary Example

The importance of fundamental limitations is highlighted by the following
example that concerns the design of X-29 aircraft. Considerable design effort
was directed towards designing a controller that provides a phase margin of at
least 45 degrees. However, a simple argument based on a result to be
developed that utilizes the presence of an unstable pole and a right half plane
zero would have indicated the infeasibility of such a requirement. Clearly
utilization of results that yield such an analysis can lead to significant
economy in time, effort and cost.
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Waterbed Effect |

Theorem 10. (Waterbed effect |) Let L. have relative degree two and let L
have N, poles in the right half given by p1, ..., pn,. If the closed-loop system
is stable then S = —1- satisfies

14+ L

Np

/000 In|S(jw)|dw = WZRe(pi).

1=1

Proof:Note that the poles of L are the zeros of S. Thus p; are the right half
plane zeros of S. Thus

Np 8 — Di

From Lemma 1 it follows for any x > 0 that
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1 [~ , x 1 [~ , 2x
In [ Synp ()] = ;/_wln\S(]w)yxudew _ ;/O In () 5= —dw

Thus it follows that

> , 2 ™

o In |S(]w)|x2 n wzdw =5 In [Simp(2)].
Therefore

. > . r? o
xh_)n(r)lo : 1n|S(L7cu)|:I32 +w2dw = C1811_{1010 —x1n |Spp(7)]
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which implies that
[ In|S(jw)ldw = limg_co F21n[Spmp(2)|
= %(limxﬁoo zln |S(z)| — limy— 0o I |Sep(x)|)
= Z(0+ ;) Re(py)),

where lim, ., x1n|S(z)|) = 0 follows from the hypothesis that L has relative
degree atleast two.
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Waterbed Effect Il

Theorem 11. (Waterbed effect II; Weighted Sensitivity Integral) Let L have
N, poles in the right half given by p,...,pn,. Let z = x + jy be any zero of L
in the strict right half plane (that is x > 0). If the unity feedback system is

stable then S = 1+ is such that

X X Np

zZ + D;
dw = m In(IT, .
x2-+-(u:—-y)2)_+_(x2-+-0u-+-y)2) w = mIn(IL; 2

< — Pi

).

[ mist

Proof:

Note that the poles of L are the zeros of S. Thus p; are the right half plane

zeros of S. Thus
N, S — Dj
S.p(s)=1I"7" .
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Using Lemma 1 it follows that

In|Smp(z)] = L[> In|S(jw) 2+(z_y)2dw.

This implies that

0o ] - - S(z
%fo In ’S(]w)|(:v2+(w—y)2 ™ m2+(w+y)2)dw = In|Smp(2)] = In |5az(9(i)|

1
= In | Sap(2)]

__ Np | 2+4D;
= In(ILZ, | 2=

Z—Pi

)

This proves the theorem. N
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Bounds on Weighted S and 1" Transfer Functions

Theorem 12. Supoose L has right half plane poles and zeros at p,, ... ,pn,
and zy, ..., zn, respectively. If the closed-loop system is stable then

Ny |zj+P:

1. JwpS|lre. = max;{|wp(z;)] ILL | =21
= | ZiTpi

2. ||wrT|lre > maxi{lwr(p:)| THZ |20}

Proof:
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Note that for any z;

lwpS|| 2.

= Sup,¢ g |wp(jw)S(jw)|

131

SUP,¢ g |Wp(Jw)Smp(Jw)|

SUP Re(s)>0 |wp(8)Smp(s)|

‘wp(zj)smp<zj>‘
S(z N. zi+D;
wp(25) gy | = [ () T2y 2205

The third equality above from from the maximum-modulus theorem
(Theorem ) and the last equality follows by noting that as z; is a zero of L,

S(Z])
IS similar.

1—|—L(

) = 1. This proves the first part of the theorem. The proof for T’
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Z3‘|‘pz
i —Ds

Note that the terms > 1 for all relevant i and j’s.




FUNDAMENTAL LIMITATIONS 133

Bandwidth Limitations For Typical Weights

Note that for achieving the objectives of

e ||S||n., < M and

o |S(jw)| < myforallw <wpg

an appropriate weight is
_ s/My+wp

s+ wpmy,
The following corollary takes the limiting case of m, = 0 and M, = 2.

Wp

Corollary 1. Let z be any right half plane zero of L. Let

_ 8/My+ws
 s+wpmy,

Wp
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Then for the performance objective
fo be achieved the following conditions have to be satisfied

o If 2 is real then

1—1/M,
1—m,
In particular if M,, = 2 and m, = 0 then

wp < 2

wp < z/2.

o Ifz is purely imaginary and M, = 2 and m, = 0 then

V3

wp < \z|7



FUNDAMENTAL LIMITATIONS

Proof: From Theorem we have that

Zj +D;

<j — Di

N
JupS e, > mase{fuy(z)] T2,

Thus if the performance specification

lwpS]+a <1,

N,
> |wy(2) T2,

Zj + Dy

<5 — Pi

has to be achieved then it is necessary that |w,(z)| < 1. Thus

|z/M, + wg| < |z +wpm,| has to be satisfied. If z is real then this implies that

1-1/M
wp < 2 / p,

> Jwp(z)].
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whereas if z is purely imaginary with M = 2 and m,, = 0 then

V3

wp < \z|7

This proves the corollary. N

Note that the weight on 7" should ensure that 7" is small at high frequencies.
o |T(jw)| < 1/Mrpforallw < wp — Aw
o |T(jw)| <mpforallw > wr+ Aw

where typically 1/Mr ~ 1 and thus does not conflict with the sensitivity
weighting, m is small forcing T to be small in the high frequency region. A
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typical weighting function has the form

_S—I—(l/MT)wT
 omps4wr

wr
The specifications on 7" can be achieved by imposing

1Tl 7 <

wr(jw)

which holds if and only if
JwrT |y, <1

Corollary 2. Letp be any right half plane pole of L. Let

. S —|— (1/MT)CUT
— o

wTt
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where we have set mr = 0. Then for the performance objective

|wrT|| 7

fo be achieved the following conditions have to be satisfied

e Ifpis real then

S Mr
w .
T > P Mr— 1
In particular if M+ = 2 then
wr > 2p
e Ifp is purely imaginary then
M
wr > |pl——

M2 -1
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In particular if M1 = 2 then

139

wr > 1.15|p|

Proof: From Theorem we have that

Zj T D; Zj + D;

<j — Pi

|wrT 3o, > max{lwr(pi)| T2,

N
> |wr(p) 12,

> [wr(p)l.
<j — Pi

Thus Iif the performance specification

||wTT||Hoo S 17

has to be achieved then it is necessary that |wr(p)| < 1. Thus
lp + (1/Mr)wr| < |wr| has to be satisfied.

The rest of the proof follows from this condition. N
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Bandwidth Limitation: Crossover Frequency

e Let z be the zero of L(s) in the right half plane closest to the jw axis. Then
from Corollary 1 it follows that the crossover frequency has to be chosen
such that w. < 3.

e Let p be the pole of L(s) in the right half plane farthest from the jw axis.

Then from Corollary 2 it follows that the crossover frequency has to be
chosen such that w,. > 2p.

This would imply that w. has to satisfy

2p <w, <

DO |

This would necessarily imply that z > 4p to achieve good performance. In
case this is not satisfied no controller will yield satisfactory performance.
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Bandwidth Limitation Imposed by Disturbance Rejection

The error due to disturbance is given by
€ — SGdd.

If G4 is appropriately scaled then the objective of disturbance rejection is
captured by
le(w)| < 1, whenever |d(w)| < 1.

In other words the objective is to ensure

A typical G4 has low frequency content. Let w, be the value such that
|Ga(wgq)| = 1 that is wy is the frequency at which G, crossed the 0dB line from
above.
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e From Theorem it follows that
1SGall 1 > [Gal2)]

where z is any right half plane zero of L(s). Thus for good disturbance
rejection it is needed that |G4(z)| < 1.

o [|[SGq|ln., < 1implies that

1
Ga(w)]

[S(w)l < Yw.

Note that |G4(w))| > 1 for all w < wy. Thus it follows that |S(jw)| < 1 for all
w < wgq. This would imply that wg > wy. Thus good disturbance rejection
requires that the controller ensure that wp > wy.
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Bandwidth Limitation Imposed by Input Bounds

Suppose we need the following condition to be satisfied:
le(jw)| < 1and |u(jw)| <1, whenever |d(jw)| <landr=n=0.

Note that
e=y—1r==Gqd+ Gu—r.

Assuming the needed condition (that is |e(w)| < 1 when d(w) < 1 and
r =n = 0) is satisfied we have for any |d(w)| < 1 that

Gu| = |e = Gad| = |Gad| — e
> |Gal |d] -1
Clearly the above condition holds for any d with |d| = 1 which implies that

G| > |G u] 2 |Ga| — 1.
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Bandwidth Limitation Imposed by Input Bounds for Unstable
Plants

When the plant is unstable more restrictive conditions can be derived due to
disturbance rejection. Note that the map between the control signal v and the
disturbance d is given by

u=—KSGud = —G_lTGdd.

From Corollary 2 it follows that if p is a right half plane pole

Mt
Mr —1

wr > P > P.

It follows that
T| > 1, Yw < p.
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As u = —TG~1G4d if the condition |u| < 1 whenever |d| < 1 needs to be
satisfied then
G| > |Gyl, Yw < p.
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Limitation Imposed by Reference Tracking

Assume that the references r to be tracked are well modeled as r = R7 where
7(w)| < 1. The performance objective is that

if [7(w)| <1, forall wthen |e(w)| < 1and |u(w)| < 1forallw < w,.
If the above condition is satisfied and |7| < 1 then
|Gu| = |R7 4+ e| > |RT| — |e|] > |R7| — 1 for all w < w,.

The above relationship is also satisfied for any 7 that is such that |7(w)| < 1,
and |G7| = |G|. Thus we have

G| |u| > |R| —1forall w < w,
As |u| < 1 it follows that

|G| > |R| —1forall w < w,.
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2

obust Stability for SISO systems
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Introduction

e A control system is said to be robust if it is insensitive to the differences
between the actual system and the model used to design the controller.

e The differences between the model and the actual plant is called the model
uncertainty.

In the robust control paradigm the key concept is to design controllers that
fulfill the specifications even for the worst case uncertainty. The approach that
IS pursued is

e Characterize the uncertainty mathematically.
e Analyze and synthesize controllers that achieve Robust stability (RS), that

Is analyze and synthesize controllers that ensure stability of the closed loop
for all plants in the uncertainty set.
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e Analyze and synthesize controllers that achieve Robust performance (RP),
that is analyze and synthesize controllers that ensure stability and
performance of the closed loop for all plants in the uncertainty set.



SISO ROBUST STABILITY 151

Sources of Uncertainty

e Nonlinearities: Note that a central design criteria for the robust control
paradigm is the use of linearity. However, most plants exhibit nonlinear
behavior. This leads to uncertainty.

e Uncertain parameters: Some of the parameters are uncertain in the model.

e Measurement equipment: Note that the measurement device has finite
resolution and the equipment used to obtain the frequency response has
limited capabilities. Thus often it is impossible to ascertain the model and
high frequency where even the model order and structure cannot be
determined.

e Undermodeling: Often the detailed and precise model of the plant is of very
high order making it unsuitable for engineering purposes. Thus a lower
order model is chosen resulting in uncertainty.
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e Implementation: The controller implemented might not be the same as the
one obtained by the design procedure. For example, often the design is
performed in continuous time and implementation digital. The involved
delays and approximations lead to uncertainty.
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Classes of Uncertainty

e Parametric uncertainty: The model order and structure is assumed to be
known. However, specific parameters that are real are uncertain in the
model. Parametric uncertainty is quantified by assuming that the parameter
lies in a certain region [amin, Qmax)-

e Unmodeled or undermodeled dynamics uncertainty: Here the model order
and the structure is not certain. Such types of uncertainty results from
either delibrate undermodeling or from a lack of physical understanding and
unknown dynamics at higher frequecies.

e Lumped uncertainty: This class of uncertainty can accommodate the above
two types of uncertainty by lumping them into a single description.
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Notation
o II.7; := { linear time invariant plants}.
o 117y := { linear time varying plants}.
e Iy := { nolinear plants}.

e Ghom : The nominal plant assumed to be LTI.

We will identify II to be 11,17 unless otherwise stated. Also, we represent by
G, any element of II; G, is the perturbed plant in contrast to G,,,,,, Which is
the nominal plant.
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Typical Uncertainty Characterization

u J y

™ C:\hom _FO >

Additive uncertainty:

Gp = Gpom + wWaA

e w4 IS a weight usually chosen to be stable and minimum phase
e A is scaled to lie is a set. For example

A € {A € Hool[|[All 1o < 1}
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Multiplicative Uncertainty

_>W| > A 1
u J

i > C:‘hom -

Multiplicative uncertainty:

Gp — Gnom(I + w]A)
e wjy IS a weight usually chosen to be stable and minimum phase

e A is scaled to lie is a set. For example

A € {A € Hool[|[ Al 1o < 1}
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Inverse Multiplicative Uncertainty

Wi «— A

u +
’ > Ghom_y>

Inverse Multiplicative uncertainty:

Gp = Gnom(I —+ qu)_l
e w;r Is a weight usually chosen to be stable and minimum phase

e A is scaledto lie is a set. For example

A € {A € Hool[|[ Al 1o < 1}

157
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Parametric Uncertainty

The uncertain parameter is assumed to lie inside an interval [amin, Qmax]-
Thus « can be represented by

a=a(l+r,A)

where o = Smintomax -y — Smin—dmax gnd A € [—1, 1].

Oémin+04max

Example 2. (Gain uncertainty) Let

H — {kpGO(S)’kmin S kp S kmax}

/ 1. kmin‘kaax _ kmin_kmax
Define k = 5,y = g and A € [—1,1). Then

Gnom(s)
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G, Is in the multiplicative uncertainty form.

Example 3. (Time constant uncertainty) Let

1
TpS + 1

II = { GO(S)‘Tmin <7< Tmax}-

Define 7 = TmintTmax . — Imin—Tmax gng A € [—1,1]. Then

Tmin‘|‘7'max

1 1 1
G — G — G = G 1 ; A) 1
p(s) 75+ 1 o(s) =5+ 7r-As + 1 () s+ 1 O(Sz( +wir(s)A)
Gnom(s)
where _

Tr+S

Wi = —

1+ 7Ts

G, Is in the inverse multiplicative form.
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Example 4. Consider a plant with an uncertain zero

S+ a
s24+3s+1

I := { |amin <a< amax}-

e Multiplicative uncertainty form

Define g = 4minTdmax 'y — max—tmin gng A € [—1, 1]. This implies that

s+a s+a+r,A s+a
p(s) s?+3s+1 s2+3s+1 \52+35+1)1( T wid)
Grom(s)

where w; = Sjga.

e Additive uncertainty form

Define g = 4minTdmax 'y — max—tmin gng A € [—1, 1].

