Linear Algebra

Murti V. Salapaka
Electrical Engineering Department University Of Minnesota, Twin Cities

murtis@umn.edu

Preliminary Notation

- Column and row vectors
* A column vector x is a n-tuple of real or complex numbers

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

* A row vector

$$
x=\left[\begin{array}{lll}
x_{1} & \ldots & x_{n}
\end{array}\right], x_{i} \in C, R
$$

- $m \times n$ matrix is the following array

$$
A=\left[\begin{array}{lll}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right], a_{i j} \in C, R
$$

short hand notation is $A=\left(a_{i j}\right)$
It is useful to view A as a row vector of columns
$A=\left[\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right]$, where $a_{i}=\left[\begin{array}{l}a_{1 i} \\ \vdots \\ a_{m i}\end{array}\right]$
View A as a collection of row vectors

$$
A=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
\vdots \\
a_{m}
\end{array}\right], a_{i}=\left[\begin{array}{lll}
a_{i 1} & \ldots & a_{i n}
\end{array}\right]
$$

- Upper and Lower triangular matrices
$A=\left(a_{i j}\right)$ is the upper triangular if $a_{i j}=0, j<i$
- Transpose: A^{T} denotes the transpose of a matrix A whose elements are $A^{T}=\left(a_{j i}\right)$ if $A=\left(a_{i j}\right)$
- Conjugate Transpose:
$A^{*}=\left(\overline{a_{j i}}\right)$ if $A=\left(a_{i j}\right)$
- Symmetric:

A matrix A is Symmetric if $A=A^{T}$

- Hermitian:

A matrix A is Hermitian if $A=A^{*}$

- Multiplication:

$$
C=A B, A \in R^{m \times p}, B \in R^{p \times n}
$$

$$
C_{i j}=\sum_{k=1}^{p} a_{i k} b_{k j}=\left(i^{\text {th }} \text { row of } A\right)\left[j^{\text {th }} \text { column of } B\right]
$$

Fact:
If $C=A B$, then $C^{*}=B^{*} A^{*}$

Suppose $B \in R^{p \times n}$

$$
\left.\begin{array}{rl}
B & =\left[\begin{array}{lll}
b_{1} & \ldots & b_{n}
\end{array}\right] \\
A B & =\left[\begin{array}{lll}
A b_{1} & A b_{2} & \ldots
\end{array} A b_{n}\right.
\end{array}\right] \quad \begin{aligned}
A & =\left[\begin{array}{l}
a_{1} \\
\vdots \\
a_{m}
\end{array}\right] \\
A B & =\left[\begin{array}{l}
a_{1} B \\
a_{2} B \\
\vdots \\
a_{m} B
\end{array}\right]
\end{aligned}
$$

Orthogonal, Unitary Matrices, Linear Independence

Definition 1. - Orthogonal Matrix:
A is Orthogonal if $A^{T} A=A A^{T}=I$

- Unitary matrix:
A is unitary if $A^{*} A=A A^{*}=I$
- Orthogonal Vectors:

Given two column vectors x, y with n-element, they are said to be Orthogonal if $x^{*} y=0$.
They are Orthonormal if $x^{*} y=0, x^{*} x=1, y^{*} y=1$

- Linear Independence:

Given a set of column vectors with element each denoted by $x^{1}, x^{2}, \ldots, x^{m}$.

They are said to be independent if

$$
\sum_{i=1}^{m} c_{i} x^{i}=0 \Rightarrow c_{i}=0, c_{i} \in R
$$

. If $x^{1}, x^{2}, \ldots, x^{m}$ are not independent then they are said to be dependent.

Determinants

- Determinants:

Suppose

$$
B=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \text { then } \operatorname{det}(B) \triangleq a d-b c
$$

Suppose $A \in R^{n \times n}$ then let $A_{i j}$ be defined as the $(n-1) \times(n-1)$ matrix obtained by deleting the $i^{\text {th }}$ row and the $j^{\text {th }}$ column. $A_{i j}$ is called the co-factor associated with $a_{i j}$. Determinant of A denoted by $\operatorname{det}(A)$ is defined by

$$
\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det}\left(A_{i j}\right) .
$$

Properties of Determinants

- It can be shown that

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det}\left(A_{i j}\right) .
$$

- If any two rows or any two columns of A are the same then $\operatorname{det}(A)=0$.
- If any two rows (columns) are interchanged then the sign of the determinant changes but the magnitude remains same.
- If an row (column) is scaled by α then the det also gets scaled by α.
- $\operatorname{deta}(A)=\operatorname{det}\left(A^{T}\right)$ and $\operatorname{det}\left(A^{*}\right)=\overline{\operatorname{det}(A)}$.
- If a scalar multiple if a particular row (column) is added to another row (column) then the determinant remains unchanged.
- $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. (Not easy to prove).

Matrix Inverse

- Inverse of a matrix: Suppose $A \in R^{n \times n}$ and there exists a matrix X such that

$$
A X=X A=I .
$$

Then X is the inverse of A. An inverse of a matrix A is denoted by A^{-1}.
If A is invertible then

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{ll}
I & 0 \\
C A^{-1} & I
\end{array}\right]\left[\begin{array}{ll}
A & B \\
0 & D-C A^{-1} B
\end{array}\right]
$$

and if D is invertible then

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{ll}
I & B D^{-1} \\
0 & I
\end{array}\right]\left[\begin{array}{ll}
A-B D^{-1} C & 0 \\
C & D
\end{array}\right] .
$$

Simultaneous Equations

Consider the following set of n equations in n unknowns $x_{1}, x_{2}, \ldots, x_{n}$.

Another way of representing this set of equations is

$$
A x=b, x:=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], b:=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right] \text { and } A:=\left(a_{i j}\right)
$$

Gaussian Elimination

Theorem 1. Consider the equation

$$
A x=b
$$

where x and b are vectors in R^{n} and $A \in R^{n \times n}$. A and b are known and x is the solution to be determined. Then $A x=b$ admits a unique solution x^{*} if $\operatorname{det}(A) \neq 0$.

