Linear Algebra Homework

- Problem 1 If $A \in \mathbb{R}^{n \times n}$ and α is a scalar what is $det(\alpha A)$? What is det(-A)?
- Problem 2 If A is orthogonal, what is det(A)? If A is unitary what is det(A)?
- Problem 3 Let $x, y \in \mathbb{R}^n$. Show that $det(I xy^T) = 1 y^T x$.
- Problem 4 Show that the product of orthogonal matrices is orthogonal.
- Problem 5 The *trace* of a matrix $A \in \mathbb{R}^{n \times n}$ is defined as the sum of the diagonal elements:

$$Tr(A) = \sum_{i=1}^{n} a_{ii}.$$

- 1. Show that the trace of a matrix is a linear function that is if $A, B \in \mathbb{R}^{n \times n}$ and $\alpha, \beta \in \mathbb{R}$ then $Tr(\alpha A + \beta B) = \alpha Tr(A) + \beta Tr(B)$.
- 2. Show that Tr(AB) = Tr(BA) eventhough in general $AB \neq BA$.
- Problem 6 Suppose $\{w_1, w_2, \ldots, w_n\}$ is a linearly dependent set. Then show that one of the vectors must be a linear combination of the others.
- Problem 7 Let $x_1, x_2, \ldots, x_k \in \mathbb{R}^n$ be mutually orthogonal vectors. Show that $\{x_1, x_2, \ldots, x_k\}$ must be a linearly independent set.
- Problem 8 Let w_1, w_2, \ldots, w_n be a set of orthonormal vectors in \mathbb{R}^n . Show that Aw_1, \ldots, Aw_n are also orthonormal if and only if $A \in \mathbb{R}^{n \times n}$ is orthogonal.
- Problem 9 Consider vectors $v_1 = (2 \ 1)^T$ and $v_2 = (3 \ 1)^T$. Show that v_1 and v_2 form a basis for R^2 . Find the coordinates of $v = (4 \ 1)^T$ in this basis. What are the coordinates of v in the basis $e_1 = (1 \ 0)^T$ and $e_2 = (0 \ 1)^T$.
- Problem 10 Let \mathcal{P} denote the set of polynomials of degree less than or equal to two of the form $p_0 + p_1 x + p_2 x^2$ where p_0, p_1 and $p_2 \in \mathbb{R}$. Show that \mathcal{P} is a vector space with the reals as the scalars. Show that the polynomials 1, x, and $2x^2 1$ are a basis for \mathcal{P} . Find the components of the polynomial $2 + 3x + 4x^2$ with respect to this basis.
- Problem 11 Suppose V and W are subspaces of X. Then show that

1. V + W and $V \cap W$ are subspaces of X.

2. If $V \oplus W = X$ then show that every $x \in X$ can be written uniquely in the form x = v + w where $v \in V$ and $w \in W$.

3.
$$dim(V+W) = \dim(V) + dim(W) - dim(V \cap W).$$

- Problem 12 Let X be the vector space of $n \times n$ matrices with reals as the scalars. Let V be the set of $n \times n$ skew symmetric matrices (a matrix A is skew symmetric if $A = -A^T$) and let W be the set of $n \times n$ symmetric matrices. Show that $X = V \oplus W$.
- Problem 13 Let $\mathcal{A} : V \to W$ denote the operator from the vector space V of polynomials of degrees less than or equal to n to the vector space W which is the same vector space as W with \mathcal{A} defined by

$$\mathcal{A}v = \frac{d^k v(t)}{dt^k}.$$

Show that A is a linear operator. Find the null space and range space of \mathcal{A} .

- Problem 14 Let V be the space of all polynomials. Let \mathcal{A} be defined by $\mathcal{A}v^2$. Show that \mathcal{A} is not linear.
- Problem 15 Let v_1, v_2, v_3 be a basis for the vector space V and let $\mathcal{A} : V \to V$ be a linear operator such that

 $Av_1 = v_1 + v_2; Av_2 = v_3 \text{ and } Av_3 = v_1 - v_2.$

Find the matrix representation of \mathcal{A} with respect to this basis. Let $\hat{v}_1, \ldots, \hat{v}_3$ be another basis for V related to the basis of the previous problem by

 $\hat{v}_1 = v_1 - v_2; \hat{v}_2 = v_1 + v_2; \hat{v}_3 = v_1 - v_3.$

Obtain the matrix representation with respect to the new basis. Also, find the change of basis matrix.

Problem 16 Let v_1, \ldots, v_n form a basis for a vector space V. Let $Q = (q_{ij}) \in \mathbb{R}^{n \times n}$ be a nonsingular matrix. Show that

$$\hat{v}_j := \sum_{i=1}^n q_{ij} v_i, \ j = 1, \dots, n$$

also forms a basis for V.

- Problem 17 Let V and W be a vector space and let [V, W] represent the collection of all linear operators from V to W. Show that [V, W] is a vector space and dim([V, W]) = nm if dim(V) = n and dim(W) = m.
- Problem 18 Determine the bases for the range and null spaces of the linear operator $\mathcal{A}: \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$\mathcal{A}v := \left(\begin{array}{rrr} 1 & 1 & 1 \\ 2 & 2 & 2 \end{array}\right) \left(\begin{array}{r} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{array}\right)$$

where $v = (\alpha_1, \alpha_2, \alpha_3)^T$.

- Problem 19 Let A be a $m \times n$ matrix, b be a m-vector and (A, b) be the $m \times (n+1)$ matrix with the additional column b. how that $b \in range(A)$ if and only if rank(A) = rank(A, b).
- Problem 20 Let λ and v be a an eigenvalue and a corresponding eigenvector of a linear operator $\mathcal{A}: V \to V$ and let v_1, \ldots, v_n be a basis for V. Let A be the matrix representation of \mathcal{A} in the given basis. Show that λ and α are an eigenvalue and eigenvector of A where α is the coordinate vector of v.
- Problem 21 Let A be a $m \times n$ matrix. Prove that

 $dim(range(A^*)) + dim(null(A^*)) = m.$

- Problem 22 Let A and P be $n \times n$ matrices with P nonsingular. Show that $trace(P^{-1}AP) = trace(P)$.
- Problem 22 Let H be an $n \times n$ Hermitian positive definite matrix and A an $n \times m$ matrix. Show that $rank(A) = rank(A^*HA)$.
- Problem 23 Prove that if A is a $m \times n$ matrix then $null(A^*A) = null(A)$ and $rank(A^*A) = rank(A)$.
- Problem 24 Prove that if $A \in \mathbb{R}^{m \times n}$ then rank(A) = number of independent columns of A = number of independent rows of A.