160
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This implies that

S+ a

Gp(s)

s+ a+rA

S+ a

T s243s+1 s2+3s5+1 :§2+33+L

Gnom(s)

+w s A

161
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Remarks

e Either multiplicative or additive uncertainty forms can be used to represent
the uncertain set II.

e Multiplicative uncertainty form represents relative error:

Gp o Gnom

Gnom = w[A.

e Additive uncertainty form represents the absolute model error:

Gp — Gnom — wAA.



SISO ROBUST STABILITY 163

Robust Control Oriented Modeling

The modeling suited for the robust control paradigm involves the following
steps:

1. Obtain the model class II. G, is any particular element of II.

2. Obtain the nominal model G, ().

3. Obtain the bound on the deviation of the actual behavior of the plant from
the nominal behavior.

e For the additive uncertainty characterization the deviation is given by the
function

la(w) = max Gp(jw) — G(jw)].

e For the multiplicative uncertainty characterization the deviation is given
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by the function

_ Gp(jw) — G(jw)
“O=BET Gow |

4. Obtain the weight that describes the deviation, that is, choose a rational
weight (w4 (s) and w;(s) for additive and multiplicative uncertain form

respectively) that has low order stable and such that |w,(jw)| > {4 (jw)
(wherea = Aora=1).
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Obtaining a Model Class 11

The following methods can be utilized

1. A model derived based on the understanding of the plant. The plant model
for example could be derived based on physical principles and rough
estimates on the parameters of the model can be derived.

e Advantages: The resulting model is typically simple and captures the
qualitative dynamics well.

e Disadvantages: Not always possible or difficult to obtain. For example in
the nanopositioning example the serpentine stage is quite intricate and
obtaining a model of the system based on physical arguments is difficult.

2. Evaluate the frequency response of the system at various experimental
conditions and obtain the frequency response repeated number of times.
For example, if the frequency response is obtained about different bias
voltages to the the piezo different plots are obtained for the nanopositioning
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stage. Also, the gain at DC depends on the history of the applied voltage

due to hysteresis. Also, the plant is slightly time varying due to creep and
other effects.

e Advantages: Not hard to obtain as it does not involve much analysis.

e Disadvantages: The resulting model can be quite involved and might not
capture the physics of the plant.
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Obtaining a Nominal Model

Once the model class 1II is obtained one has to choose a nominal model and
the associated uncertainty has to be determined. The following approaches
can be taken to identify the nominal model.

1. A simplified model obtained by ignoring delays and higher order dynamics.
For example, if the model class was determined to be

s + 20 s

@) = G Do 1 0°

with 6 € [0, Omax] then one can choose

20
s+ 1

Gnom(s) —

The advantages are the simplicity of the nominal model that can lead to
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easier controller design. The disadvantage is the large uncertainty that
might result.

2. If the model class is characterized by multiple parameters then choose the
nominal model to the one with the parameters taken to be central values of
the ranges involved. (see the examples derived earlier).

3. At every w choose G(jw) as the point on the Nyquist plot that leads to the
smallest uncertainty. This leads to the smallest uncertainty however, it
needs considerable effort, the resulting nominal plant can be of very high
order and the nominal model might not capture the essential features of the
system.

4. Typically a judicious combination of the above three methods provides the
best alternative.
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Determining the Uncertainty Bound

Once the nominal model is fixed, then the uncertainty bound ¢(jw) has be
determined. Note that for the additive uncertainty case the bound is defined as

la(jw) = C?uepﬂ ‘Gp(jw) — Gpom(jw)|Vw
p

whereas for multiplicative uncertainty form we have

)Vw

N Gp(JW) Gnom(
frldw) = sup 1= o)

It is evident that the above formulae cannot always be utilized to generate the
bound mainly because the sup is over an infinite number of plants and it has to
be evaluated over all w € R. Different techniques are employed depending

upon the data available.



SISO ROBUST STABILITY 170

Example 5. (Model is known with parameters uncertain) In this case, one
possible method of evaluating the bound is to first grid the parameter region
and obtain the frequency plot for each parameter vector on the grid. Let Gy,
denote the k" model. A grid is obtained on the frequency region w. Let the
corresponding frequency vector be ) = {w, .. .,w,}. For additive uncertainty

Ca(jwi) = max |Gr(jwi) — Grom(Jjw;)|Vw; € Q

and in the case of multiplicative uncertainty we have

01 (juws) = max | 22Us) = Gom(jw)

Yw; € Q.
k Gnom(jwi) i

We will obtain the multiplicative uncertainty description of the following class:

k
7s +1

e ¥ 2<k 6,7 <3}

Im={
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The nominal model is chosen as

25
255+ 1

Gnom<3>

The attached Matlab code does the appropriate gridding of the parameter
space and the frequencies.
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Robust Stability Condition for Additive Uncertainty

Gp |

We will consider the following model class
II:={G(s) + wa(s)A(s) [[|Allne <1}

where w4 (s) is assumed to be a stable, proper rational transfer function. We
will denote by L = KG and by L, = KG,, where G,, € I1.
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Assumption 1. We will assume that the nominal model GG(s) is such that the
unity feedback configuration shown in the figure above (with A = 0) is stable.

Theorem 13. The closed loop system shown in Figure is robustly stable (that
Is the for all G, € 11) if and only if

|waKS||#, <1

where S := (I + L)~ is the sensitivity transfer function corresponding to the
nominal plant.

Proof: By assumption we have that the with A = 0 the closed loop system is
stable. Let the number of encirclements of —1 by the Nyquist plot of L be N.

Note that as A and w4 are assumed to be stable, it follows that the number of
poles in the right half plane of any G, K = GK + wa KA in Il is not greater
than the number of rhp poles of L = GK.
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(«=) We are given that the number of encirclements by the Nyquist plot of L is
N. Suppose ||waK S|, < 1. Thus

[ wAK S|4 < 1
= [JwaKSA|p, < lwaKS||n | Alle, < 1if[|[Afn, <1
= |[(waKA)(jw)] < |14 L(jw)| for all w, [[A]|x., <1
= |(L, — L)(jw)| < |1+ L(jw)| for all w

e Thus the distance of the Nyquist plot of L from —1 is greater than the
distance of the perturbed open loop gain L, from L. As L encircles —1
point NV times L,, also encircles —1, N times.

e Note that if the number of rhp poles of L is P then as the nominal system is
stable the number of rhp zeros Z of 1 4+ L is zero we have N = P (thus
Z — P =—N i.e N counterclockwise encirclements).

e Let Z, and P, denote the number of rhp poles zeros and poles of 1 + L,,. As
the number of counterclockwise encirclements of —1 point of L, is N we
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have Z, — P, = —N. Thus Z, = P, — N. However, we have already seen
that P > P, as the weight w4 and A are stable. Thus
Zy=P,—N<P-N=0.

e This implies Z, = 0. This in turn implies P, = P and that there are no
unstable pole-zero cancellations in the product G, K.

o Thus there are no unstable pole-zero cancellations in the product G, K and
the number of counterclockwise encirclements of the —1 point on the
complex plane is equal to the number of unstable poles of G, K.

e From Theorem 5 the interconnection is stable.

We will not prove that ||wa K S|, < 1is a necessary condition. H
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Robust Stability Condition for Multiplicative Uncertainty

T—»_ K é +no = é >

We will consider the following model class

1:=1G(s)(I +wr(s)A(s))] [[Allne < 1.}

where w;(s) is assumed to be a stable, proper rational transfer function. We
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will denote by L = KG and by L, = KG,, where G,, € I1.

Assumption 2. We will assume that the nominal model G(s) is such that the
unity feedback configuration shown in the figure above (with A = 0) is stable.

Theorem 14. The closed loop system shown in Figure is robustly stable (that
Is the for all G,, € 11) if and only if

lwiT | <1

where T := L(I + L)~ ! is the complimentary sensitivity transfer function
corresponding to the nominal plant.

Proof: By assumption we have that the with A = 0 the closed loop system is
stable. Let the number of encirclements of —1 by the Nyquist plot of L be N.

Note that as A and w; are assumed to be stable, it follows that the number of
poles in the right half plane of any L, = G, K = GK(1 + w;A) in Il is not
greater than the number of rhp poles of L = GK.
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(«=) We are given that the number of encirclements by the Nyquist plot of L is
N. Suppose ||w;T ||, < 1. Thus

1

Lif Al <1

1+ L(jw)|forallw € Rif ||Allx, <1
1+ L(jw)|forallw € R

JwiT o

= [[wITA3o < |wrT |1 || Al Ho
= [(wiGKA)(jw)

= |(Lp — L)(jw)|

ANVANVANIVA

e Thus the distance of the Nyquist plot of L from —1 is greater than the
distance of the perturbed open loop gain L, from L. As L encircles —1
point N times L, also encircles —1, N times. Note that if the number of rhp
poles of L is P then as the nominal system is stable the number of rhp
zeros Zof 1+ Liszerowehave N =P (thusZ—-—P=—-NieN
counterclockwise encirclements).

e Let Z, and P, denote the number of rhp poles zeros and poles of 1 + L,,. As
the number of counterclockwise encirclements of —1 point of L, is N we
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have Z, — P, = —N. Thus Z, = P, — N.

e However, we have already seen that P > P, as weight w; and A are stable.
Thus Z, =P, — N <P — N =0. This implies Z, = 0.

o Thus there are no unstable pole-zero cancellations in the product G, K and
the number of counterclockwise encirclements of the —1 point on the
complex plane is equal to the number of unstable poles of G, K.

e From Theorem 5 the interconnection is stable.

We will not prove that ||w;T||+.. < 1is a necessary condition. H
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The M — A Configuration

Ak

- M

Theorem 15. Consider the interconnection depicted in the Figure above
where M and A are two LTI stable causal systems such that |All». < 1.
Then the interconnection is stable if and only if | M ||+, < 1.

Proof: It follows from the Nyquist criterion that as M and A are stable (no rhp
poles) the unity feedback interconnection of Figure is stable if and only if
11+ M(jw)A(jw)| does not encircle or touch the point 0.
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e Thus robust stability is achieved if and only if

11+ M(jw)A(jw)| > 0, Yw, VA such that ||Allx. < 1. (2)

o If ||M||n., <1thenl— |M(jw)| |A(jw))| > 0forany [|Alx., <1 (as
M (jw)| |A(jw))| < 1). Thus |1 + M (jw)A(jw)| > 0 for all w. Thus robust
stability is ensured if | M||x.. < 1.

e Suppose ||M ||, > 1then we can construct a A such that A is a stable
proper transfer function with ||All,. < 1 and there exists an w where
1+ M(jw)A(jw) = 0. This would violate the condition (~) and thus there is
no robust stability.
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Robust Stability Condition for Inverse Multiplicative
Uncertainty

We will consider the following model class

L= {G(s) (I +wir(s)A(s)) " | Al < 1)



SISO ROBUST STABILITY 183

where w;;(s) is assumed to be a stable, proper rational transfer function. We
will denote by L = KG and by L, = KG, where G, € 1I.

Assumption 3. We will assume that the nominal model G(s) is such that the
unity feedback configuration shown in the figure above (with A = 0) is stable.

Theorem 16. The closed loop system shown in Figure is robustly stable (that
Is the for all G}, € 11) if and only if

Jw;irS||He < 1

where S := (I + L)™' is the sensitivity transfer function corresponding to the
nominal plant.

Proof: We will apply Theorem 15 to obtain the result. Note that the equivalent
M seenby A 'is
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Thus robust stability holds if and only if
[wirSll,, < 1.

Note that the other robust stability conditions could have been derived in this
manner.
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Robust Performance for SISO systems
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Robust Performance

e

In the robust performance problem the following are the objectives

e Robust stability

e Performance for all the plants in the model class 11.
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Consider the feed-back loop shown where the plant class is described by
multiplicative uncertainty. The robust stability criteria was determined to be

RS & H’LU[THHOO < 1.

The performance desired in the above setup is that of tracking and/or
disturbance rejection (which are the same if G; = I. Thus the performance
requirement is

prSpHHoo <1

where
Sp — (I + Lp)_l

with L, = G, K where

Gp € IL:={G(A +wrd)| [[Alx, <1

187
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The performance condition translates to the condition that for all |Aljx, <1

H 1 H -1 H WpS
w H &
p1+GK(1+wIA) > 1 +w;TA

1o <1 (3)

We summarize the above observations as a Lemma.
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Lemma 2. Necessary and sufficient conditions for robust performance are

1. ”(U]THHOO < 1.

2. |l sl < 1,V stable A with | Al < 1.

Theorem 17. A necessary and sufficient condition for robust performance for
the interconnection in the Figure is

1wy S| + |wiT||| 7., < 1.

Proof: (<) Let
lwpS| + |wiT || 7 < 1. (4)

Then the robust stability requirement ||w;T'||.. < 1 is satisfied. Let A be fixed
with ||Allx. < 1.

From (4) it follows that
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o for all w, |w,S| + |w;T| < 1 which implies
lw,S| < 1 —|wiT| < 1—|wT||A| < |1+ wTA]

e thus

Thus all conditions of Lemma > are satisfied and robust performance
follows.

(=) Suppose there exists a wq such that
(wpS) (Jwo)| + [(wiT)(jwo)| > 1.
e (Case 1) If |(w;T)(jwo)| > 1 then

|wrT || 1o = [(wrT)(jwo)| > 1
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and therefore there is no robust stability and therefore no robust
performance. Thus the proof is complete.
o (Case 2) Suppose |(w;T)(jwo)| < 1.

Note that as |(w,S)(jwo)| + |(wT)(jwo)| > 1, we have

|(|’L(Up5;))gjwt;|)! > 1 — |(wiT)(jwo)|
w jwo
= T DGwo)] = 1

Construct a transfer function A that is stable with ||A||x.. < 1 such that
11— [(wrT)(Gwo)l| = |(1 +wrTA)(jwo)l-

This is indeed possible and is left as an exercise
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It follows that

w0, (wpS) )|
lrwralne 2 1awTa)Geg)
~ e Gedl
= A=A el
> ]

From Lemma ~ we have that there is no robust performance.

This completes the proof.
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Summary
e Nominal Performance < ||w,S||#., < 1.
e Robust Stability < ||w;T ||~ < 1.

e Nominal performance and robust stability < || max(|w,S|, |wiT])||#, <1
(follows from the above two conditions).

e Robust Performance < |||w,S| + |w;T|||x., < 1.

It can be shown that

1
\ﬁ(|wp5| + [wiTl) < (JwpS|* + [wiT|?)