Proof: $A x=b$ is a notation for

$$
\begin{array}{cccccccc}
a_{11} x_{1} & +a_{12} x_{2} & + & \ldots & + & a_{1 n} x_{n} & = & b_{1} \tag{1}\\
a_{21} x_{1} & + & a_{22} x_{2} & + & \ldots & + & a_{1 n} x_{n} & = \\
b_{2} \\
\vdots & & \vdots & & \vdots & & \vdots & \\
\vdots \\
a_{n 1} x_{1} & +a_{n 2} x_{2} & + & \ldots & + & a_{n n} x_{n} & = & b_{n}
\end{array}
$$

Note that there is at least one i such that $a_{i 1} \neq 0$ (as $\left.\operatorname{det}(A) \neq 0\right)$. Without loss
of generality assume that $a_{11} \neq 0$. Perform the following operation: multiply the first row by $-a_{i 1} / a_{11}$ and add it to the $i^{t h}$ row for $i=2, \ldots, n$. Replace the $i^{t h}$ row with this row. This leads us to the following set of equations

$$
\begin{array}{cccccccc}
a_{11}^{(1)} x_{1} & +a_{12}^{(1)} x_{2} & + & \ldots & +a_{1 n}^{(1)} x_{n} & = & b_{1}^{(1)} \tag{2}\\
0 & + & a_{22}^{(1)} x_{2} & + & \ldots & + & a_{1 n}^{(1)} x_{n} & = \\
b_{2}^{(1)} \\
\vdots & & \vdots & & \vdots & & \vdots & \\
\vdots & + & a_{n 2}^{(1)} x_{2} & + & \ldots & + & a_{n n}^{(1)} x_{n} & = \\
b_{n}^{(1)}
\end{array}
$$

with the first row unchanged. The above set of equations can be denoted by $A^{(1)} x=b^{(1)}$ where $\left.A^{(1)}\right)=\left(a_{i j}^{(1)}\right)$. Note that $\operatorname{det}(A)=\operatorname{det}\left(A^{(1)}\right)$ and therefore $\operatorname{det}\left(A^{(1)}\right) \neq 0$. Using this fact we can assert that there is at least one $i \in\{2, \ldots, n\}$ such that $a_{i 2} \neq 0$. Without loss of generality assume that $a_{22}^{(1)} \neq 0$.
Perform the following operation: multiply the second row by $-a_{i 2}^{(1)} / a_{22}^{(1)}$ and add it to the $i^{\text {th }}$ row for $i=3, \ldots, n$ to obtain. Replace the $i^{\text {th }}$ for rows
$i=3, \ldots, n$ with the new rows. This leads us to the following set of equations

$$
\begin{array}{cccccccc}
a_{11}^{(2)} x_{1} & +a_{12}^{(2)} x_{2} & + & \ldots & + & a_{1 n}^{(2)} x_{n} & = & b_{1}^{(2)} \tag{3}\\
0 & + & a_{22}^{(2)} x_{2} & + & \ldots & + & a_{1 n}^{(2)} x_{n} & = \\
b_{2}^{(2)} \\
\vdots & & \vdots & & \vdots & & \vdots & \\
\vdots & + & 0 & + & \ldots & + & a_{n n}^{(2)} x_{n} & = \\
\vdots
\end{array}
$$

with the first two rows same as in (2). These iterations can be continued to obtain

$$
\begin{array}{ccccccccc}
a_{11}^{*} x_{1} & +a_{12}^{*} x_{2} & + & \ldots & +a_{1 n}^{*} x_{n} & = & b_{1}^{*} \\
0 & + & a_{22}^{*} x_{2} & + & \ldots & + & a_{1 n}^{*} x_{n} & = & b_{2}^{*} \tag{4}\\
\vdots & & \vdots & & \ddots & & \vdots & & \vdots \\
0 & + & 0 & + & \ldots & + & a_{n n}^{*} x_{n} & = & b_{n}^{*}
\end{array}
$$

with $a^{*} \neq 0$. Thus we have the unique solution

$$
\begin{array}{ll}
x_{n} & =b_{n}^{*} / a_{n n}^{*} \\
x_{n-1} & =\frac{b_{n-1}^{*}-a_{(n-1) n}^{*} x_{n}}{a_{(n-1)(n-1)}^{*}} \\
\vdots & \vdots \\
x_{1} & =\frac{b_{1}^{*}-a_{12}^{*} x_{2}-a^{*} 13 x_{3} \ldots a_{1 n}^{*} x_{n}}{a_{11}^{*}}
\end{array}
$$

The method used to obtain the solution of $A x=b$ in the proof above is called the Gaussian Elimination method.

Theorem 2. If $A \in R^{n \times n}$, then $\operatorname{det}(A) \neq 0$, if and only if A^{-1} exists.
Proof: Let e_{i} denote a column vector with 1 in the $i^{\text {th }}$ position, a zero
otherwise.

$$
e^{i}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

where $e_{k}^{i}=\delta_{i k}$. From Theorem 1, $A x=e^{i}$ has a unique solution x^{i}. Let

$$
\begin{aligned}
X & =\left[\begin{array}{llll}
x^{1} & x^{2} & \ldots & x^{n}
\end{array}\right] \\
A X & =A\left[\begin{array}{llll}
x^{1} & x^{2} & \ldots & x^{n}
\end{array}\right] \\
& =\left[\begin{array}{llll}
A x^{1} & A x^{2} & \ldots & A x^{n}
\end{array}\right] \\
& =\left[\begin{array}{llll}
e^{1} & e^{2} & \ldots & e^{n}
\end{array}\right] \\
& =I
\end{aligned}
$$

If A^{-1} exists, then $\exists X$ such that

$$
\begin{array}{ll}
A X & =I \\
\operatorname{det}(A X) & =\operatorname{det}(I) \\
\operatorname{det}(A) \operatorname{det}(X) & =\operatorname{det}(I)=1 \\
& \Rightarrow \operatorname{det}(A) \neq 0
\end{array}
$$

Therefore, A^{-1} exists $\Leftrightarrow \operatorname{det}(A) \neq 0$.

Theorem 3. Suppose A is a $n \times n$ real or complex matrix, then the following are equivalent:

1. $\operatorname{det}(A) \neq 0$
2. \exists a matrix A^{-1} such that $A^{-1} A=A A^{-1}=I$
3. $A X=b$ has a unique solution for every $b \in R^{n}$
4. $A X=0$ has the only solution $X=0$
5. The rows and columns of A are independent.

Proof: We have shown that $1 \Leftrightarrow 2$ from Theorem 2. We have also shown $2 \Leftrightarrow 3$ and $3 \Leftrightarrow 4$

To show $4 \Rightarrow 5$: Assume that scalars $c_{1}, c_{2}, \ldots c_{n}$ such that

$$
\begin{aligned}
c_{1} a_{1}+c_{2} a_{2}+\ldots+c_{n} a_{n} & =0 \\
{\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right] } & =0 \\
A c & =0 \\
c & =0(\text { from } 4) \\
c_{i} & =0 \text { for all } i
\end{aligned}
$$

Thus $a_{1}, a_{2} \ldots a_{n}$ are independent
To show $5 \Rightarrow 4$:
Note that $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right) \Rightarrow$ rows of A are independent \Rightarrow columns of A^{T} are independent $\Rightarrow \operatorname{det}\left(A^{T}\right) \neq 0 \Rightarrow \operatorname{det}(A) \neq 0 \Rightarrow 4$ holds which follows from equivalence of 1 and 4

Eigenvectors and Eigenvalues

Definition 2. Eigenvectors and Eigenvalues: Given a square matrix $A \in R^{n \times n}$, (or $A \in C^{n \times n}$,) $\lambda \in C$ is an eigenvalue of A if there exists a vector $x \neq 0 \in C^{n}$ such that

$$
A x=\lambda x
$$

Such a vector x is called an eigenvector of A associated with eigenvalue λ.
Theorem 4. Let $A \in R^{n \times n}$. Then the following statements hold.

