Linear Algebra Homework

Problem 1 If $A \in R^{n \times n}$ and α is a scalar what is $\operatorname{det}(\alpha A)$? What is $\operatorname{det}(-A)$?
Problem 2 If A is orthogonal, what is $\operatorname{det}(A)$? If A is unitary what is $\operatorname{det}(A)$?
Problem 3 Let $x, y \in R^{n}$. Show that $\operatorname{det}\left(I-x y^{T}\right)=1-y^{T} x$.
Problem 4 Show that the product of orthogonal matrices is orthogonal.
Problem 5 The trace of a matrix $A \in R^{n \times n}$ is defined as the sum of the diagonal elements:

$$
\operatorname{Tr}(A)=\sum_{i=1}^{n} a_{i i} .
$$

1. Show that the trace of a matrix is a linear function that is if $A, B \in R^{n \times n}$ and $\alpha, \beta \in R$ then $\operatorname{Tr}(\alpha A+\beta B)=\alpha \operatorname{Tr}(A)+\beta \operatorname{Tr}(B)$.
2. Show that $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$ eventhough in general $A B \neq B A$.

Problem 6 Suppose $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ is a linearly dependent set. Then show that one of the vectors must be a linear combination of the others.

Problem 7 Let $x_{1}, x_{2}, \ldots, x_{k} \in R^{n}$ be mutually orthogonal vectors. Show that $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ must be a linearly independent set.

Problem 8 Let $w_{1}, w_{2}, \ldots, w_{n}$ be a set of orthonormal vectors in R^{n}. Show that $A w_{1}, \ldots, A w_{n}$ are also orthonormal if and only if $A \in R^{n \times n}$ is orthogonal.

Problem 9 Consider vectors $v_{1}=\left(\begin{array}{ll}2 & 1\end{array}\right)^{T}$ and $v_{2}=\left(\begin{array}{ll}3 & 1\end{array}\right)^{T}$. Show that v_{1} and v_{2} form a basis for R^{2}. Find the coordinates of $v=(41)^{T}$ in this basis. What are the coordinates of v in the basis $e_{1}=\left(\begin{array}{ll}1 & 0\end{array}\right)^{T}$ and $e_{2}=\left(\begin{array}{ll}0 & 1\end{array}\right)^{T}$.

Problem 10 Let \mathcal{P} denote the set of polynomials of degree less than or equal to two of the form $p_{0}+p_{1} x+p_{2} x^{2}$ where p_{0}, p_{1} and $p_{2} \in R$. Show that \mathcal{P} is a vector space with the reals as the scalars. Show that the polynomials $1, x$, and $2 x^{2}-1$ are a basis for \mathcal{P}. Find the components of the polynomial $2+3 x+4 x^{2}$ with respect to this basis.

Problem 11 Suppose V and W are subspaces of X. Then show that

1. $V+W$ and $V \cap W$ are subspaces of X.
2. If $V \oplus W=X$ then show that every $x \in X$ can be written uniquely in the form $x=v+w$ where $v \in V$ and $w \in W$.
3. $\operatorname{dim}(V+W)=\operatorname{dim}(V)+\operatorname{dim}(W)-\operatorname{dim}(V \cap W)$.

Problem 12 Let X be the vector space of of $n \times n$ matrices with reals as the scalars. Let V be the set of $n \times n$ skew symmetric matrices (a matrix A is skew symmetric if $A=-A^{T}$) and let W be the set of $n \times n$ symmetric matrices. Show that $X=V \oplus W$.

Problem 13 Let $\mathcal{A}: V \rightarrow W$ denote the operator from the vector space V of polynomials of degrees less than or equal to n to the vector space W which is the same vector space as W with \mathcal{A} defined by

$$
\mathcal{A} v=\frac{d^{k} v(t)}{d t^{k}}
$$

Show that A is a linear operator. Find the null space and range space of \mathcal{A}.
Problem 14 Let V be the space of all polynomials. Let \mathcal{A} be defined by $\mathcal{A} v^{2}$. Show that \mathcal{A} is not linear.

Problem 15 Let v_{1}, v_{2}, v_{3} be a basis for the vector space V and let $\mathcal{A}: V \rightarrow V$ be a linear operator such that

$$
\mathcal{A} v_{1}=v_{1}+v_{2} ; \mathcal{A} v_{2}=v_{3} \text { and } \mathcal{A} v_{3}=v_{1}-v_{2}
$$

Find the matrix representation of \mathcal{A} with respect to this basis. Let $\hat{v}_{1}, \ldots, \hat{v}_{3}$ be another basis for V related to the basis of the previous problem by

$$
\hat{v}_{1}=v_{1}-v_{2} ; \hat{v}_{2}=v_{1}+v_{2} ; \hat{v}_{3}=v_{1}-v_{3}
$$

Obtain the matrix representation with respect to the new basis. Also, find the change of basis matrix.

Problem 16 Let v_{1}, \ldots, v_{n} form a basis for a vector space V. Let $Q=\left(q_{i j}\right) \in R^{n \times n}$ be a nonsingular matrix. Show that

$$
\hat{v}_{j}:=\sum_{i=1}^{n} q_{i j} v_{i}, j=1, \ldots, n
$$

also forms a basis for V.
Problem 17 Let V and W be a vector space and let $[V, W]$ represent the collection of all linear operators from V to W. Show that $[V, W]$ is a vector space and $\operatorname{dim}([V, W])=n m$ if $\operatorname{dim}(V)=n$ and $\operatorname{dim}(W)=m$.

Problem 18 Determine the bases for the range and null spaces of the linear operator $\mathcal{A}: R^{3} \rightarrow R^{2}$ defined by

$$
\mathcal{A} v:=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right)\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right)
$$

where $v=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)^{T}$.

Problem 19 Let A be a $m \times n$ matrix, b be a m - vector and (A, b) be the $m \times(n+1)$ matrix with the additional column b. how that $b \in \operatorname{range}(A)$ if and only if $\operatorname{rank}(A)=\operatorname{rank}(A, b)$.

Problem 20 Let λ and v be a an eigenvalue and a corresponding eigenvector of a linear operator $\mathcal{A}: V \rightarrow V$ and let v_{1}, \ldots, v_{n} be a basis for V. Let A be the matrix representation of \mathcal{A} in the given basis. Show that λ and α are an eigenvalue and eigenvector of A where α is the coordinate vector of v.

Problem 21 Let A be a $m \times n$ matrix. Prove that

$$
\operatorname{dim}\left(\operatorname{range}\left(A^{*}\right)\right)+\operatorname{dim}\left(\operatorname{null}\left(A^{*}\right)\right)=m .
$$

Problem 22 Let A and P be $n \times n$ matrices with P nonsingular. Show that $\operatorname{trace}\left(P^{-1} A P\right)=$ trace (P).

Problem 22 Let H be an $n \times n$ Hermitian positive definite matrix and A an $n \times m$ matrix. Show that $\operatorname{rank}(A)=\operatorname{rank}\left(A^{*} H A\right)$.

Problem 23 Prove that if A is a $m \times n$ matrix then $\operatorname{null}\left(A^{*} A\right)=\operatorname{null}(A)$ and $\operatorname{rank}\left(A^{*} A\right)=$ $\operatorname{rank}(A)$.

Problem 24 Prove that if $A \in R^{m \times n}$ then $\operatorname{rank}(A)=$ number of independent columns of $A=$ number of independent rows of A.