N[~

< V2(|wpS| + [wiT)
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and

N|—

max([w,S], [wrT) < (lwpS|> + [ewrT2)? < 2max(fw,S], [w,T]).

Thus the following lemma holds:

Lemma 3. The following hold:

WypS
1 xSl orT Dl < || 225 | < 2 max(lu . fwr T e
1 Hoo
2. (Sl + oDl < | 5 | <V w81+ rTD
Cov2IRTP | wiT |, p Heo *

Proof: Follows from the fact that

WpS
w[T

N|—

= sup(|w,S|* + |wiT|?)z.
Hoo @
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Thus the conclusion is that be solving an appropriately scaled stacked ‘H .
problem one can achieve the objectives of robust performance. Note that we
have employed the stacked framework to obtain robust stability and nominal
performance for the nanopositioning example.
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Coprime Factors: Single Input Single Output Case

\Y/ u
1 +
QO—»
= Go)
+1V,
y +
Figure 1:

e Let the plant G,s be given by Gos = ]\%SS)) and K = };8 where
N(s), M(s), X(s), and Y (s) are polynomials in s. We assume there are no
common factors in the ratios being formed.

e We assume that GGo» and K are rational functions of s.

Notice that for the SISO positive feedback configuration shown in the figure
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we have
NY MX-—-NY

1 — GQQK =1-— =
MX MX
By the Nyquist stability criterion the feedback interconnection is stable if and
only if

MX — NY
has no zeros in the right half plane.

In other words we need
R:=(MX - NY)!

to be stable transfer function for the interconnection to be stable.

Note that K can be written as K = % where
Yi:=YRand X; = XR

and
MX; - NY; =1.
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Definition 13. We say two rational stable functions X andY are coprime
over stable systems if they do not have common unstable factors.

We will use the term coprime to mean coprime over stable systems.
We make the above arguments precise with the the following lemma.

Lemmad4. LetGyy = % be the plant with N and M being coprime. K is a
stabilizing controller for the feedback interconnection shown in Figure 7 if and
only if there exist stable coprime factors Y and X such that K = % satisfying

MX — NY =1.

Proof:From the Nyquist stability criterion (Theorem 5) the closed-loop system
is stable if and only if
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1. There is no rhp pole zero cancellation while forming the product GK = %
2. S=I-GK)!'= 1_1% = -~ IS stable.

We will first show that the above two conditions are equivalent to the condition
that M X — NY have no rhp zeros.

Indeed let M X — NY have no rhp zeros. Clearly then M X and NY have no
common rhp zeros. Thus there can be no rhp pole zero cancellation while
forming the product GK. Also, as M X — NY has no rhp zeros (M X — NY)~!
is stable. This implies S = ——4X__ is stable. Thus the two conditions for

- MX—-NY ™
stability of closed loop map are satisfied.

Now, suppose (1) and (2) are met. Then M X and NY have no common rhp

zeros and =~ i stable. Suppose that M X — NY has a rhp zero at .

Then M(2)X(z) = N(2)Y (z). Also as -+~ is stable it has to be true that

the rhp zero z of the denominator M X — NY be cancelled by the rhp zero of
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the numerator M X. Thus M(z)X(z) = 0. This would imply
M(2)X(z) — N(2)Y(z) =0and thus M X — NY has a rhp zero at z which

implies that M X and NY have a common rhp zero. This would contradict (1).

Thus M X — NY has no rhp zeros.

Thus, it follows that stability of the closed loop system is equivalent to
MX — NY having no zeros in the rhp. Or equivalently closed loop system is
stable if and only if R = (M X — NY)~! is stable. Clearly
K=Y/X =32 =Y,/X, where Y; = YR and X; = XR are coprime.
Furthermore

MX,—NY1=(MX - NY)R=1.

This proves the theorem. |
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Parametrization of Stabilizing Controllers for SISO Systems

In the SISO case the derivations of the class of stabilizing controllers is
straightforward.

Theorem 18. Let P = 4 and let K = <~ be a stabilizing controller with
N and M coprime and Y, and X, coprime with

MX, —NY; =1.

Then all stabilizing controllers are given by

K:Y1—MQ
X, - NQ

where () is any stable rational function.
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Proof:: (<) Let
K = 1= M@
X1 —NQ

It follows that
M(X;1—NQ)—N(Y1 —MQ)=MX, - NY; =1.

From Lemma 4 it follows that the closed-loop is stable.

(=) Suppose K is a stabilizing controller. We infer from Lemma 4 that K = %
with Y and X such that

MX — NY
is stable Define () to satisfy the relation

Y Y- MQ
X X;—NQ
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which holds if
X1Y -1 X

- MX — NY

which is stable.

This proves the theorem.

Let K be a stabilizing controller. Then it follows that there exists a stable )

such that K = =7,

_ 1
S = 1-GK

1
_NY-MQ
MX{-NQ
M(X1—NQ)
M(X{1—N N(Y1—M
( 1]\/[@1)— 5\]1 Q)
MX{—MNO—NY,+NMQ
MX, —MNQ
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It follows that

T=1-S=1-MX,+MNQ=NY, + MNQ.

and

Y, — MQ
KS =
S X1 —NQ

Note that the stacked H ., problem is given by

po= inf wrT(K)
K stabilizing || , ks

wpM (X1 — NQ)
= inf wrN (Y1 + MQ)
Q stable w M (Y7 — MQ)

M(X: - NQ) =M1 - MQ).

Hoo
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Generalized Plant

w Z
g Gll GlZ >
Vl + y
P
+ 21 22
u oV
K |=
T
Figure 2:

Many control design issues can be cast into the framework shown in Figure

Lets assume that v; = v, = 0. Then

S
|

= Guw—+ Grau
y = Gow+ Gau
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When we substitute © = Ky we have
Yy = G21w + ngKy = Y = (I — GQQK)_ngl”LU. Thus

z = [Gll + Gng(I — GQQK)_1G21]w
G111+ GiaM (Y1 — MQ)GaJw

The map bewteen z and w is affine linear in the parameter Q.
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Multiple Input Multiple Output Systems

208



MIMO SYSTEMS 209

Linear Systems

We present notions of stability, causality and well-posedness of
Interconnections of systems.
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Notation

e Signals
L™ = {z:x=(x1,29,...,2,) With x; € L}.

e Signal-norms

Forany x in L" let

1

oco N P
x|, = (/ lez’(t)p> 1 <p<ocoand
0 =1

lzlloe = supmax |z;(2)]
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o Let L;'*" denote the spaces of m x n matrices with each element of the
matrix in L.
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Truncation Operator

e Let P. denote the truncation operator on L™*™ which is defined by

P (x(t)) = x(t) ift<r7
0 ift>r "
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Shift Operator
e Let S denote the shift map from L™ to L™ defined by

S-(x(t)) =x(t —71).
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Causal Systems
Definition 14. [Causality] e A linearmap T : L™ — L™ is said to be causal
if
PtT — PtTPt fOI’a//t
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Time Invariant Systems
Definition 15. [Time invariance]

e AmapT : L™ — L™ is time invariant if S;T = TS, where S, is the shift
operator.
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Induced Norms

Let 7 be a linear map from (S, ||.||) to (S, ||-||p). The p-induced norm of 7

is defined as

T
HT“p—z’nd = Sup w

|z ||p#0 2]l
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Input-output Stability

Definition 16. [Stability] A linearmap T : (X, |.||x) — (Y, |.||y) is said to be
stable if it is bounded. That is T is stable if

7 = sup LY

= M < o0.
v#0 ||7]x

Note that

o T :(Ly,|.ll,) — (L}']-]lp) is said to be L, stable if it is a bounded operator.
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Convolution Maps

Definition 17. [Convolution maps] 7 : L™ — L™ is linear, time invariant,
convolution map if and only if y = T u is given by

Y1 711 The ... Ty (041
Y2 _ Tor Tao ... 1oy U2
Ym Tml Tm2 S Tmn Unp,
wherey = (y1 yo2, ..., ym) € L™ andu = (w1, uo, ..., u,) € L™, T;; : L — L

is described by
(7:52)(t) = / x(7)T;;(t — 7)dT

— OO

where T;;(t) termed the impulse response of the system T

Further T is also causal if T;;(t) = 0 for allt < 0 and thus for any x € L we

218
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have

The operation given by Equation is often written as y; = T;; * u,.

Note that any linear time invariant system can be described as a convolution
map via its impulse response.
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Transforms

Definition 18. e For a linear, time invariant, causal, convolution map
T: L™ — L™ the s-transform of T is defined as

where
Ti1(t) Tio(t) T, (t)
Tr1(t) Tia(t) Tran(t)

It can be shown that T is analytic inside the open right half plane (open unit
disc) and continuous on the boundary if the matrix {T'(t)} € LT*"(¢7*"™).
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Transfer Function

Definition 19. [Rational, proper transfer functions] Let g(s) = 5 where

n and d are polynomials in s. Then g(s) is said to be a rational transfer
function. Furthermore if deg(d(s)) > deg(n(s)) then g(s) is a proper transfer
function. If deg(d(s)) = deg(n(s)) then g(s) is a bi-proper transfer function. If
deg(d(s)) > deg(n(s)) then g(s) is a strictly proper transfer function.

Example 6. ¢ ¢
rational function. 8+2 Is a bi-proper transfer functlon

Note that a rational function g(s)

e is proper if and only if g(co) = d a constant.
e is strictly proper if and only if g(co) = 0 a constant.

e is bi-proper if and only if g(co) = d # 0 where d is a constant.
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Also note that every proper rational function can be written as

g(S) — g(OO) + gsp(s)

where g, (s) is strictly proper (example: &£ =1+ ).
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Finite Dimensional Systems: Proper Transfer Matrices

Definition 20. [Finite dimensional system]

e If the s-transform of any linear, time invariant, causal, mapT : L™ — L™ is
such that T; ;i(s) Is a proper transfer function then T' represents a finite
dimensional system. T(s) is said to be a proper transfer matrix. If every
entry T;;(s) is a strictly proper transfer function then T'(s) is a strictly proper
transfer matrix. If T' is square with both T'(s) and T~ (s) being proper then
T(s) is a bi-proper transfer matrix.

We use the term FDLTIC as an abbreviation for finite-dimensional, linear, time
invariant, causal. Note that FDLTIC maps are characterized by proper transfer
matrices.

Analogous to the scalar case, any proper transfer matrix G(s) can be written
as
G(s) = G(00) + Gip(5)
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where G, is strictly proper transfer matrix.
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Coprime Factors of Transfer Functions

Definition 21. [Coprime Factors] Consider a transfer function

g(s) =n(s)/d(s) wheren(s) and d(s) are polynomials in s. If n(s) and d(s)
have no common factors then we say that n(s) and d(s) are coprime and
g = nd~ ! is a coprime factorization of g.

Example 7. Letg(s) = . Thenn =1 and d = (s — 1) gives a coprime

factorization of g. Note that g(s) = 5>>2~. However,

n = (s —2) and d = s* — 3s + 2 is not a coprime factorization because of the
common factor (s — 2).
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Degree of Transfer Functions

Definition 22. [Degree of a transfer function] Given any proper transfer
function g(s) = 72(—(‘98? let r(s) be the greatest common divisor of the polynomials
n(s) and d(s). Thenn(s) = ny,(s)r(s) andd(s) = d,(s)r(s). Clearly n.,,(s) and
d.(s) will have no common divisor and therefore are coprime and

nm(s)r(s)

g(s) = dm (5)7(5) "

e d.,(s) is called the characteristic polynomial of g(s).

e The degree of g(s) is the degree of d,,(s).

Example 8. Letg(s) = i - 7. The ged of n(s) and d(s) is s — 1 =: r(s).

T 4(s3—-1) T
Thus n,, = s + 1 and d,,, = 4s* + 4s + 1 with d,,, being the characteristic
polynomial. The degree of g(s) is thus two (not three).
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Characterization of Coprimeness of Polynomials

Theorem 19. [Aryabhatta, Bezout, Diophantine] Polynomials n(s) and d(s)
are coprime if and only if there exist polynomials n.(s) and d.(s) such that

n(s)n.(s) + d(s)d.(s) = 1.

Proof:(«<) Suppose there exist polynomials n.(s) and d.(s) such that

n(s)ne(s) + dm(s)d:(s) = 1. (9)

Also assume that n(s) = n,,(s)r(s) and d(s) = d,,(s)r(s) where r(s) is a
nonconstant polynomial, d,,,(s), n.(s) are polynomials. Then we have from
(5) that

P (8)[Rm($)ne(s) + dn(5)dols)] = 1.
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This would imply that product of two non-trivial (i.e.nonconstant) polynomials
is 1 which is not possible. This proves that n(s) and d(s) are coprime.

(=) Assume that n(s) and d(s) are coprime. Then using the Euclidean
Algorithm one can construct polynomials n.(s) and d.(s) such that

n(s)ne(s) +d(s)d.(s) = 1.
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Poles of a Transfer Matrix

Definition 23. [Characteristic polynomial, poles] The characteristic
polynomial of a transfer matrix G(s) is the least common denominator of all
minors of G(s) where the minors are reduced to be coprime transfer functions.
The degree of G(s) is the degree of the characteristic polynomial. The poles
are the roots of the characteristic polynomial.

Example 9. Consider the transfer matrix

1 s—1 s
Gls) = 1.25(s + 1)(s + 2) ( —06 s — 2 )

The minors of order 1 are the four elements of the transfer matrix G(s) all of
which have the same denominator (s + 1)(s + 2). The minor of order two is the
determinant of the matrix:

 (s—=1)(s—=2)+6s 1
C1.252(s +1)2(s+2)2  1.25%2(s+1)(s +2)

det(G(s))
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Note that we have reduced the second order minor to be coprime. The lcd of
all the minors is (s + 1)(s + 2) and thus the characteristic polynomial is given
by

¢(s) = (s +1)(s +2).

The poles are given by s = —1 and s = —2.
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Normal Rank of a Transfer Matrix

Definition 24. [Normal rank] The normal rank of a transfer matrix G(s) Is
the maximum rank of the transfer matrix over the variable s.

Example 10. Consider

G(S):siz((s)_l (2)(5—2) )

The maximum rank of this matrix is two even though at s = 1 and s = 2 the
rank drops to one. Thus the normal rank of the transfer matrix is two.
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Zeros of a Transfer Matrix

Definition 25. [Zeros] z; is a zero of a transfer matrix G(s) if rank of G(z;) Is
less than the normal rank of G(s).

Example 11. Consider

G(S):siz((s)_l (2)(5—2) )

Thus the normal rank of the transfer matrix is two. The rank of this matrix at
s =1 and s = 2 drops to one. Thus these are the zeros of the transfer matrix.