1. λ is an eigenvalue of A if and only if $\operatorname{det}(A-\lambda I)=0$.
2. If λ is an eigenvalue of A then λ^{m} is an eigenvalue of A^{m}.

Proof: (1) Suppose λ is an eigenvalue of A. Then from the definition there exists a $x \neq 0$ such that $A x=\lambda x$ or in other words there exists $x \neq 0$ such that $(A-\lambda I) x=0$. From Theorem 3 it follows that $\operatorname{det}(A-\lambda I)=0$.

Suppose $\operatorname{det}(A-\lambda I)=0$. Then from Theorem 3 it follows that there exists $x \neq 0$ such that $(A-\lambda I) x=0$ which implied there exists $x \neq 0$ such that $A x=\lambda x$. Thus λ is an eigenvalue of A.

This proves (1).
(2) Suppose λ is an eigenvalue of A. Then from the definition there exists a $x \neq 0$ such that $A x=\lambda x$. Multiplying this equality by A on both sides we have $A^{2} x=\lambda A x=\lambda^{2} x$. Thus $A^{2} x=\lambda^{2} x$. Repeating this step m times we have $A^{m} x=\lambda^{m} x$. This proves the theorem.

Theorem 5. Let $p(\lambda)=\alpha_{0}+\alpha_{1} \lambda+\alpha_{2} \lambda^{2}+\ldots+\alpha_{m} \lambda^{m}$ and $p(A)=\alpha_{0} I+\alpha_{1} A+\ldots+\alpha_{m} A^{m}$.If λ_{0} is an eigenvalue of A then $p\left(\lambda_{0}\right)$ is an eigenvalue of $p(A)$.

Proof: λ_{0} is an eigenvalue, then $\exists x \neq 0$ such that $A x=\lambda x$

$$
\begin{aligned}
p(A) x & =\left(\alpha_{0} x+\alpha_{1} A x+\alpha_{2} A^{2} x+\ldots+\alpha_{m} A^{m} x\right) \\
& =\left(\alpha_{0} x+\alpha_{1} \lambda x+\alpha_{2} \lambda^{2} x+\ldots+\alpha_{m} \lambda^{m} x\right) \\
& =\left(\alpha_{0}+\alpha_{1} \lambda+\alpha_{2} \lambda^{2}+\ldots+\alpha_{m} \lambda^{m}\right) x \\
& =p(\lambda) x
\end{aligned}
$$

Theorem 6. Suppose A is an $n \times n$ matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ and A is nonsingular $(\operatorname{det}(A) \neq 0)$ then $\lambda_{1}^{-1}, \lambda_{2}^{-1}, \ldots \lambda_{n}^{-1}$ are eigenvalues of A^{-1}.

Proof: If λ is an eigenvalue, then $\exists x \neq 0$ such that

$$
\begin{aligned}
A x & =\lambda x \\
\Rightarrow \quad x & =\lambda A^{-1} x \\
\Rightarrow \quad \frac{1}{\lambda} x & =A^{-1} x
\end{aligned}
$$

Thus λ^{-1} is an eigenvalue of A^{-1}

Theorem 7. If A is an $n \times n$ matrix then A and A^{T} have the same eigenvalues. If A is an $n \times n$ matrix with eigenvalue λ then A^{*} has an eigenvalue $\bar{\lambda}$.

Proof: Note that $\lambda \in C$ is an eigenvalue of A if and only if

$$
\begin{aligned}
& \Leftrightarrow \begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}(A-\lambda I) & =0
\end{aligned} \\
& \Leftrightarrow \operatorname{det}(\overline{A-\lambda I})=0 \\
& \Leftrightarrow \operatorname{det}(\overline{A-\lambda I})^{T}=0 \\
& \Leftrightarrow \operatorname{det}\left(A^{*}-\bar{\lambda} I\right)=0
\end{aligned}
$$

Theorem 8. If A is a $n \times n$ matrix then

$$
\operatorname{det}(\lambda I-A)=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{1}\right) \ldots\left(\lambda-\lambda_{n}\right)
$$

where $\lambda_{i}, i=1, \ldots n$ are eigenvalues of A. Thus $\operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i}$.

Proof: The proof follows from the fact that $\operatorname{det}(\lambda I-A)$ is a $n^{\text {th }}$ order polynomial and thus will have n roots. From Theorem 4 it follows that λ_{i}, $i=1, \ldots, n$ are all roots of polynomial $\operatorname{det}(\lambda I-A)$. This proves the theorem.

Theorem 9. If A is a Hermitian matrix then all its eigenvalues are real.
Proof: Note that $A=A^{*}$. If λ is an eigenvalue of A then there exists a vector $x \neq 0$ such that $A x=\lambda x$.

$$
\begin{aligned}
A x & =\lambda x \\
\Rightarrow x^{*} A x & =\lambda x^{*} x \\
\Rightarrow\left(x^{*} A x\right)^{*} & =\left(\lambda x^{*} x\right)^{*} \\
\Rightarrow x^{*} A^{*} x^{*} & =\bar{\lambda} x^{*} x \\
\Rightarrow x^{*} A x^{*} & =\bar{\lambda} x^{*} x \\
\Rightarrow \frac{x^{*} A x^{*}}{\bar{x}^{*} x} & =\bar{\lambda} \\
\Rightarrow & =\lambda
\end{aligned}
$$

This proves that λ is real.
Definition 3. $A n \times n$ matrix A is said to be

1. positive definite if $x^{*} A x>0$, for all $x \neq 0$.
2. positive semi-definite if $x^{*} A x \geq 0$, for all x.
3. negative definite if $x^{*} A x<0$, for all $x \neq 0$.
4. negative semi-definite if $x^{*} A x \leq 0$, for all $x \neq 0$.

Theorem 10. An $n \times n$ is a Hermitian matrix. Then

1. all its eigenvalues are positive if A is positive definite
2. all its eigenvalues are non-negative if A is positive semi-definite
3. all its eigenvalues are negative if A is negative definite
4. all its eigenvalues are non-negative if A is negative semi-definite

Proof: We will prove (1). Let $x \neq 0$ and $A x=\lambda x$. As A is hermitian λ is real. Note that

$$
\begin{aligned}
& x^{*} A x \\
\Rightarrow \quad \frac{x^{*} A x^{*}}{x^{*}} & =\lambda \\
\Rightarrow \lambda^{x} & >0
\end{aligned}
$$

The last step follows as $x^{*} A x>0$, and $x^{*} x>0$.