MIMO SYSTEMS 233

Unimodular Matrices

Definition 26. [Unlmodular matrices] A square polynomial matrix function
P(\) = P(0) + P(1)A+ ...+ P(k)X*, is said to be unimodular if the
determinant of P(\) is a non-zero constant independent of ).

Theorem 20. LetT(\) be am x n matrix of rational functions of \ (a function
is a rational function of A if it can be written as a ratio of two polynomials of A).
Then there exist L, U and M such thatT = LMU where L and U are
unimodular with appropriate dimensions and M has the structure

R
N = “0 0
0 ... 0 0 0

.. 1 0 0

\ 0 ... 0 0 0
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{é&, @@i} are coprime (that is they do not have any common factors) monic
(leading coefficient is one) polynomials, which are not identically zero for all

i =1,...,r with the following divisibility property: ¢;(\) divides ¢;1(\) without
remainder and ;.1 ()\) divides v;()\) without remainder.

M is called the Smith-Mcmillan form of T'(\).
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Zeros and Poles

Theorem 21. [Zeros and poles of T1 The zeros ng()\) are the roots of
IT;_,€;(X\). The poles of T'(\) are the roots of IT;_,1;(\).

Proof:Left to the reader. H
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State Space Characterization of Finite Dimensional Systems

Lemma 5.

o LetT be a FDLTIC system; T : L™ — L™. Then there exist real matrices
A, B,C and D such that ify = Tu for some u € L™ then

T = Ax(t) + Bu(t)
y(t) = Cux(t) + Du(t) (6)
z(0) = 0,

Proof:See C. T. Chen.

The representation of the map 1" as given in (©) is called a state space

representation of 7. A convenient notation employed to denote the system
. [ A|B

described by (©) is [ C | 5 ]
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Controllability
Definition 27. [Controllability] The dynamical system described by

T = Ax(t) + Bu(t)
ygt)) = Cux(t) + Du(t) (7)
z(0) = x,

Is said to be controllable if for any initial condition x(0) = xo, t1 > 0 and final
State x1 there exists a piecewise continuous input u(.) such that the solution of
(/) satisfies x(t1) = x1. Otherwise the system or the pair (A, B) is said to be
uncontrollable.
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Tests For Controllability

Theorem 22. The following are equivalent

e (A, B) is controllable.

e The matrix ,
Wo(t) == / eATBB*e? "dr
0

Is positive definite for any t > 0.
e The controllability matrix
C=[BAB A*B ... A" 'B]

has full row rank.
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e The matrix [A — M\ B] has full row rank for all \ in the complex plane.

e Let A\ and x be any eigenvalue and corresponding left eigenvector of A (that
ISx*A = \z* ) then x*B # 0.

e For any given set of n complex numbers F' can be chosen such that
A 4+ BF has the given set as its eigenvalues.
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Stabilizability
Definition 28. [Stabilzability]

The pair of real matrices A and B with A € R™*™ and with B € R™"*" s a
stabilizable pair if there exists a real matrix K such that
Real(M\;(A+ BK)) < 0, where \; denotes the it" eigenvalue.
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Tests for Stabiliability

Theorem 23. The following are equivalent
e (A, B) is stabilizable.

e The matrix |[A — M\ B] has full row rank for all \ in the complex plane with
Re(A) > 0.

e Forall A and x that satisfy x*A = \x* and Re(\) > 0, x*B # 0.

e F' can be chosen such that A + BF' is stable.
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Observability
Definition 29. Observability The dynamical system described by

T = Ax(t) + Bu(t)
ygt)) = Cux(t) + Du(t) (8)
z(0) = x,

is said to be observable (or the pair (A, C') is observable) if any initial condition
ro can be determined uniquely from the output trajectory y(t), t € |0,t1] where
t1 > 0 is arbitrary with y(t) being generated by Equation (5) with u(-) = 0.
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Test for Observability

Theorem 24. The following are equivalent

e (A,C) is observable.

e The matrix

W,(t) :=

is positive definite for any t > 0.

e The observability matrix

has full column rank.

0

t
/ e TC*CeATdr

C
CA
CA?

] CAn—l
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e The matrix [ ! ] has full column rank for all \ in the complex plane.

B
e Let A and y be any eigenvalue and corresponding right eigenvector of A

(that is Ax = \x ) then Cx # 0.

e For any given set of n complex numbers L can be chosen such that A+ LC
has the given set as its eigenvalues.

Note that (A, C') is observable if and only if (A*, C*) is controllable.
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Detectability

Definition 30. [Detectability] The pair of real matrices A and C' is
detectable if there exists a real matrix L such that Real(\;(A + LC)) < 0



MIMO SYSTEMS 246

Tests for Detectability

Theorem 25. The following are equivalent

e (A, C) is detectable.

e The matrix é - M has full column rank for all X in the complex plane

with Re(\) > 0.
e Forall A and x that satisfy Az = Ax and Re(\) > 0, C'x # 0.

e . can be chosen such that A + LC' is stable.

Note that (A, C') is detectable if and only if (A*, C*) is stabilizable.
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Minimal Realization

Definition 31. The triplet (A, B, C) is minimal if (A, B) is controllable and
(A, C) is observable.

Lemma 6. LetT be a proper transfer function matrix. Then it admits a

realization [ g I g ] such that (A, B, C) is minimal. Such a realization is

called a minimal realization of T'.
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Continuous Time Stability Characterization

Theorem 26. Suppose T is a FDLTIC system. Then the following statements
are equivalent.

1. T is L, stable forany p, 1 < p < oo.

é I g ] Is any state-space description of T' such that (A, B) is

2. If[

stabilizable and (A, C') is detectable then Real(\;(A)) < 0 for all i where
\i(A) denotes the it" eigenvalue of A.

3. T(s) the s-transform of T' has all its poles outside the closed right half
plane(that is if sy is a pole of T' then Real(sg) < 0.)

Proof:See C. T. Chen. H
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This theorem establishes the fact that for FDLTIC systems stability in L, sense
implies stability in L, sense for any p and ¢ such that 1 < p < oo and

1 < g < oo. Thus for FDLTIC systems we can use the term stability to mean
stability in L, sense forany 1 < p < oc.



MIMO SYSTEMS 250

Properties of State Space Realizations

Suppo|se G and Gs hav|e a state space realizations

Al Bl A2 BQ
and

Euakdear:

] respectively. Then

Ay B1C5 B1D> i Ao 0 B
T, DGy, | DiD; | | DG, G | DiDs
o
A, O B4 |
Gi+ Gy = 0 A Bo
Gy Oy | D1+ Dy |
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e Suppose G(s) = [ é I g ] is square and D is invertible then
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Internal Stability

Definition 32. Consider the state space dynamics described by

t(t) = Azx(t)+ Bu(t)
y(t) = Cux(t)+ Du(t) .
z(0) = xg

The above system is said to be internally stable if for any xo € R",
x(t) — 0ast — oo withu = 0.

Lemma 7. The system described by the state space equations above is
internally stable if and only if all the eigenvalues of the matrix A are in the
open left half plane {s € C|Real(s) < 0}.



Stability of Interconnections of Multiple-input
Multiple-output Systems

253



MIMO INTERCONNECTIONS 254

Interconnections

U
Gzz

K

y

Figure 3:

Consider the interconnection represented by the block diagram in Figure
Suppose G52 and K are described by the state space descriptions
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{ To9o(t) = Awoo(t) + Bou(t) { vx(t) = Agri(t)+ Bry(t)
G22 y(t) = szgg(t) + Dgzu(t) and K ’U,(t) = CKCIZK(t) + DKy(t)
z(0) = =z ri(0) = x|
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Well-posedness: State Space Viewpoint

Before analyzing the interconnection one has to address the issue of
well-posedness. For the interconnection described by Figure = with the state

space descriptions of G2 and K given by [ (}4 I 52 ] and [ glK I gK ]
2 29 K e

respectively we define

Definition 33. The interconnection described by Figure = governed by the
(9) is well posed if there exist unique signals x25(t), T (t), y(t), u(t) that satisfy
(9) for every initial condition z(0) := [x22(0) zx(0)]*. Such a condition should
hold for all corresponding matrices in a neighbourhood of the given matrices
A, AK, B>, Bg, CQ, CK, Do, and D.

Lemma 8. The interconnection described by Figure = governed by the (°) is
well posed if and only if

d@t([ — DQQDK) % 0.



MIMO INTERCONNECTIONS 257

Proof: (=) Assume that (I — D23 D) is singular. Using ( ) note that

Y Coxa2 + Daou
u = Cgxg+ Dgy

(10)

Thus it follows that

1 —DK Uu . 0 OK L9292
Cow ) () (b 8) ()

\ 7 7
TV TV

M N
The matrix M is singular as (I — Doy D) is assumed singular. Thus it is not
onto (use the fact that dim(range(M)) = rank(M)). Let (ug yo) be a vector
that is not in the range space of M. It is evident that the matrix on the right
hand side of the equation can be made full rank by a small perturbation if
needed. Choose (a b) such that N(a b)! = (ug yo)?. Thus for the initial
conditions x25(0) = a and zx(0) = b there is no solution to the (11).
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(<) Assume that det(I — D22 D) # 0 and let x92(0) and xx(0) be given initial
conditions.

Note that ( 9) is satisfied if and only if

(s] — A) " twgn(0) 4 (sI — A) "' Byti(s) (12)
(sI — Ag) " 'xx(0) + (s — Ax) ™ Bgi(s) (13)

CaZao(s) + Dasti(s)

Col(sI — A) txos(0) + (sI — A) "' Byii(s)] 4+ Dagti(s)

Co(sI — A) t95(0) + [Co(sI — A) 1By + Dasli(s)

é1(s) + G(s)u(s) (14)

Crir(s) + Dry(s)
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|
— CK(SI — AK)_liCK(O) + [CK(SI — AK)_lBK + DK]:Q(S)
= éy(s) + K(s)y(s) (15)

where é1(s) = Cy(sI — A) 12455(0) is determined by z25(0),

é2(s) := Ok (sl — Ag) "tz x(0) is determined by z,(0),

Gog = CQ(S] A) 132 + Dos and K = CK(S] — AK)_lBK + Dy are the
transfer functions of GG and K. Note that by substituting into (74) the relation
(15) we have

y(s )

é1 (S) + GQQ(S)
& (I —Gaa(s)K(s))4(s) é

[€2(s) + K(s)g(s)]
1(8) —+ GQQ(S)é (S

)

As (I — D23 Dk ) is invertible it follows that the transfer function
(I — Ga2(s)K (s))~! exists (as it has full normal rank) and is proper. Thus y(t)
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is uniquely determined from e (¢) and ex(t) that in turn are fixed for the x42(0)
and z(0) given.

Note that «(t) is uniquely determined causally from the equation (15) as y(s)
IS uniquely determined.

Similarly xz42(¢) and zx (t) are uniquely determined from the equation (1~) and
(12) as y(t) and u(t) are uniquely determined. H
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Well-posedness: Input-output Viewpoint

1 = Gy

+

+ V2
<y

+

Figure 4: Parametrization of stabilizing controllers for Gss.

Consider the interconnection shown in Figure 4 where G5, and K are
iInput-output maps whose realizations are not available. In this case the
well-posedness property is defined in terms of the input signals v, and vs.
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Definition 34. The interconnection shown in Figure “ is said to be well
posed if for any signals vi and vy there exist unique signals y and u satisfying
the relations imposed by the interconnection and y and v should be
determinable from v, and vy causally.

Theorem 27. The interconnection in Figure < is well posed if and only if

A

I — GQQ(OO)K(OO)

IS invertible.

Proof:Left to the reader.
H

Note that in the above interconnection it is not needed that G5 or K be finite
dimensional.

Also, it is needed that the two well-posedness definitions should coincide
when state space realizations of (Goo and K are available.
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. A | B
Note that when Gy» and K have state space realizations [ C I D2 ] and
2 22
Ak | Bk ]
then
[ Ci | D

I — Gaz(00)K (00) = I — Dy D

This also implies that when (G5; and K have state space realizations then well
posedness implies all transfer functions between any input-output pair is a

proper transfer function. This follows from the causality requirement in well
posedness.

From Theorems 2/ and ¢ it follows that the definitions agree.
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Internal Stability of Interconnections

+C‘> = Gy

+ V2
K 4_!34—
y +

Figure 5: Parametrization of stabilizing controllers for Gss.

A | By
Cy | Dao

Suppose GGo2 and K have minimal state space realizations [ ] and
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[ Ak | B ] . It follows that the state space equations are described by
Ck | Dk
Zijgg(t) = AZCQQ(t) + BQU(t) xK(t) = AKiCk;(t) + BKy(t)
G el(t) = Cgﬂjzg(t) + DQQU(t) K 62(75) = CKQCk(t) + DKy(t)
z(0) = xg r(0) = =z
(16)
Also
u = v+ €9
Yy = Vgt eq.

Thus the interconnection is internally stable if and only if the combined state
r = (w92 xx)! converges to zero for any initial condition =(0) with the inputs
V1 — Uy = 0.

A | BQ AK | BK

Lemma 9. Let and
[C2|D22] [C’K|DK
representations of Gy and K. Consider the input and the output of the well

] be minimal state space
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posed interconnection as

o= () =)

respectively. Let the map between w and = be denoted by H(G42, K). Then
the state space description as given by Equation 16 is a stabilizable and
detectable realization of H.

Proof:

We will first establish Controllability of the interconnection realization (16).
Suppose x(0) := [x22(0) zx(0)] is a given initial condition and x4 := [z 3]
is the desired final condition to be reached at time ¢’.

From controllability of realizations of G5 and K it follows that there exist

266
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signals u(t) and y(¢) such that

71 =Too(t') = e 3(0) + fot/ eAt' =) Byu(tau)dr
To =zx(t') = etz (0)+ fot eAx (=) By (tau)dr
Let
€1 = CQCIJQQ(t) —+ DQQU(t)

€y = CK.Q?K(t)—I—DKy(t)

Define the signals v (%) := u(t) — ex and vo(t) = y(t) — e;.

Clearly, the signals v, vo and u, y form one input output pair that satisfy the
interconnection relationship. From well posedness with v; and v, as the input
u(t) and y(t) as defined above are the only possible signals.

Thus with v{ and v, as defined it is clear that the interconnection intial
condition z(0) is driven to the desired state z.
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The proof of observability is left to the reader.

An immediate consequence of the above lemma and Theorem 2¢ is the
following theorem

Theorem 28. The well posed interconnection described by Figure 5 with the
A | B Ak | Bk ]
and for G
Cy | Do Ck | Dk 22
and K respectively is internally stable if and only if the map H (G2, K) is a
stable map.

minimal state space descriptions

Proof:Follows from Lemma 9 and Theorem ~¢. H

Corollary 3. The well posed interconnection described by Figure 5 with the

and for G
Cy | Do [ Ck | Dk -
and K respectively is internally stable if and only if the maps

minimal state space descriptions
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(I — GQQK)_l, (I — GQQK)_1G22, (I — KGQQ)_l, and (I — KGQQ)_lK are
stable.

Proof:Note that

u— Ky U1
y—Goau = vy

() = (e ) (2)

- (6o -G ) (1)

H(G22,K)

From Theorem 2¢ it follows that the interconnection is internally stable if all
the elements of H(G42, K) are stable maps. N

7
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This motivates the following definition of internal stability when no state space
representations are available.

Definition 35. Consider Figure 5 where G,5 and K are linear time invariant
systems (possibly infinite dimensional). Then the interconnection is internally
stable in the L, sense if the following maps

o (I — GooK)™!

o (I —GpK) Gy
o (I — KGy)™?

o (I — KGap) 'K

are in H.
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In other words (5) is internally stable if

~1
I —K
( —Gao 1 ) < T
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Stability Theorem For MIMO Systems

Theorem 29. Letfng,, and nx be the number of rhp poles of Ga2 and K
respectively in the interconnection shown in Figure 5. Then the

interconnection is internally stable if and only if the following conditions are
satisfied:

1. The number of rhp poles of L := G2 K is equal to ng,, + nik.

2. The matrix transfer function (I — Goo K) ™1 is stable.

(L ) (0)=()

T

Proof:Note that

Consider a stabilizable and detectable realization of G5, and K
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{ Too(t) = Awxao(t) + Boult) { rr(t) = Agrg(t)+ Bry(t)
G22 61(t> = 0251322(15) —+ DQQU(t) K 62(t) = CKLUK(t) -+ DK’y(t)
z(0) = =z ri(0) = =z 1)

We will first obtain a stabilizable and detectable realization of T—!. Note that

V1 U — €9

y—e€1

c
S
|
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I —K
—Gay 1

() ()
(1) - U ) ) (0

Thus T admits a state space realization

Thus a state space realization of 7" := ( ) is described by

] i 5 _
A0 "By 0
- 0 Ag 0 Bg
0 —Cr | 1 “Dx
—Cy 0 | =Dy I
i —C D ]
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Thus

where

I —Dp \ !

—Doo 1
I+ (I —D92Dg) 'Dos Dg(I — DoeDg)™?
(I — D22 D)t Do (I — DoaDp)™*

0 n (I — D9gDg) tDay Dy (I — DagDg )™t )
0 (I — D32Dk) 'Day (I — DyoDg)™*
0 Dy
0o )T\

S
I
b
I

I
0
I

0 ) (I— DQQDK)_l( D22 1 )
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Thus

A= Atpplc=( 4 BCr ) ( BPx (I-Dg2Dp) ™' ( Oy D2oCic )
0 Ag Bg

The following are equivalent
e (A, B,C, D) is stabilizable and detectable.
e (A, By,C5, Dys) and (Ak, Bk, Ck, D) are stabilizable and detectable.

The above can be proven using the stabilizability and detectability
characterization provided (see Theorem ~= and Theorem 25).
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A realization of L = G, K is given by [ AL | B ] where
L

A ByC BsD
AL:( ° K>,BL:< ° K),CL:(CE D22Crk), Dr = DasDg.

0 AK BK
Also ) |B
S — I—L_lz S S]
1-1)7 = |G
where
A ByC BsD
As = :(o AiK)+<BzK)(I—D22DK)—1(02 D2sClc )

Bk
— D92Dg)™ 1 ( Oy D2Cik )
— Dy Dg) ™!

9
o
|

A
= 52D — DyoDpe) ™t
Bs = ((] )([ Ds2Dg)
(1

-
0
|
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The following are equivalent:

e (Ag,Bs,Cg, Dg) is stabilizable and detectable

e (A;,Br,Cpr,Dy) is stabilizable and detectable

The above can be proven using the stabilizability and detectability
characterization provided.

Now we prove the theorem
(=) Suppose the interconnection is internally stable.

This implies 7! is a stable transfer function. (A, B, C, D is a stabilizable and
detectable realization of 7! as established earlier. Thus there can be no
unstable pole zero cancellations in forming the transfer matrix 7. Thus

A = Ag has all eigenvalues in the open left half plane.
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This implies that the realization (Ag, Bs, C's, Dg) of S is a stabilizable and
detectable realization and that S is stable.

This implies (A, By, Cyr, Dy) is stabilizable and detectable (as Ag is stable
there can be no unstable pole zero cancellations).

This implies (1) in the theorem statement. We have established (2) that S'is
stable.

(<) Assume (1) and (2) to be true. Then from (1) it follows that

(Ap, Br,Cr, Dy) is stabilizable and detectable which in turn implies

(As, Bs,Cg, Dg) is stabilizable and detectable. As S is stable, As = A has all
eigenvalues in the open left half plane. Thus T—! the interconnection matrix is
stable.

This proves the theorem.
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Nyquist Stability Criterion For MIMO Interconnections

Theorem 30. Let L = G2 K be such that there are no unstable pole zero
cancellations while forming the product. Let the number of rhp poles of L be
denoted by P,;. The closed-loop interconnection of G5 and K is internally
stable if and only if the Nyquist plot of det(I — L(s))

1. makes P,; anticlockwise encirclements of the origin
2. does not pass through the origin.

Proof: Condition (1) of Theorem 29 is satisfied as there are no pole-zero
cancellations in forming the product L = G52 K. Condition (2) of Theorem 29 is
that S = (I — L(s))~! be stable, that is, it should have no poles in the rhp.

As in the proof of Theorem ~¢ let G2 and K have state space stabilizable and
A| B, ]and[AK|BK
Cy | Dao Ck | Dk

detectable realizations [ ] respectively.
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A realization of L = G, K is given by [ AL | B ] where
L

A ByC BsD
AL:(O A;K>,BL:( ° K),CL:(CE D2sCk), Dy = DysDk.

As there are no rhp pole zero cancellations in the product G55 K it follows that
above is a stabilizable and detectable realization of L. It follows that a
stabilizable and detectablle realization of S is given by




MIMO INTERCONNECTIONS

where

Ag = A:AL+BL(I—DL>_1CL
A ByC B>D
= o 4, )t ( B )(I_D”DK)_ (O Dalic )
BsD
Bs = 32 K ) (I — D22 Dk )~
K
Cs = (I—DyDg) ' ( Co D2Ck )
DS — (I_D22DK)_1

Thus the S is a stable map if and only if all eigenvalues of the Ag are in the
lhp. Thus the stability of S is characterized by the zeros of the polynomial

de1(s) = det(sl — A, — Br(I — DL)_lCL).

282
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We will use the following result which is called the Schur’s formula:

— det(P11)d€t(P22 — P21P1_11P12)
= det(Pao)det( P11 — P12P2_21P21)

P11 Pro
det
‘ [ P Pso ]

From above it follows that

¢Cl(8)d6t(l — DL) = det(s[; AL —BL(I ;DL)_lOL)det(I — DL)
22 11
det(sI — Ap)det|(I — D) — Cr(sI — A) 1By

doi(s)det(I — L(s))

This implies that
. Cbcl(s)

B gbol(s)c

det(I — L(s))

283
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where c is a constant and ¢.; and ¢.,;(s) are polynomials in s. Let IV be the
number of clockwise encirclements of the origin of det(I — L(s)) as s varies
over the Nyquist contour. Let P,; and Z be the number of zeros in the rhp of
do1(s) and ¢ (s). From the Argument principle we have

N=7—-P,.

Stability of S is guaranteed if and only if Z = 0. Thus S is stable if and only if
the Nyquist plot of det(I — L(s)) should encircle the origin P,; times in the
counterclockwise direction without touching the origin.

This proves the theorem.

284
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Parametrization of Stabilizing Controllers
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Coprime Factorization for MIMO Systems

Definition 36. [rcf, Icf, dcf] Stable FDLTIC systems M and N are right
coprime if there exist stable FDLTIC systems X andY such that the
s-transforms satisfy the identity

~ ~

X(s)M(s) —Y(s)N(s) =1. (18)

Stable FDLTIC systems M and N are left coprime if there exist stable FDLTIC
systems X andY such that the s-transforms satisfy the identity

~ ~

M(s)X(s) — N(s)Y(s)=1. (19)

Suppose T = NM~! = M~LN where N and M are right coprime and M and
N are left coprime. Then the pair N and M form a right coprime factorization
(rcf) of T and the pair M and N form a left coprime factorization (lcf) of T.

A doubly-coprime factorization (dcf) of a FDLTIC system T' is a set of stable
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FDLTIC maps M, N, M and N such thatT = NM~'= M~—'N and
X -Y M 'Y

Note that the dcf identity is a compact way of expressing

X(s)M(s) =Y(s)N(s) = I

M(s)X(s) — N(s)Y(s) = I
NM—1 = M-IN
YxX-! = Xy
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Interconnection of FDLTIC Systems

1 = Gy

+

+ V2
K Py

+

Figure 6: Parametrization of stabilizing controllers for Gss.

Lemma 10. Let Goy be a FDLTIC system which has a dcf given by
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Goo = NM~1 = M~1N where

X -Y M Y
(—N M)(N X)ZI' (21)

A FDLTIC controller K stabilizes the closed loop map shown in Figure ¢ if and
only if K has a rcf K = Y1 X[ ! such that the map

M Y
N X;
has a stable inverse.

Proof:
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e, U mAS ] N

>CA)—. —
_|_
N 1] %
Y e—1 X fe—b"—
y +
Figure 7:

—1

S 1 M Y .
(<) Suppose an rcf of K is given by Y; X, * and suppose ( N X IS

1

stable. It is clear that the Figure © is the equivalent to Figure /. Note that the

Y1

map from (£, n) to (v1, vs) is given by ( A]IV TX ) . Because the inverse
— 1
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of this map is stable it follows that the map from (v, v5) to (£, n) is stable. But
||?JHp HNf + 'U2Hp < HNHp md”pr + HU2Hp and

lullp = 1Yan + v1llp < [1¥1llp—inalln]lp + [[o1]l,- Thus the map from (vy, v2) to
(u, y) is stable and therefore the closed loop map is stable.

(=)Let FDLTIC controller K be such that the closed loop map in Figure © is
stable. Thus the map from (vq, v2) to (u, y) is stable. Every FDLTIC system
admits a dcf (see Lemma 13), and therefore it admits a rcf also. Let a rcf of K
be given by K = Y; X !. From the dcf of G5 it is follows that XM~-YN=1.
Multiplying both S|des of this equation by £ we have £ = X (u) =Y (y — vs) and
thus [|€llp < || X |p—indlltelly + 1¥ lp—ina(llyll, + [[v2]l,). This implies that the
map from (vq, vo) to (&, n) is stable. Thus the inverse of the map

M =Y ).
( N X, )IS stable. u
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Youla Parametrization

Theorem 31. Let FDLTIC system (G2 admit a dcf as given in Lemma
Then K is a FDLTIC stabilizing controller for the closed loop system in Figure
if and only if

K= (Y -MQ)X-NQ)'=(X-QN)" (Y -QM),
for some FDLTIC stable system Q).

Proof:(«<) Multiplying both sides of (1) by ( é 32 ) from the left and by

( é _IQ ) from the right we have

X—-QN -Y+QM M Y-MQ)\
A -1 e
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where (@ is a stable FDLTIC map. From Lemma 10 it follows that

K=Y —-MQ)(X — NQ) !is a stabilizing controller. It also follows from (22)
that (Y — MQ)(X — NQ)™' = (X — QN)"Y(Y — QM) (follows from the
observation that the (1, 2) element of the product in (©~) is zero).

(=) Suppose K is a stabilizing controller. Then from Lemma 10 we know that
there exist stable FDLTIC systems Y; and X such that K = Y; X; ' and

(M Y]

—1
N X, > IS stable. Thus it folows that

X -Y M Y1\ (I -QD
(-NM N Xy ) \o D

is stable with a stable inverse where D = —NY; + M X; and
Q := —(XY; — YX;)D~!. Therefore D is stable with a stable inverse. Thus
D~ is a stable system and therefore @ is also stable. Multiplyng both sides of

293
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the above equation by ( ]\]\47 ?;( ) we have

(% 2)=(¥ &383)

By comparing entries in the above equality we have the result that
K= (Y —-MQ)(X — NQ)" ! This proves the theorem. |
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Generalized Plant

Many control design issues can be cast into the framework shown in Figure

e (G is the generalized plant.

e w Is the exogenous input

11

21

G

12

22

z

K

y

Figure 8:
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e u is the control inputs
e y IS measured output
e z is the regulated output.

e K is the controller which maps the measured outputs y to control inputs «
when v, and v, are zero.

Both K and G are linear systems. With respect to the interconnection of
systems G and K in Figure &, the first issue that needs to addressed is the
existence and uiqueness of signals z, u and y for given input signals

w, v1 and vs.
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Well-posedness of Interconnection

Definition 37. The interconnection in Figure & is well posed if for arbitrary
inputs w, v1 and vy, u and y can be uniquely determined from w, v, and vs in a
causal manner.

An equivalent definition in the case G = [ é I g ] and K = [ Ak | Bk ]
are FDLTIC is

Definition 38. The interconnection in Figure & is well posed if for arbitrary
initial conditions x(0) and zx(0) the dynamics

ra(t) = Azg(t) +B( :LU(t) ) and g (1) Arxi(t) + Bry(t)
y(t) = Crm() +D( ‘ ) u(t) = Cxax(t)+ Diy(?)

(23)
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where w = vy = v = 0 has trajectories x(t) and x k(t) uniquely defined that
satisfy (©2). The above condition must hold for arbitrarily small perturbations
of the state space matrices.
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Well Posedness

Let us assume that in Figure & G and K are FDLTIC systems. Also assume
that a stabilizable and detectable state-space description of GG is described by

A Bi1 Bs
G = ( gll gz2 ) = Cy D11 Do
o - s Da1 Dag

This notation is a convenient way of writing

G11:[A|Bl ]7G12:[A|BQ ]7G21:[A|B1]

Ci | Dy Ci | D12 Cy | Do
A | B
and Gog = [ s I D222 ]

Theorem 32. With the state space representations of G and K as given
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above, the interconnection is well posed if and only if

det([ — D22DK) 7é 0.