General Vector Spaces

Definition 4. A linear Vector Space is a collection of objects called vectors with two operations," + " and "." defined between two vectors and a vector and scalar respectively which satisfy

1. $x, y \in V \Rightarrow x+y \in V$
2. $(x+y)+z=x+(y+z) \forall x, y, z \in V$
3. $x+y=y+x \forall x, y \in V$
4. There is an element 0 called the zero vector such that

$$
\underbrace{0}_{\text {scalar }} \cdot x=\underbrace{0}_{\text {vector }} \forall x \in V
$$

5. $1 . x=x \forall x \in V$
6. $\alpha(\beta \cdot x)=(\alpha \beta) \cdot x$ where α, β are scalars and $x \in V$
7. $(\alpha+\beta) \cdot x=\alpha x+\beta x, \alpha, \beta$ are scalars and $x \in V$
8. $\alpha \cdot(x+y)=\alpha x+\beta y, \alpha$ is a scalar and $x, y \in V$

Example 1.

Figure 1: (a) Scalar multiplication (b) vector addition.

Example 2. Let scalars be the real numbers and $V=R^{n}$.
$\left\{x: x=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right], \quad x_{i} \in R,\right\} \quad \quad{ }^{\prime}+\prime: V \times V \rightarrow V$

$$
x+y:=\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
\vdots \\
x_{n}+y_{n}
\end{array}\right], \quad x=\left[\begin{array}{l}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right], \quad y=\left[\begin{array}{l}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
$$

$$
x_{i} \in R, y_{i} \in R, \quad \alpha \cdot x=\left[\begin{array}{l}
\alpha x_{1} \\
\vdots \\
\alpha x_{n}
\end{array}\right]
$$

$$
x=\left[\begin{array}{l}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right], \quad y=\left[\begin{array}{l}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right], \quad z=\left[\begin{array}{l}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right]
$$

$(x+y)+z=\left[\begin{array}{l}x_{1}+y_{1} \\ \vdots \\ x_{n}+y_{n}\end{array}\right]+\left[\begin{array}{l}z_{1} \\ \vdots \\ z_{n}\end{array}\right]=\left[\begin{array}{l}x_{1}+y_{1}+z_{1} \\ \vdots \\ x_{n}+y_{n}+z_{1}\end{array}\right]$
similarly, $x+(y+z)=\left[\begin{array}{l}x_{1} \\ \vdots \\ x_{n}\end{array}\right]+\left[\begin{array}{l}y_{1}+z_{1} \\ \vdots \\ y_{n}+z_{n}\end{array}\right]=\left[\begin{array}{l}x_{1}+y_{1}+z_{1} \\ \vdots \\ x_{n}+y_{n}+z_{1}\end{array}\right]$
Example 3. Let

$$
V:=\{\text { set of all polynomials of order less than or equal to } n\}
$$

and the scalars be the real numbers. The vector addition operation is defined as follows: if

$$
p(t)=p_{0}+p_{1} t+\ldots+p_{n} t^{n} \text { and } q(t)=q_{0}+q_{1} t+\ldots+q_{n} t^{n}
$$

then

$$
(p+q)(t):=\left(p_{0}+q_{0}\right)+\left(p_{1}+q_{1}\right) t+\ldots+\left(p_{n}+q_{n}\right) t^{n} \text { and }
$$

$$
(\alpha p)(t)=\alpha p_{0}+\alpha p_{1} t+\ldots+\alpha p_{n} t^{n}
$$

Then V with the R as the scalars satisfies all the properties of a vector space.

Definition 5. Linear Independence: Let V be a vector space and let $v_{1}, v_{2}, \ldots, v_{n}$ be vectors in V. If $\sum_{i=1}^{n} c_{i} v_{i} \Rightarrow c_{i}=0$ where $c_{1}, c_{2}, \ldots, c_{n}$ are scalars, then we say $v_{1}, v_{2}, \ldots, v_{n}$ are independent.

Definition 6. Linear Combination: Suppose V is a vector space and
$v_{1}, v_{2}, \ldots, v_{n}$ are any vectors in V. Then $V=\sum_{i=1}^{n} c_{i} v_{i}$ is said to be a Linear
Combination of the vectors $v_{1}, v_{2}, \ldots, v_{n}$.

Definition 7. Subspace: Suppose X is a vector space. If $V \subset X$ and V is a vector space, then V is said to be a Subspace of X.

Definition 8. Span: Let X be a vector space and let $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ be vectors in X. Span $\left(x_{1}, \ldots, x_{n}\right)$ is the set of all linear combination of vectors $x_{1}, x_{2}, \ldots, x_{n}$.
$\operatorname{Span}\left(x_{1}, \ldots, x_{n}\right)=\left\{x \in X, \quad X=\sum_{i=1}^{n} c_{i} x_{i}\right.$, where c_{i} are scalars $\}$

Figure 3: $\operatorname{Span}\left(e^{1}, e^{2}\right)=E^{2}$, and $\operatorname{Span}(v, w)=E^{2}$
Definition 9. Basis: Let X be a vector space. Then a set of independent vectors $x_{1}, x_{2}, \ldots, x_{n}$ are said to be a Basis if $\operatorname{Span}\left(x_{1}, \ldots, x_{n}\right)=X$.

Example 6. - e_{1}, e_{2} is a Basis for E^{2}.

- $X=$ all polynomials of degree $\leq n$.
$X=\left\{\alpha_{0}+\alpha_{1} t+\alpha_{2} t^{2}+\ldots+\alpha_{n} t^{n} \mid \alpha_{i} \in R\right\}$
$\left\{1, t, \ldots, t^{n}\right\}$ forms a Basis for X.
$\left\{1,1+t, 1+t+t^{2}, \ldots, 1+t, \ldots,+t^{n}\right\}$ also forms a Basis.
- $X=\{$ polynomials or order $\leq 3\}$
$\left\{1,1+t, t^{2}, t, t^{3}\right\}$ is not a Basis (note that $1-(1+t)+t=0$ and therefore not independent).

Definition 10. Finite Dimensional Vector Space: X a Vector Space is said to be finite dimensional if it has a Basis which has a finite number of elements.
Any Vector Space that is not finite dimensional is said to be Infinite Dimensional Vector Space.

Example: $X=\{$ all polynomials of any degree $\}$ (infinite dimensional)

Dimension is unique

Theorem 11. Let X be a Vector Space. Suppose $x_{1}, x_{2}, \ldots, x_{n}$ and $y_{1}, y_{2}, \ldots, y_{n}$ are two set of basis Vectors for X, then $n=m$.

Proof: Assume without loss of generality that $m>n$. As $\left\{x_{j}\right\} j=1^{n}$ is a basis there exist constants $a_{j i}, i=1, \ldots, m$ such that

$$
y_{i}=\sum_{j=1}^{n} a_{j i} x_{j} .
$$

Let

$$
A:=\left[\begin{array}{llll}
a_{11} & a_{12} & \ldots & a_{1 m} \\
\vdots & & & \\
a_{j 1} & a_{j 2} & \ldots & a_{j m} \\
\vdots & & & \\
a_{n 1} & a_{n 2} & \ldots & a_{n m} \\
\vdots & & & \\
0 & 0 & \ldots & 0 \\
\vdots & & & \\
0 & 0 & \ldots & 0
\end{array}\right]_{m \times m}
$$

$\operatorname{det}(A)=0$. It follows from Theorem 3 that \exists an $\alpha \in R^{m}, \alpha \neq 0$ such that $A \alpha=0$.