Proof:: Left to the reader (Follows similar arguments as provided in the proof
of well posedness of G5 and K interconnection. |
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Input Output Map

Note that for the interconnection in Figure © the existence and uniqueness of
z,u and y is sufficient for the well-posedness of the interconnection. The
signals satisfy the relation

I —G12 0 Z G11 0 0 w
0 I —K u | = 0 I K v | . (24)
0 —GQQ I Yy G21 0 0 V9

We will suppose throughout that the interconnection is well-posed. This is
guaranteed if the map G»s is strictly causal. Let H (G, K) be such that

z w
u | =HG,K) [ v
Y U2

The interconnection described by H (G, K) is often referred to as the closed
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loop map.
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Stability of Closed Loop Maps

Definition 39. [Stability of closed loop maps] The closed loop map
described by Figure & is ¢, stable if | H(G, K)||p—ina < 00. In such a case K is
said to be a stabilizing controller in the ¢, sense.

Lemma 11. There exists a FDLTIC system K which stabilizes the closed
loop in Figure & if and only if (A, Bs) is stabilizable and (A, C5) is detectable. If
I and L are such that A + BoF and A + LC5 are stable matrices then a
controller with a state space realization given by

A+ ByF 4 LCy 4 LDy F | —L
k= F o ]

(25)

stabilizes the closed loop system depicted in Figure &.

Proof:(«<) If (A, Bs) is stabilizable and (A, C5) is detectable then there exist
matrices F' and L are such that A + B>,F and A + LC, are stable. Let K be a
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controller with a state space realization given in (25). It can be shown that the

closed loop system has a state-space description given by [ é I g ] where
i A ByF
N —LCy A+ BsF + LCo 7
which has the same eigenvalues as the matrix
— L A+ ByF .
Thus A is stable from which it follows from Theorem 26 that the closed loop

map is stable.

(=) If (A, Bs) is not stabilizable or (A, C2) is not detectable then some
eigenvalues of A will remain unstable for any FDLTIC controller K. Details are
left to the reader. N
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The controller K given above is called the Luenberger controller

Lemma 12. Suppose (A, B,) is stabilizable and (A, C5) is detectable. Then
FDLTIC system K stabilizes the closed loop system depicted in Figure & if and
only if it stabilizes the closed loop system depicted in Figure ©.

Proof:(=) The closed loop map depicted in Figure © is described by the

equations
VAR Gllw + G12u
Yy = G21w + G22U (26)
u = Ky + KUQ -+ V1.

The description of the closed loop map depicted in Figure © is given by

GQQ’LL
Ky + Kvg + vy.

Y
U

(27)

It is thus clear (substitute w = 0 in (26)) that if the map from (w, vy, v2) to
(z, u, y)in (26) is stable then map from (v, v2) to (u, y) in (27) is stable.
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(<) Suppose K is a stabilizing controller for the closed loop map in Figure

Let [ Ak | B ] be a stabilizable and detectable state-space description of
Cx | Dk
K. By assumption [ él I 5 E ] IS a stabilizable and detectable state-space
2 22

description of Go5. Suppose, [ g I % ] IS a state-space description of the

closed loop map obtained by employing the aforementioned state-space
descriptions of G2z and K. Then one can show that (A, B) and (A4, C) are
stabilizable and detectable. Thus from Theorem 26 it follows that A is stable.

If [ g I g ] IS a description of the closed loop map in Figure & obtained by
. - Ax | Bx A|B
using the descriptions [ O | D{< ] for K and [ C | 5 ] for Go5 then by

computing A one can verify that A = A. Thus A is stable and therefore from
Theorem 2 it follows that the closed loop system in Figure © is stable. H
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Youla Parametrization of Stabilizing Controllers

Theorem 33. Suppose (A, B) is stabilizable and (A, C5) is detectable. Let
FDLTIC system Goo admit a dcf as given in Lemma 0. Then K is a FDLTIC
stabilizing controller for the closed loop system in Figure & if and only if

K=Y -MQ)(X-NQ) ' =(X-QN)"'(Y - QM),

for some FDLTIC stable system Q).

Proof:Follows immediately from Theorem =1 and Lemma

307
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Youla Parametrization of Closed-loop Maps

- By using the above parametrization we can show that
K(I —GypK)™ ' =(Y - MQ)M.
The map from w to z in Figure © is given by
® =G+ G1oK(I — G K) 'Goay.

Thus we have the folowing theorem

Theorem 34. Let G be FDLTIC system and let Gy admit a dcf as given in
Lemma 10. ® is a map from w to z in Figure & for some FDLTIC, K which
stabilizes the closed loop if and only if

®=H-UQV,
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where

H = Gi1+ G12YMGo
U = Q12M
V. = MGy

and () is some stable FDLTIC system.
We now present a result which is a generalization of Theorem

Theorem 35. [Youla parametrization] Let G be a FDLTIC system and let
Goo admit a dcf as given in Lemma 70. ® is a map from w to z in Figure & for
some linear, time invariant, causal K which stabilizes the closed loop in the
{~ sense if and only if

d=H-UQV,
where -
H = Gi1+4+ G2Y MGy
U = CilQM
V = MGQl

and () is some /., stable system.
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The parameter Q) is often referred to as the Youla parameter. The difference
between Theorem =4 and Theorem =5 is that in Theorem =5 the controller K
IS not restricted to be finite-dimensional. The proof of this theorem is similar to
the one presented for Theorem =4 except that an analogous result for coprime
factorization over /., stable systems is utilized.
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Existence of Coprime Factors

Lemma 13. LetT be a FDLTIC map with a state space description

[ g I g ] Suoppse( A, B) is stabilizable and (A, C) is detectable. Then

there exists a def of T.

Proof:In the definition of dcf let

v - [pemm) v - [Aserie)
v _A—;’LCIB—EILD]’ v AJ}LCISI’
N s R = o=
o AiéCI_JL]’a”d v o _A+OLC|BJE)LD].
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Then it can be shown that 7= NM~1 = M 1N and (20) is satisfied. N
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Multiple Input Multiple Output
Interconnections: Performance

Definition 40. [Group] A group is a set G with a binary operation
(.) : G x G — G defined which has the following properties.

1. (a.b).c = a.(b.c); associativity property.

2. There exists an element e in G such that a.e = e.a = a foralla inG. e is
called the identity.
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3. Forevery a in G there exists an element a~! in G such that
a.a ' =a"t.a=-e. a" ! is called the inverse of a.

Definition 41. [Subgroup] /f H is a subset of a group G the H is a subgroup
if H is a group with the binary operation inherited from G.

Lemma 14. H is a subgroup of the group G if the identity element e is in H, a
belongs to H implies a~! is in H and a and b belong to H implies a.b belongs
fo H.

Lemma 15. A group G has a unique identity element. Also, every element in
G has a unique inverse.

Definition 42. [Abelian group] A group G is an abelian group if for any two
elements in G, a.b = b.a.

Definition 43. [Homomorphism] Let G and H be two groups. ¢ : G — H is
a homomorphism between the two groups if ¢(a.b) = ¢(a).¢(b), for all a,b in G.
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Lemma 16. A homomorphism ¢ : G — H sends identity of G to the identity
of H and sends inverses to inverses.

Definition 44. [Isomorphism] An isomorphism is a homomorphism which is
one to one and onto.

Definition 45. [Fields] A field K is a set that has the operations of addition
(+) : K x K — K and multiplication (.) : K x K — K defined such that

1. multiplication distributes over addition

a.(b+c) = a.b+ a.c,

2. K is an abelian group under addition with identity written as 0 for addition.

3. K\{0} is an abelian group under multiplication with identity being 1.
Lemma 17. Ifin afield K elements a # 0 and b # 0 then ab # 0.
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Vector Space

Definition 46. A setV with two operations addition (+) : V x V — V and
scalar multiplication (.) : V x K — V, where K is a field defined is a vector
space over the field K if

1. V is an abelian group under addition.
2. multiplication distributes over addition

a.(b+c) =a.a+ a.b, foralla in K, foralla,binV.

The elements of the field K are often called as scalars. The vector space is
called a real vector space if the field K = R and the vector space is called a
complex vector space if the field K = C.
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Definition 47. [Algebra] V a vector space is an algebra if it has an operation
vector multiplication (-) : V x V. — V defined such that this operation
distributes over vector addition.

Definition 48. [Units] /f A is an algebra then x in A is an unit if there exists
someyinAsuchthatx-y=y-x=1.

Lemma 18. If A is an algebra with an associative vector multiplication and U
Is the set of units in A then U is a group under vector multiplication.

From now on we will restrict the field to be either the set of real numbers R or
the set of complex numbers C. Thus when we say K we mean either R or C.



MIMO PERFORMANCE 318

Normed Vector Space

Definition 49. A normed linear space is a vector space X with a function
||| : X — R defined such that

1. ||z|| > 0 and||z|| = 0 ifand only if x = 0.

2. ||ax|| = |a| ||x|| for any scalar o and vector x in X.

3. o+ yll < [l]] + [lyll.

Definition 50. [Induced Norm] Let (X, | -|x) and (Y,| - |ly) be normed

vector spaces. Let A: (X, | ||x) — (Y, ] - ||y) be a map. The induced norm of
the operator A is defined by

Az
||AH’Lnd = sup || ( )HY

»0 |T|lx
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Example 12. Let A be am x n matrix. Thus A : R — R™. Let the norm on
R™ and R™ spaces be the co norm (||z||s = max; |x;| where
r = (x1,...,2,)!.) Then the infinity induced norm is given by

[A|lo—ina = max Z‘a’%ﬂ

1<¢<m

Proof: Note that

lAzlloe = max; |}/, ajz;]
n
< maXsz 1 laijl |z
<

7| oo max; Y5 |ag|

Thus
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Suppose

Let z; = sgn(ai;).

Therefore

n
io = arg{mzaxz aij|}-
j=1

Then it follows that

max; | Y 5 ai;Z;|
n _

| an:1 (i3T5

Zj:l ‘aioj|

max; y . |aij]

1V

320
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Lemma19. Letx € C" andy € C™.

1. Suppose n > m. Then ||x||2 = ||y||2 if and only if there exists a matrix
UeC'™suchthatx =Uy andU*U = 1.

2. Suppose n =m. Then |z*y| < ||z||2||y||2.- Moreover the equality holds if and
only ifxr = ay for some o € C ory = 0.

3. ||xz|| = ||ly|| if and only if there is a matrix A € C™*™ with |A||2_ina < 1 Such
that x = Ay. Furthermore ||z|| < |ly|| if and only if || A||2—ina < 1.

4. |Uxl||2 = ||z||2 for any unitary matrix U.
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Lemma 20. Let A and B be matrices with appropriate dimensions. Then

1. p(A) < ||A|| where || - || is any induced norm.

2. ||AB|| < ||A|l || B|| where || - || denotes any induced norm.

3. |[UAV ||a—ina = ||Al|2—ing Where U and V' are unitary matrices.
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Theorem 36. Let A € C™*™. Then there exists unitary matrices U € C"*™
andV € C"*" such that

A=UXV*
such that
TS0
== 0
with ¥, = diag(o1,09,...,0,) Wherep = min{m,n} andoy > o9 > ...0, > 0.

o, are called the singular values of A.

Example 13. Let A C™*". Thus A :C" — C™. The two induced norm of A
IS Its maximum singular value.
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Proof: Note that

JAs];
20 Talls

IA

IA

IA

|UXV*x||2
max
z#0 |72

VUZV*2)*(ULV*z)
max
20 [z

Ve VIU*UXV *x
ImMax
70 2|2

VI VIV
ImMax
xZ£0 HV*ZCHQ

ImMax

z£0,y=V*e  ||yla

o?|y1|2 + o3yal? + ... + 02|y, |?
max
x#0,y=V*x Yll2
2 2 2 2 2 2
max \/01|?/1‘ ‘|‘01‘y2 ‘|‘---‘|‘01|yp‘
x#0,y=V*x Yl||2
VI + T2l + 4 )2
o1 max
2A0,y=V "z Iy ll2

1.
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Let

325

Tr = V€1
where e; = (1,0,0...,0)%. Then it follows that

max A%z o jasg

220 |zlls = TEl
|UXV*Z||2
HUEV*V€1||2 '
[UXe]|2

01

Therefore
HAH2—z'nd = 01.
|

Also the notation 5(A) = o, is used to denote the maximum singular value of
Aand g(A) = o0, is utilized to denote the smallest singular value of A.
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It follows from UXV* = A that

A’Ui = O;Uy
A*ui 0O;U;

Thus
A*A’UZ' JiA*u@- = O',?Ui
2

>k _ I
AA*u; = o0;Av; =oju;

Thus o7 are the eigenvalues of A*A and AA*.

326
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A
Lemma 21. 1. 5(A):max” zll2
0 |||
2 g — min A%l
0 |||

327
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The £, and the H,, spaces

e L(jR) is the Banach space of matrix valued functions that are essentially
bounded on the imaginary axis with the norm

| F|loo := ess sup o[F(jw)].
weR

e H.. is the Banach space of matrix valued functions that are essentially
bounded on the imaginary axis and analytic in the closed right half plane
{s: Re(s) > 0} with the norm

|Flloc == sup  a|F(s)] = ess sup g[F(jw)].
s:Re(s)>0 weER

e R'H is the subspace of H., that consist of elements that are real and
rational functions of the complex variable s.

328
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The H.. norm is the two induced norm

Suppose G € L, be a p x g transfer matrix. Consider the multiplication
operator induced by G on

@zwwmv=/ £ () P < o0

— 00

defined by
MG : [,2 — HQ; Mc;f = Gf

Theorem 37. LetG € L, be ap x q transfer matrix. Then

IMal| == [[Mgll2—ina = [|Glloc-

Proof: Note that
[Mg|| = sup{[|Gfll2 : || fll2 < 1}.
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Now

1GFIlz = [y [T (w)G"(jw)G(jw) F(jw)d
= [ 1GGw) f(w) 3
< [0 oG IF ()l
< |Gllso [ 1f(Gw)]I5
Thus
[Mc|| =sup{[|Gfllz: Ifll2 <1} < |G-

This proves one side of the theorem. That || M| > |G| is left as an
exercise.

330
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Consider a p x ¢ MIMO transfer matrix G. Let y = G(s)u with

Y1 sin(wot + ¢1) w1 sin(wot + 601)
y(1) = ;:yg sin(wot + ¢2) and u(t) = ’.LLQ sin(wot + 602)
Yp sin(wot + ¢p) ug sin(wot + 6,)

It can be shown that
sup  |7ll2 = |G|

(92',(,()0,“’&”2
where
Y1 uq
_ _ u
g=| 7% | andu=| 2
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Performance Specifications

d; d
(reference) .<|: 1 .l .
; y F Y
3 U G
— K ' P .