Let us consider the linear combination

$$
\begin{aligned}
\sum_{i=1}^{m} \alpha_{i} y_{i}, \quad \alpha=\left[\begin{array}{l}
\alpha_{1} \\
\vdots \\
\alpha_{m}
\end{array}\right] \in R^{m} & =\sum_{i=1}^{m} \alpha_{i}\left(\sum_{j=1}^{n} a_{j i} x_{j}\right) \\
& =\sum_{j=1}^{n}\left(\sum_{i=1}^{m} a_{j i} \alpha_{i}\right) x_{j} \\
& =0
\end{aligned}
$$

Thus we have shown that there exist scalars $\alpha_{1}, \ldots, \alpha_{m}$ and $\sum_{i=1}^{m} \alpha_{i} y_{i}=0 \Rightarrow$ $y_{1}, y_{2}, \ldots, y_{m}$ are not linearly independent. This is a contradiction to the fact that $\left\{y_{i}\right\}_{i=1}^{m}$ are independent and thus $m=n$.

Definition 11. Dimension of a Finite Dimensional Vector Space: The Dimension of a Finite Dimensional Vector Space is the number of vectors in any basis of the vector space.

Suppose V_{1}, V_{2} are subspaces of a Vector space V, then

$$
\begin{gathered}
V_{1} \cap V_{2}=\left\{v \in V: v \in V_{1} \text { and } v \in V_{2}\right\} \\
V_{1}+V_{2}=\left\{v \in V: v=v_{1}+v_{2}, v_{1} \in V_{1}, v_{2} \in V_{2}\right\}
\end{gathered}
$$

$V_{1}+V_{2}$ is called the Direct Sum of V_{1} and V_{2} if $V_{1} \cap V_{2}=\{0\}$. The notation $V_{1} \oplus V_{2}$ is used to denote a Direct Sum.

$$
\begin{gathered}
\operatorname{dim}\left(V_{1}+V_{2}\right)=\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V_{2}\right)-\operatorname{dim}\left(V_{1} \cap V_{2}\right) \\
\operatorname{dim}\left(V_{1} \oplus V_{2}\right)=\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V_{2}\right)
\end{gathered}
$$

Independent vectors extended to form a basis

Theorem 12. Let V be a n dimensional vector space and let $v_{i}, i=1, \ldots, m$ be independent vectors with $m<n$. Then there exist n independent vectors $\hat{v}_{i}, i=1, \ldots, n$ such that $\hat{v}_{i}=v_{i}$ for $i=1, \ldots, m$.

Proof: Let

$$
V_{0}:=\operatorname{span}\left\{v_{1}, \ldots, v_{2}\right\} .
$$

Let $\hat{v}_{m+1} \in V$ such that $\hat{v}_{m+1} \notin V_{0}$. Such a vector exists from Theorem 11 and as $m<n$. Let

$$
V_{1}:=\operatorname{span}\left\{v_{1}, \ldots, v_{2}, \hat{v}_{m+1}\right\} .
$$

Clearly $\operatorname{dim}\left(V_{2}\right)=m+1$. Continuing the above process till we obtain

$$
\left.V_{(} n-m\right):=\operatorname{span}\left\{v_{1}, \ldots, v_{2}, \hat{v}_{m+1}, \ldots, \hat{v}_{n}\right\} .
$$

From Theorem 11 these set of vectors has to form a basis for V. The theorem follows by defining $\hat{v}_{i}:=v_{i}$ for $i=1, \ldots, m$.

Coordinates

Figure 4: The coordinates of w^{1} in the basis e^{1} and e^{2} is $[\cos \theta \sin \theta]^{\prime}$
Note that

$$
\vec{w}^{1}=\cos (\theta) \vec{e}^{1}+\sin (\theta) \vec{e}^{2}
$$

We say

$$
\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right]
$$

are the coordinates of \vec{w}^{1} in the bases \vec{e}^{1} and \vec{e}^{2}.
Note that \vec{w}^{1} and \vec{w}^{2} also forms a basis for E^{2}. As

$$
\vec{w}^{1}=1 \vec{w}^{1}+0 \vec{w}^{2}
$$

And thus the coordinates of \vec{w}^{1} in the basis \vec{w}^{1} and \vec{w}^{2} is

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Let V be a vector space and suppose $\left\{v_{i}\right\}_{i=1}^{n}$ be a set of basis vectors. Then
any vector $v \in V$ can be written as

$$
v=\sum_{i=1}^{n} \alpha_{i} v_{i}
$$

Then $\alpha_{1}, \ldots, \alpha_{n}$ are coordinates in the basis $\left\{v_{i}\right\}_{i=1}^{n}$ and

$$
\left[\begin{array}{l}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right]
$$

is the coordinate vector in the basis $\left\{v_{i}\right\}_{i=1}^{n}$. Note that if

$$
v=\sum_{i=1}^{n} \hat{\alpha}_{i} v_{i}
$$

then

$$
0=\sum_{i=1}^{n}\left(\hat{\alpha}_{i}-\alpha_{i}\right) v_{i}
$$

and as v_{1}, \ldots, v_{n} are independent it follows that $\left(\hat{\alpha}_{i}-\alpha_{i}\right)=0$ for $i=1, \ldots, n$. Thus $\alpha_{i}=\hat{\alpha}_{i}$ for all $i=1, \ldots, n$. This implies that coordinates are well defined.

Example 7. Suppose

$$
V=\{\text { all polynomials with degree less than or equal to } n\} .
$$

Note that the polynomials $1, t, t^{2}, \ldots, t^{n}$ forms a basis for V. Suppose p is a polynomial given by

$$
p(t)=\alpha_{0}+\alpha_{1} t+\alpha_{2} t^{2}, \ldots, \alpha_{n} t^{n}
$$

The coordinate vector of p in the basis $\left\{t^{i}\right\}_{i=0}^{n}$ is

$$
\left[\begin{array}{cc}
\alpha_{0} \\
\vdots & . \\
\alpha_{n}
\end{array}\right]
$$

One can check that

$$
\left\{1,1+t, 1+t+t^{2}, \ldots, 1+t+t^{2}+\ldots+t^{n}\right\}
$$

is also a set of basis vectors for V. Note that

$$
\begin{aligned}
p(t)= & \alpha_{0}+\alpha_{1} t+\alpha_{2} t^{2}, \ldots, \alpha_{n} t^{n} \\
= & \alpha_{0}+\alpha_{1}(1+t-1)+\alpha_{2}\left(1+t+t^{2}-(1+t)\right)+\ldots \\
& +\alpha_{n}\left(1+t+\ldots+t^{n}-\left(1+t+\ldots+t^{n-1}\right)\right) \\
= & \left(\alpha_{0}-\alpha_{1}\right)+\left(\alpha_{1}-\alpha_{2}\right)(1+t)+ \\
& \ldots+\left(\alpha_{n-1}-\alpha_{n}\right)\left(1+t+\ldots+t^{n-1}\right)+\alpha_{n}\left(1+t+t^{2}+\ldots+t^{n}\right)
\end{aligned}
$$

Thus in new basis the coordinate vector is

$$
\left[\begin{array}{c}
\alpha_{0}-\alpha_{1} \\
\alpha_{1}-\alpha_{2} \\
\vdots \\
\alpha_{n-1}-\alpha_{n} \\
\alpha_{n}
\end{array}\right]
$$

Linear Operator

Figure 5: A map
Let X and Y be vector spaces. \mathcal{A} a mapping from X to Y which assigns a vector $\mathcal{A} x \in Y$ for every vector $x \in X$ is a linear operator if

$$
\mathcal{A}\left(\alpha_{1} x^{1}+\alpha_{2} x^{2}\right)=\alpha_{1} \mathcal{A} x_{1}+\alpha_{2} \mathcal{A} x_{2} \text { for all } x^{1}, x^{2} \in X \text { and } \alpha_{1}, \alpha_{2} \text { scalars. }
$$

Example 8. Suppose V is the set of all polynomials of degree less than or equal to n. Suppose W is the set of all polynomials of degree less than or
equal to $n-1$. Let $\mathcal{A}: V \rightarrow W$ be defined by

$$
\mathcal{A} p:=\frac{d p}{d t} .
$$

Note that for every $p \in V, \mathcal{A} p \in W$. Also note that

$$
\begin{aligned}
\mathcal{A}(\alpha p+\beta q) & =\frac{d(\alpha p+\beta q)}{d t} \\
& =\alpha \frac{d p}{d t}+\beta \frac{d q}{d t} \\
& =\alpha \mathcal{A} p+\beta \mathcal{A} q
\end{aligned}
$$

proving that \mathcal{A} is a linear operator.

Example 9. Suppose $V=R^{n}$ and $W=R^{m}$. Suppose $\mathcal{A}: V \rightarrow W$ id defined
by

$$
\mathcal{A} x:=\overbrace{\left[\begin{array}{lll}
a_{11} & \ldots & a_{1 n} \\
\vdots & \vdots & \vdots \\
a_{n 1} & \ldots & a_{m n}
\end{array}\right]}^{=: A}\left[\begin{array}{l}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

$$
\begin{aligned}
& \text { where } x=\left[\begin{array}{l}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] . \text { Its evident that } \\
& \qquad \begin{aligned}
\mathcal{A}\left(\alpha_{1} x^{1}+\alpha_{2} x^{2}\right)=A\left(\alpha_{1} x^{1}+\alpha_{2} x^{2}\right) & =\alpha_{1} A x_{1}+\alpha_{2} A x^{2} \\
& =\alpha_{1} \mathcal{A} x^{1}+\alpha_{2} \mathcal{A} x^{2}
\end{aligned}
\end{aligned}
$$

Thus \mathcal{A} is linear.

Matrix Representation of a Linear Operator

Suppose $\mathcal{A}: V \rightarrow W$ is a linear operator. Suppose $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V and $\left\{w_{1}, \ldots, w_{2}\right\}$ is a basis for W. Suppose $v \in V$ and suppose $\left[\begin{array}{c}\alpha_{1} \\ \vdots \\ \alpha_{n}\end{array}\right]$ is its coordinate vector in the basis given. That is

$$
v=\sum_{j=1}^{n} \alpha_{j} v_{j} .
$$

Note that $\mathcal{A} v_{j} \in W$. Let the coordinate vector of $\mathcal{A} v_{j}$ be $\left[\begin{array}{l}a_{1 j} \\ \vdots \\ a_{m j}\end{array}\right]$ for $j=1, \ldots, n$. That is

$$
\mathcal{A} v_{j}=\sum_{i=1}^{m} a_{i j} w_{i}, j=1, \ldots, n
$$

Note that

$$
\begin{aligned}
\mathcal{A} v & =\mathcal{A}\left(\sum_{j=1}^{n} \alpha_{j} v_{j}\right) \\
& =\sum_{j=1}^{n} \mathcal{A}\left(\alpha_{j} v_{j}\right) \\
& =\sum_{j=1}^{n} \alpha_{j} \mathcal{A}\left(v_{j}\right) \\
& =\sum_{j=1}^{n} \sum_{i=1}^{m} \alpha_{j} a_{i j} w_{i} \\
& =\sum_{i=1}^{m} \underbrace{\left(\sum_{j=1}^{n} a_{i j} \alpha_{j}\right)}_{:=\beta_{i}} w_{i} \\
& =: \sum_{i=1}^{m} \beta_{i} w_{i}
\end{aligned}
$$

where we have defined $\beta_{i}=\sum_{j=1}^{n} a_{i j} \alpha_{j}, i=1, \ldots m$. Thus the coordinate vector of $\mathcal{A} v$ is

$$
\beta:=\left[\begin{array}{l}
\beta_{1} \\
\vdots \\
\beta_{m}
\end{array}\right]
$$

where

$$
\beta=A \alpha,
$$

with $A=\left(a_{i j}\right)$.
Thus the method to obtain the matrix representation of a linear operator given a basis $\left\{v_{j}\right\}_{j=1}^{n}$ of the domain space V and a basis $\left\{w_{i}\right\}_{i=1}^{m}$ of the range space W is to follow the steps below:

1. Obtain the coordinates of $\mathcal{A} v_{j}$ in the basis $\left\{w_{i}\right\}_{i=1}^{m}$. Let $\left[\begin{array}{c}a_{1 j} \\ \vdots \\ a_{m j}\end{array}\right]$ be the coordinate vector for v_{j}.
2. The coordinate vector of $\mathcal{A} v$ is $\beta=A \alpha$ if α is the coordinate vector of v in the basis $\left\{v_{j}\right\}_{j=1}^{n}$.

Example 10. Consider

$$
V=\{\text { all polynomials of degree } \leq n\}
$$

and

$$
W=\{\text { all polynomials of degree } \leq n-1\} .
$$

Let $\mathcal{A}: V \rightarrow W$ be defined by

$$
\mathcal{A} p=\frac{d p}{d t} .
$$

Let $\left(1, t, t^{2}, \ldots, t^{n}\right)$ be the basis for V and let $\left(1, t, \ldots, t^{n-1}\right)$ be the basis for W.

$$
\mathcal{A} v_{j}=\sum_{i=1}^{m} a_{i j} w_{i} .
$$

Note that $v_{j}=t^{j-1}, w_{i}=t^{i-1}$ Thus

$$
\begin{aligned}
\mathcal{A} v_{j} & =\frac{d v_{j}}{d t} \\
& =(j)-1) t^{j-2} \\
& =\sum_{i=1}^{m} a_{i j} w_{i}=\sum_{i=1}^{m} a_{i j} t^{i-1}
\end{aligned}
$$

This implies that

$$
(j-1) t^{j-2}=\sum_{i=1}^{m} a_{i j} t^{i-1}
$$

and thus

$$
\begin{aligned}
a_{i j} & =0 \quad \text { if } i \neq(j-1) \\
& =(j-1) \text { if } i=(j-1)
\end{aligned}
$$

Let p in V be given by

$$
p=\alpha_{0} 1+\alpha_{1} t+\ldots+\alpha_{n} t^{n}
$$

which has coordinate vector

$$
\left[\begin{array}{l}
\alpha_{0} \\
\vdots \\
\alpha_{n}
\end{array}\right]
$$

Then $\mathcal{A} v$ has coordinates $\beta=A \alpha$ where $A=\left(a_{i j}\right)$ where

$$
\begin{aligned}
a_{i j} & =0 \quad \text { if } i \neq(j-1) \\
& =(j-1) \text { if } i=(j-1)
\end{aligned}
$$

Example 11. $V=R^{n}, W=R^{m}$

$$
\left[\begin{array}{l}
1 \\
0 \\
\vdots \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \ldots,\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

to be the basis for R^{n} and a similar basis for R^{m}.