L

UYm

+

T n
(measurement noise)

Figure 9:

e L, = KP is the input loop transfer matrix
e L, = PK is the output loop transfer matrix

o S; = (I + L;)"!is the transfer matrix from d; to u, IS the input sensitivity
matrix.
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o S,=(I+ L,)"!isthe output sensitivity matrix.
o T; = L;(I + L;)"!is the input complimentary sensitivity matrix

e T,=L,(I+ L, is the output complimentary sensitivity matrix.
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dr‘g {ﬂ
{(reference) .<L U
T ) P (7
K " P 4%—*

+

+|
(measurement noise)

Figure 10:

Loop equations are given by

Y = Ty(r—mn)+ S,Pd; + S,d
r—y = So(r_d)—f—Ton—SOPdi
U _

So(r —n) — KS,d — T;d;
S

K
K 0(7“ — TL) — KSOd+ Szdz

S
S
|
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Disturbance Rejection

Loop equations are given by

<
|

To(r —n)+ S,Pd; + S,d

r—y = Sy(r—d)+Tyn— S,Pd;

U = KS,(r—n)— KS,d—T;d;
KSO(’I“ — n) — KSOd + Szdz

S
S
|

e Good output disturbance rejection at the output y would require small

o(5,) = ol + PR) ) =~

e Good input disturbance rejection at the output y would require small

5(S,P) =&[(I + PK) 'P] =&(PS,)
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e Good input disturbance rejection at the plant input ,, would require small

1

7(8) = ol + KP) | = ——pp

e Good output disturbance rejection at the plant input u,, would require small

5(S;K) =a[(I + KP) 'K] =&(KS,)

Note that

It follows that

(KP)—|—1 S J(KP—I—I) = 5’(5) < c(KP)—1 |fQ(KP) > 1



MIMO PERFORMANCE 337

It follows that 7(.Sy) and 5(S;) are small if and only if o(PK) and ¢(K P) are
respectively large.

e Thus for good output disturbance rejection at the output one needs
o(PK)>>1

e Thus for good input disturbance rejection at the plant input one needs
o(KP)>>1

Now if its assumed that P and K are invertible and that ¢(PK) >> 1 then it
follows that

(I + PK)"'PKK~1))
(I + PK) ™ PK))a(K~)
(K1) |

(K)

|
Ql

5(S,P)=0c((I + PK)~'P))

QI

I |
q|

19
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Now & (S,P) has to be small for rejection of input disturbance at the output.
Thus

e good input and output rejection at the output <— ¢(PK) >> 1 and
o(K) >> 1in the appropriate frequency range.

Similarly if its assumed that P and K are invertible and that (K P) >> 1 then
it follows that

7(9;K)=0o((I+KP) 1K)) I+ KP)"'KPpP™1))
I + KP)"'KP))s(P™1)

|2 .
QI
: FU/\/\

Now & (S;K) has to be small for rejection of output disturbance at the input.
Thus
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e good input and output rejection at the input «<— ¢(KP) >> 1 and
o(P) >> 1 in the appropriate frequency range.

The condition that o(P) >> 1 is a fundamental limitation in the sense that no
controller can alleviate the situation if its not met.
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Noise Rejection

Loop equations are given by

<
|

= T,(r—mn)+ S,Pd; + S,d

r—y = Sy(r—d)+Tyn— S,Pd;

U = KS,(r—n)— KS,d—T;d;
= KS (’r—n)—KSOd—I—SZ-di

S
i
|
o

o Good noise rejection at the output requires 5(7,) = 5(L,(I + L,)~!) to be
small. This implies that 6(PK) << 1 in the frequency range where the
noise effects are predominant.

Thus a tradeoff has to be struck between good noise rejection and good
disturbance rejection. Also note that if 5(L,) << 1then S, ~ I and KS, ~ K.
Now the effect of noise on the control output « is given by

u=KSn.
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Thus

o To prevent the noise from saturating the controller (K) < M in the
frequency range where the loop gain is small.
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Performance Specifications Summarized

In a frequency range [0, w,] that characterizes the frequency content of the
disturbances and tracking needs

e 0(PK)>>1, o(KP)>>1, o(K)>>1.

In a frequency range |w,,, co) that characterizes the frequency content of the
noise and saturation effects

e 0(PK)<<1, 6(KP)<<1, o(K)<M.
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Linear Fractional Transformations
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Lower Linear Fractional Transformations

w A
My, Miqop g
U

Mo>1 Mpp Yy

Y

Y

A

K

Figure 11:

()= ()

u = Kuy.

Suppose

and suppose
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Then the map from w — z is given by
Fo(M,K) = My1 + MioK (I — My K) ™" Moy

called the lower fractional transformation of M and K.
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Upper Linear Fractional Transformations

A

A

(9 S
» Mq11 Mjo
s Mop1 Moo >
W 2
Figure 12:

Suppose
S . M11 M12 v
z )\ Ma DMy w

v = As.

and suppose
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Then the map from w — z is given by
Fu(M,A) = Moy + Moy A(I — My1A) ™" My,

called the upper fractional transformation of M and A.



LFT 348

G — K — A Framework
JAN

'G11 G122 Gis
Go1 Goo Go3
» G31 G32 G33

K

Figure 13:

Note in the above map
2z = Fu(Fo(G,K), A)w.
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The following lemma follows from simple algebra

Lemma 22. Suppose C is invertible. Then

(A+ BQ)(C + DQ)~ 1
(C+DQ)"YA+QB)™!

|
A
EE
ISt

where

v (ACTY B—ACT'D vo [ CA C-!
“\ct! —c'p YT\ B-DC'A -DC!' )°
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My Mo

Lemma 23. Let M =
<M21 Mo

> and M-, be invertible. Then

(Fu(M,A))™t = Fy(N, A)
where N is given by

N — ( My, — MMy Moy —MioMy,! )
Myt Mo, My
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Parametric Uncertainty: An Example
F

J 1 J 1 e
S S

1
m

k |

Figure 14:

Consider a spring-mass-damper system where the spring constant is k, the
mass m, and the damping factor is c. The dynamical equation is given by

. c. k F
r+—T+ —T=—
m m m

as describe by Figure

Suppose k, m and c are each uncertain by 1% of their nominal values k, m,
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and ¢. Thus

| |
pr— — C ]_ .166 .
m w1015, ande=al+0.10)

k= k(1+0.155),

Note that ——515 = Fe(Mi,m) where

1o
Mz(? —(7)7.7’1)'

The block diagram in terms of the uncertainties é,, 9,,, and é. is given in
Figure
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O
Figure 15:
It can be verified that
i 11
( .1 )IFg(M,A) i)
L2 F
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Polynomial dependence on uncertain parameters

» A
51 V1,8 Vo, 8 v b 4
" do L 2—52 £ 33(51 3. ¢ —O—> Y
b
Zl 65 0 0 | 21
,UQ 0 6o 0 |¢ 32
3 0 0 § [|—22
Zl o 000 1 il
2 1000 SQ
'”5 0100 y3
- b 0 ¢ a ——*>

y = (a+ bds + ¢6163)u = Fy(Mn, An)u

Figure 16:
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Polynomial dependence on uncertain parameters

52 (e} 83 v3 ! !
qu > i » C b H
61 01 T—' | ]:u(rd, Ad)
s v ; S A §
1 & 1, d d
1 81
sl e0 =
v3 1 53
0 0 & [
S—————
Ad
YI J o100 .
v2 ] 0001 52
v3 | 0100 53
| d 0 e O
- L
Uy Cd Yy

_ 1 _ 1 ,
YT IF R A)Y T (tdeoptesd)”
yr = (dd162 + e63)yp = Fu(l g, Dg)uy

Figure 17:
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Rational dependence on uncertain parameters

vy

w

S1 Ad vy
82
V1 An
- { ]
L
_ I_n Z
A; O
0 An
v1 S1
v 52
I [ )
_ (a+béy+cé14c6163) _
T 1+4db16pted? = Fu(l, A)w

Figure 18:
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A General Uncertainty Description

A

""G11 G12 Gis
Go1 Goo Go3
» G31 G32 G33

K

Figure 19:

Note in the above map
z = Fu(Fi(G, K), A)w.
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We have seen that a general description of the uncertainty is well captured by

A € {diag[51[T1,52[r2, .. .,(SSL«S,Al,AQ, .. ,AF] 0, €ER, A; € RHOO}

The allowable class of uncertainty is
Ay ={diag[o11,,,021,, ..., 05l A1, Aoy ... ) Ap]:0; € R, A; € RHoo}-
Associated with the above class of allowable perturbations we also define
BA 1 ={A € Aprr: ||Alloe < 1}
Note that for any A € BA ;- with

A =diag|011,,, 021y, ..., 0:1,, A1, Ao, ..., Ar] the following conditions are
equivalent

° [[Allee =1
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o |6 <1lforalli=1,...,sand ||Ai(s)]|ec <1foralli=1,..., F

We also define the following sets of constant matrices

A
BA

{diag[61[T1752I7“27 . '758[7"57A17A27 . 7AF] : 51 S R7 Az S C’ijmj}
[A€A:5(A) <1}

Lemma 24. Given a constant matrix A € A and w € R there exists a transfer
matrix A’(s) € BAr; such that

A= A(jw).
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Robust Stability of MIMO Systems

361



MIMO ROBUST STABILITY

Nominal Stability

A

v o v Gy Gy Gz °
, 11 G122 Gi3
G11 Gi2 Gi3 5 W Gy Oos Gy Z
w Go1 G2o Gog Gz1 Gz G33
o G31 G32 G33 Y
u Y u
(a) (b)
Figure 20:

Definition 51. The G — K — A interconnection in Figure ~0(a) is Nominally
stable (NS) if the G — K interconnection in Figure ~0(b) is internally stable.

362
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e Note that the interconnection in Figure 20(b) can be internally stabilized if G
A | B ] IS
C D

a minimal realization of GG then the inherited realization of (G353 has to be
stabilizable and detectable. Otherwise there will be no controller that can
internally stabilize the interconnection and thus no controller can achieve
nominal stability.

can be stabilized through the control input . In other words if
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v S
G11 Giz2 Gi3 g v
w Go1 Goo Go3 "
G31 Gzo G33 w
U Y
(a)
Figure 21:

e Suppose the interconnection in Figure
have nominal stability. Then

o N =F)(G,K) =G+ Gi12K(I — PyyK)~' Py will be stable.

N11
Noq

N2
Noo

(b)

(a) is internally stable. That is we

364
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The N — A Interconnection

M
v S
L Il T
(a) (b)
Figure 22:

Suppose the G — K interconnection is internally stable. Then it follows that the
G — K — A interconnection is nominally stable and N is stable with
N = Fi(G, K).

Now consider the N — A interconnection shown in Figure 22(a). It is evident
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that the N — A interconnection is stable if and only if N;; — A interconnection
In Figure 22 (b) is stable. This follows as N is stable and therefore N trivially

stabilizable through v.
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The Robust Stability

M
v S
i N A
(a) (b)
Figure 23:

Definition 52. The G — K — A interconnection is said to be robustly stable
for all A € BA . if the interconnection is internally stable for all A € BA ;.

From the discussion above it follows that the following two statements are
equivalent
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e The G — K — A interconnection is robustly stable

e The G — K interconnection is internally stable (Nominal Stability) and the
M — A interconnection is internally stable for all A € BA 7y with M = Nq;.
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A Robust Stability Theorem

Theorem 38. Assume that M is a stable transfer matrix. The following
statements are equivalent.

e The M — A interconnection is robustly stable with respect to Ay (thatis
the M — A interconnection is internally stable for all A € BApry).

o det(I — M(jw)A(jw) #0 forall A €e BAprr and forallw € R.

Proof: For A € BA s, A is stable. Note that as M and A both are stable we
have from the Nyquist criterion for MIMO systems the M — A interconnection
is stable if and only if the Nyquist contour of det(I — M (jw)A(jw)) does not
encircle the origin and does not touch the origin.

(1 = 2) This follows easily from the Nyquist criterion. Note that the Nyquist
criterion states that the contour of det(I — M (jw)A(jw)) should not touch the
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origin for stability. From (1) we have that the M — A interconnection is stable
for all A in BA 7 it follows that

det(I — M (jw)A(jw)) #O0forall A € BAprrand forallw € R.

(2 = 1) Suppose there exists a A € BA 7 such that the M — A
interconnection is not internally stable. From the Nyquist criterion atleast one
of the following conditions have to be violated

o det(I — M(jw)A(jw)) =0 for some w € R.

e The Nyquist contour of det(I — M (jw)A(jw)) encircles the origin at least
once.

If the first condition holds then the statement is proven. Suppose not. Then

the Nyquist contour of det(I — M (jw)A(jw)) encircles the origin at least once.

370
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Note that if f(e, s) := det(I — M (s)eA(s) then the Nyquist contour of f(e, s)
changes continuously with respect to €. For ¢ = 1 the Nyquist contour of f
encircles 0. For e = 0 the Nyquist contour is a single point 1. Thus for some

¢ € |0,1] and some w’ € R, f(¢',w’') = 0thatis det(I — M (jw')e'A(jw’)) = 0.

Its evident that A’(s) := ¢/A(s) € BApr;. Thus there exists a A’ € BA 7y

such that for some W/, det(I — M (jw")A’(jw')) = 0.

The following Corollary follows from the theorem above and Lemma

Corollary 4. Assume that M is a stable transfer matrix. The following
statements are equivalent.

e The M — A interconnection is robustly stable with respect to A ;.

o det(I — M(jw)A)#0 forall A € BA and for allw € R.
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A Robust Stability for Unstructured Uncertainty

Consider the uncertainty class
{A € RHo|[|Alloc < 1}
There is no structure to the class above. It is relatively easy to obtain

necessary and sufficient conditions for robust stability with respect to the
above class.

Lemma 25. Let A be a complex matrix. Then it follows that

< 0 =0 X
A p(AB) < max 6(AB) = 0(4)

Proof: Note that as &(-) is an induced norm it follows that

p(AB) < 5(AB)

372
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and thus

AB) < 0(AB).
6{%?}3{1'0( ) < 6%?;(10( )

Now suppose the singular value decomposition of A is given by UXV*. Let
B’ :=VU*. Then it follows that

(B <a(V)a(U*) =1.
Furthermore we have that
G(AB) = g(USV*VU*) = 6(USV*) = 6(2) =: o1.
Now

Thus it follows that
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Thus we have constructed a matrix B’ with gbar(B’) < 1 and
p(AB") = 6(AB’). Thus it follows that

AB) > 6(A).
(_Tl(f%%)lfélp( ) > 0(4)
This proves the lemma. u
Theorem 39. Let M (s) be a stable transfer matrix. The M — A
interconnection is internally stable for all A € {A" € RH : ||A||sc < 1} ifand

only if || M(s)|leo < 1.

Proof: (<) Suppose || M|, < 1.Let A € {A" € RH : ||Allco < 1}. Let
w € R. Then

p(M(jw)Ajw)) < 5(M(jw)A(jw)) < 5(M(jw))o(A(jw)) < 1.
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Thus it follows that
det(I — M(jw)A(jw)) # 0 forallw € R.