Let $\mathcal{A}: R^{n} \rightarrow R^{m}$ be defined by

$$
\mathcal{A} v=\overbrace{\left[\begin{array}{lll}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right]}^{A} \overbrace{\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right]}^{v}
$$

$\beta=A \alpha$.

Composition of Linear Operators

Figure 6: Composition of two operators
Theorem 13. Suppose U, V and W are vector spaces with bases $\left\{u_{1}, \ldots, u_{n}\right\},\left\{v_{1}, \ldots, v_{m}\right\}$ and $\left\{w_{1}, \ldots, w_{q}\right\}$ respectively. $\mathcal{A}: U \rightarrow V$ and $\mathcal{B}: V \rightarrow W$ are linear operators with matrix representations A and B respectively in the bases given. Then the matrix representation of the linear operator $\mathcal{B A}: U \rightarrow W$ has a matrix representation $B A$ with $\left\{u_{1}, \ldots, u_{n}\right\}$, and $\left\{w_{1}, \ldots, w_{q}\right\}$ as bases for U and W respectively.

Change of basis

$\mathcal{A}: V \rightarrow W$ is a linear operator, then the matrix representation of \mathcal{A} depends on the basis of V and W.
Example 12. $V=R^{3}, W=R^{3}$ and $\mathcal{A}: V \rightarrow W$ is defined by $\mathcal{A} v=A v$ where $A=\left(a_{i j}\right)$.

$$
\begin{aligned}
& v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], v_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& w_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], w_{2}=\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right], w_{3}=\left[\begin{array}{l}
0 \\
0 \\
3
\end{array}\right] \\
& \mathcal{A} v_{1}=\left[\begin{array}{l}
a_{11} \\
a_{21} \\
a_{31}
\end{array}\right]=\sum_{i=1}^{3} \alpha_{i 1} w_{i}=\left[\begin{array}{l}
\alpha_{11} \\
2 \alpha_{21} \\
3 \alpha_{31}
\end{array}\right]
\end{aligned}
$$

. Thus the coordinate vector of $\mathcal{A} v_{1}$ is given by

$$
\begin{gathered}
{\left[\begin{array}{l}
\alpha_{11} \\
\alpha_{21} \\
\alpha_{31}
\end{array}\right]=\left[\begin{array}{l}
a_{11} \\
\frac{1}{2} a_{21} \\
\frac{1}{3} a_{31}
\end{array}\right]} \\
\mathcal{A} v_{2}=\left[\begin{array}{l}
a_{12} \\
a_{22} \\
a_{32}
\end{array}\right]=\sum_{i=1}^{3} \alpha_{i 2} w_{i}=\left[\begin{array}{l}
\alpha_{12} \\
2 \alpha_{22} \\
3 \alpha_{32}
\end{array}\right]
\end{gathered}
$$

Thus the coordinate vector of $\mathcal{A} v_{2}$ is given by

$$
\mathcal{A} v_{3}=\left[\begin{array}{c}
a_{13} \\
a_{23} \\
a_{33}
\end{array}\right]=\sum_{i=1}^{3} \alpha_{i 3} w_{i}=\left[\begin{array}{c}
\alpha_{13} \\
2 \alpha_{23} \\
3 \alpha_{33}
\end{array}\right]
$$

Thus the coordinate vector of $\mathcal{A} v_{3}$ is given by

$$
\left[\begin{array}{l}
\alpha_{13} \\
\alpha_{23} \\
\alpha_{33}
\end{array}\right]=\left[\begin{array}{c}
a_{13} \\
\frac{1}{2} a_{23} \\
\frac{1}{3} a_{33}
\end{array}\right]
$$

Matrix Representation of \mathcal{A} is given by

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
\frac{1}{2} a_{21} & \frac{1}{2} a_{22} & \frac{1}{2} a_{23} \\
\frac{1}{3} a_{31} & \frac{1}{3} a_{32} & \frac{1}{3} a_{33}
\end{array}\right]
$$

Suppose V is a vector space with two sets of basis vectors given by $\left\{v_{i}\right\}_{i=1}^{n}$ and $\left\{\hat{v}_{i}\right\}_{i=1}^{n}$. Suppose the coordinate vector of a vector $v \in V$ in the
bases $\left\{v_{i}\right\}_{i=1}^{n}$ and $\left\{\hat{v}_{i}\right\}_{i=1}^{n}$ is given by

$$
\alpha=\left[\begin{array}{l}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right] \text { and } \hat{\alpha}=\left[\begin{array}{l}
\hat{\alpha}_{1} \\
\vdots \\
\hat{\alpha}_{n}
\end{array}\right]
$$

respectively. Suppose

$$
\hat{v}_{j}=\sum_{i=1}^{n} q_{i j} v_{i}
$$

Note that

$$
\begin{aligned}
v & =\sum_{j=1}^{n} \hat{\alpha}_{j} \hat{v}_{j} \\
& =\sum_{j=1}^{n} \hat{\alpha}_{j} \sum_{i=1}^{n} q_{i j} v_{i} \\
& =\sum_{i=1}^{n}\left(\sum_{j=1}^{n} q_{i j} \hat{\alpha}_{j}\right) v_{i}
\end{aligned}
$$

Therefore we have

$$
\alpha=Q \hat{\alpha} \text { where } Q=\left(q_{i j}\right)
$$

Lemma 1. The matrix Q above is invertible.
Proof: Suppose Q is not invertible. Then from Theorem 3 it follows that there exists $\hat{\alpha} \neq 0$ such that $Q \hat{\alpha}=0$. This implies that

$$
\sum_{j=1}^{n} q_{i j} \hat{\alpha}_{j}=0 \text { for all } i=1, \ldots, n
$$

Consider

$$
\begin{aligned}
\sum_{j=1}^{n} \hat{\alpha}_{j} \hat{v}_{j} & =\sum_{j=1}^{n} \hat{\alpha}_{j}\left(\sum_{i=1}^{n} q_{i j} v_{i}\right) \\
& =\sum_{i=1}^{n}(\underbrace{\left.\sum_{j=1}^{n} q_{i j} \hat{\alpha}_{j}\right)}_{=0} v_{i} \\
& =0 .
\end{aligned}
$$

This implies there exists $\hat{\alpha} \neq 0$ such that $\sum_{j=1}^{n} \hat{\alpha}_{j} \hat{v}_{j}=0$. This would imply that $\left\{\hat{v}_{j}\right\}$ is not an independent set. This is a contradiction.