Thus from Theorem =& that the M — A interconnection is robustly stable with
respect to the class
A" € RHo @ ||Alloo < 1}

(=) Suppose || M|~ > 1 and suppose w is such that o(M (jw)) > 1. It follows
from Lemma

5fg§>§<1p(M(jw)A) =0o(M(jw)) > 1.

Thus there exists a constant matrix A with 7(A) < 1 such that
M(jw)Azx = \x

with x # 0 and || > 1. Let
1
A=A,
A
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Note that 6(A’) < 1 Then it follows that M (jw)A’ has an eigenvalue at 1 and
thus det(I — M (jw)A’) = 0. One can construct a A(s) € R'H, with the
property that A(jw) = A’ and ||Al| < 1. Thus we have constructed a A(s)
with [|A]ls < 1 with

det(I — M (jw)A(jw)) = det(I — M (jw)A") = 0.

From Theorem =& it follows that the M — A interconnection is not robustly
stable.
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A General Uncertainty Description
e Let the structure of the uncertainty structure be captured by the class A.

e Define pua : C™*™ :— R by

1

pa(M) = min{c(A) : det(] — MA) =0 with A € A}’

The following theorem elucidates the significance of this definition.

Theorem 40. Suppose the class of allowable uncertainty is given by A.
Then the M — A interconnection is stable for all A(s) € BAr; if and only if

pa(M(jw)) < 1 for all w.
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Proof: From Corollary 4 that the M — A interconnection is stable if and only if
forany w € R

det(I — M(jw)A) #0forall A €e BA
& |det(I — M(jw)A)=0forany A € Al =5(A) > 1

& minaca{d(A) :det(l — M(jw)A)=0}>1

1
minpca{c(A):det(I—M(jw)A)=0 } <1

= pa(M(jw)) <1.

This proves the theorem. N
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Properties of L.
1. For any uncertainty structure A and scalar «, p(aM) = |a|u(M).

2. For any uncertainty structure A

u(M) < o(M).

3. If the uncertainty structure A is such that it consists only of full complex
blocks A = {A € C"*"} then
p(M) =ao(M).

4. Let D be a set of matrices that commute with the matrices in A (that is if
D e Athen DA =AD forall A € A)thenforany D € D

(M) = p(DMD™H).
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5. Let D be a set of matrices that commute with the matrices in A (that is if
D e Athen DA =AD forall A € A)thenforany D € D

w(M) < a(DMD™1).

6. If the uncertainty structure consists only of complex blocks then

w(M) = max p(MA).

7. For any uncertainty structure A and for any unitary matrix U € A

W(MU) = p(M) = p(UM).

8. Let A consist only of complex blocks then

w(M) = max p(MU)
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where
U={U:UU=1IandU € A}.

Note that from Theorem we have that the M — A interconnection is
robustly stable with respect to A if and only if

ua(M(jw)) < 1forallw € R.

This condition can be replaced by

sup A (M (jw))] < 1.

Note M = N;; where N = F(G, K). Thus robust stability is guaranteed if one
can find a controller K that internally stabilizes the G — K interconnection and

sup [ua(M(jw))] < 1.
weR
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Thus the synthesizing the optimal controller will be obtained by solving the
following problem:

inf  suplua(M(K)(jw))].
K stabilizingwer

Note that computing ua (M (K)(jw)) is not easy and thus we replace it with its
upper bound & (M (K)(jw)). This bound can be improved by using the fact that

pa(M(K)(jw)) = pa(D(w)M(K)(jw)D™H(w))] < 6[D(w) M (K)(jw) D™ (w)]

for all D(w) € D where D is the set of complex matrices that commute with
matrices in A. Thus we can use the following bound

paM(K)(jw) < D({url)feD 5(D(w)M(K)(jw)D™).
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Thus we have the following problem to solve

inf sup inf &(D(wW)M(K)(jw)D 1 (w)).
k stabilizing w D()eD (D(w)M(K)(jw)D™"(w))

Let D be the set of maps from R — C™*™ such that every element D € D
satisfies D(w) € D. Thus the problem is

inf sup inf &(D(w)M(K)(jw)D 1 (w)).
K stabilizing « DebD

It is true that

sup inf 5(D(w)M(K)(jw) D™ (@)) = inf supa(D(w) M (K) (j) D™ ().
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Thus the problem becomes

inf inf supa(D(w)M(K)(jw)D H(w)).
K stabilizing Deb w

We will use another upper bound. Let
D, :={D(s) € RHX" : D" !(s) € RHZ™ and D(jw) commutes with A}.

Note that

inf inf sup&(D(w)M(K)(jw)D ! (w))
K stabilizing DeD w
< inf inf supa(Ds(w)M(K)(jw)D;(w)).
<t s oD M) () D7 (@)
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We will use the greater upper bound as it is easier to solve.

inf . stabilizing Mf D.ep. sup,, 7 (D (jw) M (K)(jw) D™ (jw))
= inf ¢ stabilizing 1 Psen. DM (K) Do

Things to note

e Suppose K is a stabilizing controller. Then

: —1
pif 1D M(K)D; oo (28)

can be solved.

e Suppose D, € RH. " is a fixed transfer matrix. Then

inf | D,M(K)D; | (29)
K stabilizing
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is a standard H., problem and can be solved.

e The joint problem

inf IDsM(K)D7 oo
K stabilizing, pseDy

Is hard to solve.

The D — K iteration scheme operates by first assuming D, = I. Compute K;
that solves (25). Then with K = K; solve the problem (29). Let D;(s) be the
solution. Solve (22) with D, = D, to obtain K. lterate to get a satisfactory
result. Note that there is no guarantee of convergence for this problem.

386
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Multiple Input Multiple Output
Interconnections: Robust Performance

387
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Robust Performance
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Figure 24
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Definition 53. The G — K — A interconnection achieves robust performance
if the G — K — A is robustly stable with respect to A and

| Fu(Fo(G,K),A)||loo <1 forall A € BALT;.

Theorem 41. The G — K — A interconnection achieves robust performance if
and only if the G — K — A interconnection is nominally stable and

SUp pap [ Fo(G K)(jw)] < 1

where
Ap:= {diag(Ap, A) A\ € ALTI}; Ap = RHZ;%anZ

Proof: (=) Suppose the G — K — A framework achieves robust performance.
Then it follows that G — K interconnection is internally stable (Nominal
Stability) and the N — A (with N = F4(G, K)) interconnection is stable for all
AecBA 7. Let A e BArrandlet M = fu<N, A) The N — A
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interconnection is stable and || F, (N, A)||sc < 1. Thus from Theorem =9 (small
gain theorem) it follows that the the M — A,, interconnection is stable for any

A, € {As € RHZ™ 1 || Aglloo < 1}

This proves that the M — A, interconnection is internally stable. This implies
that the interconnection of (G, K) and any A, € Ap with ||A,||c < 1S
stable. That is F,(G, K') achieves robust stability with respect to Ap. Thus
from Theorem

sup pap|Fe(G, K)(jw)] < 1.

(<) Suppose
sup 14, [ Fo(G, K) (jw)] < 1

and G — K interconnection is internally stable (Nominal stability). Then
Fi(G, K) is stable and F,(G, K) — Ap interconnection is internally stable for
any Ap € BAp.
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Let A € Arrr. Then the M — A, interconnection is stable with
M = F,(N,A) and

A, € {As € RHT™ 1 || Aslloo < 1}
From the small gain theorem on unstructured uncertainty it follows that
| M ||so < 1.

Thus
| Fu(N,A)||o < 1forall A € BALr;.
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H.. Loop Shaping
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McFarlane Glover Design
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McFarlane Glover Design

- Ay Ay
G+ I Lt gt Ty
--
K 2
Figure 25:

o The nominal plant is given in the coprime factor form as G = M~'N.

e The perturbed plant is given by

Ga=G=(M+Ay) '(N+Ay)

394
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where A,; and A, are stable unknown transfer functions.

e The robust design objective is to stabilize not only the nominal model but
the family of the perturbed plants given by

Ge = {(M + Ap) (N + An) < |[An, A |I3o < €}

with a controller K as shown in Figure
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Advantages of Coprime Factor Perturbation Form

e In the other forms of perturbations (e.g. additive uncertainty, multiplicative
uncertainty forms) the number of unstable poles of the nominal and the
perturbed plants has to be the same. In the coprime perturbation form the
number of unstable poles and zeros for the perturbed form can be different
than the number of unstable poles of the nominal plant.

e The solution in this case is particularly elegant.

e It can be used for robustyfying any existing closed loop design.
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Preliminaries

Definition 54. The feedback system of Figure 25 denoted by (M, N, K, ¢) is

robustly stable if and only if the interconnection (G a, K) is internally stable for
all Ga € G..
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M — A Structure

A T
"4 S
W—— P Z
K [~
u y
Figure 26:

We will first cast the coprime perturbation robust stability problem into the

398



Hoo LOOP SHAPING 399

standard framework shown in Figure 26 with A := [A;;, An]. Note that in this
case the signals w and z are absent and v in Figure “¢ corresponds to v in
Figure 25. Also, s in Figure 26 is given by the vector (sys, sn)?.



Hoo LOOP SHAPING 400

M
Sy N
o—|—» N + >0 - M
u K % J
Figure 27:
Note that
SM M~t M-IN .
SN = 0 I ( ” )
Yy M—t M-IN
P
U = Ky

Notethaty = Mo+ M *Nu=M"tv+Gu=M"1v+ GKy. Thus
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y= (I — GK) " *M~1'v. This implies that u = K(I — GK)~*M~'v. Thus we

obtain o
()= ()= (e e s )

M




Hoo LOOP SHAPING 402

Small Gain Theorem

e From the small gain theorem it follows that the interconnection is stable for
all A € G. if and only if

<

1
Ho €

Ml = | () (- Gx)
e Thus the robust stability problem in the coprime perturbation setting can be
solved by an equivalent H, problem.

e The solution is even more elegant; there is no need for iterations to obtain
the optimal controller which achieves the largest e.
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Glover McFarland Design

Theorem 42. A controller K is stabilizing and satisfies
(1 ya-emur

ifand only if K hasarcf K = UV ! forsome U,V ¢ RH., satisfying

I )+(v)

<7

Heo

N[—

< (L—y7%)2
Hoo
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Theorem 43. 1. Optimal solutions to the normalized Icf robust stabilization
problem gives

1
= {1~ [|[N, M7} 2.
Hoo

inf
K Stabilizing

|( f ) (I-GK) *M~!

2. The maximum robust stability margin is

1
€max — {1 — ||[N7 M”l%{}Q

3. All optimal controllers are given by K = UV~ where U,V € RH., satisfy

G )+ (V)

= I[N, M|z
Hoo
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McFarland Glover Controller

Theorem 44. The controller K (a positive feedback controller) that

guarantees
H( f ) (I-GK) ‘M1

for a specified v > ~vmin IS given by

<7

Heo

A+ BF +~+*(LY)"1ZC*(C + DF) | v*(L")"1zC*
BTX | —DT

where

N —

6Il’lELX

, F=—-5"YD'C+B'X), L=(1-)I+XZ,



Hoo LOOP SHAPING

and X and Z are the solutions to

406

(A-BS'D'CY'X +X(A-BS'D'C)-XBS'B'X +C'R'C =0and

(30)
(A-BS 'D'C)Z+Z(A-BS 'D*C)! —zZCT'R'CZ+BS'BY =0 (31)

withR=1+ DD andS =1+ DTD.
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SISO HsProblem



SISO Hg Problem

Consider a discrete time generalized system (z) and suppose that we
denote by A := 2~1. Then G(z) = G()\) is stable if and only if all poles X are
outside the unit disc. The unstable poles and zeros are the ones that are
inside the closed unit disc. Suppose the set of closed loop maps achieveable
via stabilizing controllers is given by

{HA) —UMNQ((N) : Q stable}

where h, u are stable transfer functions.

Suppose we denote the closed-loop map by ®(¢) := H — UQ. We denote the
Impulse response of the H, U, () and ® by h, u, g and ¢ respectively. As all
the transfer functions are stable we have that i, u, g and ¢ € ¢;.

Suppose the input to this system is white with variance 2. Then the output
variance is given by

o’y o(k)% = o*||413.

k=0

408
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Thus if ¢ denotes a system transfer function between a white noise input with
unit variance then the output variance is given by ||¢||2. The following problem
is of relevance

po = Mg giahilizing o (K13
= minQ stable{Hﬁb(K)”% ¢ =h —ugq}

Suppose the unstable zeros of u(\) are given by 21, 25, ..., z, that are all
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distinct and real. Note that

®(N) = H(N) —U(N)g(X) for some @ stable

IS stable

® stable and H(z;) — ®(z;) = 0forall: = 1,.
= o h(k)zF = bforallz_l...

S??.S

i

=% h(k)zF =:b;foralli=1,...

Z

& ¢ stable and H(A(}(/\‘f(/\)
&

< @ stable and Z%O P(k)z!
& O stableand ), _, ¢(k)z;
1 2z 2%
2
& ¢ e/ and 2%
1 2, 22

A

& ¢eftfyand Ag =0b.

¢(0) b1

o) | _ [ b
P(2) :

A : —~ - \ bn
¢ b

S S

410
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Thus the problem becomes

f
= ot bZ 6 (k

Using Lagrange multipliers the problem is equivalent to solving

p= maxyerninfhen {300, 0(k)? +y*[Ad — b}
= maX’yERn inf¢€g1{zk:0 |¢(k7)‘2 + ¢*A*y o b*y]}

Note that

411
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Thus v =>"" | y;v;. Thus

maxyerr infger, {d g |p(k)[* + ¢* A%y — byl }
maxye rn inf¢€€1{zzo:0 [o(k)]? + ¢*v — b*y]}
maxye rn infoer, {020l ¢(K) 12 + d(k)v(k)] — by}

L

Consider

inf {Z B(8) + o )u(k)] — by}

The solution can be obtalned by minimizing over each ¢(k) the expression

[o(k)* + d(k)v(k)]

which is minimized by
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Thus

14

—minyepn{d 32, 70(k)? + by}
Thus the problem reduces to solving the problem

1
in —y*AA” b*y.
;Ielg}l 4y y+oy

The solution to the above problem is given by

y = —2(AA*)" 0.

Thus the optimal v is given by

maxye gr infper {35 _oll0(k)|* + d(k)v(k)] — b*y}
maxycn (Y o b0 () — 3u(k)? — by}
maxyeRn{_ z:ozo iv(k)2 - b*y}

413
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and the optimal ¢ is given by

1
6= —gv=A(AA) D

and the minimum value p = (b*(AA*)~1b)~ 1.