Example 13. $V=R^{3}$, with basis $\overbrace{\left(e_{1}, e_{2}, e_{3}\right)}^{v_{1}, v_{2}, v_{3}}$ and $\overbrace{\left(e_{1}, \frac{1}{2} e_{2}, \frac{1}{3} e_{3}\right)}^{\hat{v}_{1}, \hat{v}_{2}, \hat{v}_{3}}$

$$
\begin{aligned}
\hat{v}_{1} & =(1) v_{1}+(0) v_{2}+(0) v_{3} \\
\hat{v}_{2} & =(0) v_{1}+\left(\frac{1}{2}\right) v_{2}+(0) v_{3} \\
\hat{v}_{3} & =(0) v_{1}+(0) v_{2}+\left(\frac{1}{3}\right) v_{3} \\
Q & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right]
\end{aligned}
$$

If α is the coordinate vector in (e_{1}, e_{2}, e_{3}), then the coordinate vector in $\left(e_{1}, \frac{1}{2} e_{2}, \frac{1}{3} e_{3}\right)$ is $Q^{-1} \alpha$.

Theorem 14. Suppose $\mathcal{A}: V \rightarrow W$ is a linear operator from vector space V to vector space w. Furthermore, suppose ($v_{1}, v_{2}, \ldots, v_{n}$), ($\left.\hat{v}_{1}, \hat{v}_{2}, \ldots, \hat{v}_{n}\right)$ forms two sets of basis for V with the associated change of basis matrix Q. Also,
suppose $\left(w_{1}, \ldots, w_{m}\right)$ and $\left(\hat{w}_{1}, \ldots, \hat{w}_{m}\right)$ form basis for W with change of basis matrix T. Let A be the matrix representation of \mathcal{A} in the basis $\left(v_{1}, \ldots, v_{n}\right)$ for V and $\left(w_{1}, \ldots, w_{m}\right)$ for W. Let B be the matrix representation of \mathcal{A} in the basis $\left(\hat{v}_{1}, \ldots, \hat{v}_{n}\right)$ for V and $\left(\hat{w}_{1}, \ldots, \hat{w}_{m}\right)$ for W. Then, $B=P A Q, P=T^{-1}$.

Proof: Suppose α is the coordinate vector of $v \in V$ in the basis $\left(v_{1}, \ldots, v_{n}\right)$. Let $\hat{\alpha}$ be the coordinate vector in the basis ($\hat{v}_{1}, \ldots, \hat{v}_{n}$). Then

$$
\alpha=Q \hat{\alpha}
$$

Suppose β is the coordinate vector of $\mathcal{A} v$ in the basis $\left(w_{1}, w_{2}, \ldots, w_{m}\right)$. Then

$$
\beta=A \alpha
$$

Suppose $\hat{\beta}$ is the coordinate vector of $\mathcal{A} v$ in the basis $\left(\hat{w}_{1}, \ldots, \hat{w}_{m}\right)$. Then

$$
\beta=T \hat{\beta} .
$$

$\beta=T \hat{\beta} \Rightarrow \hat{\beta}=T^{-1} \beta=T^{-1} A \alpha=\underbrace{T^{-1} A Q}_{B} \hat{\alpha}$. Therefore, $B=T^{-1} A Q$.

Example: $C: \overbrace{R^{3}}^{V} \rightarrow \overbrace{R^{3}}^{W}$

$$
\begin{aligned}
C & =\left[\begin{array}{ccc}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33} \\
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\vdots \\
\alpha_{3}
\end{array}\right] \text { where } v=\left[\begin{array}{l}
\alpha_{1} \\
\vdots \\
\alpha_{3}
\end{array}\right]
\end{aligned}
$$

Let $\left(e_{1}, e_{2}, e_{3}\right)$ be a basis for V and W. Then we have argued earlier that the
matrix representation in these basis vectors is

$$
A=\left[\begin{array}{lll}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{array}\right]
$$

Let another set of basis vector for V and W be $\left(e_{1}, e_{2}, e_{3}\right)$ and $\left(e_{1}, \frac{1}{2} e_{2}, \frac{1}{3} e_{3}\right)$.
$B=T^{-1} A Q$.
From the previous example, we have

$$
T=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right], Q=I .
$$

$$
B=T^{-1} A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{lll}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{array}\right]=\left[\begin{array}{lll}
c_{11} & c_{12} & c_{13} \\
2 c_{21} & 2 c_{22} & 2 c_{23} \\
3 c_{31} & 3 c_{32} & 3 c_{33}
\end{array}\right]
$$

Equivalence and Similarity Transformations

Definition 12. - Equivalence Transformation: If A and B are $m \times n$ matrices and P and Q are nonsingular $m \times m$ and $n \times n$ matrices respectively. Then A and B are equivalent if $B=P A Q$. It immediately follows that if A and B are two matrix representation of a linear operator $\mathcal{A}: V \rightarrow W$ then A and B are equivalent.

- Similarity Transformation: If A and B are $m \times m$ matrices, $Q \in R^{m \times m}$ is invertible, then A and B are similar if $B=Q^{-1} A Q$.

Theorem 15. If $\mathcal{A}: V \rightarrow V$ be a linear operator with a matrix representation A in the basis $\left(v_{1}, \ldots, v_{n}\right)$ and B in the basis $\left(\hat{v}_{1}, \ldots, \hat{v}_{n}\right)$. Then A and B are similar.

Proof: We know from Theorem 14 that $B=T^{-1} A Q . T$ is the basis transformation between $\left(w_{1}, \ldots, w_{n}\right) \rightarrow\left(\hat{w}_{1}, \ldots, \hat{w}_{n}\right) . T=Q \Rightarrow B=Q^{-1} A Q$.

Definition 13. Range of a Linear Operator \mathcal{A} : Let \mathcal{A} be a linear operator from vector space V to vector space W.
$\operatorname{Range}(\mathcal{A})=\{w \in W$ such that $\exists v \in V$ with $\mathcal{A} v=w\}$

Figure 7: Range of a operator
Range $(\mathcal{A}) \subset W$.
Theorem 16. If $\left(v_{1}, \ldots, v_{n}\right)$ is a basis for a vector space and $\mathcal{A}: V \rightarrow W$ where W is a vector space with \mathcal{A} is linear, then
$\operatorname{span}\left(\mathcal{A} v_{1}, \mathcal{A} v_{2}, \ldots,, \mathcal{A} v_{n}\right)=\operatorname{Range}(\mathcal{A})$
Proof: To prove that $\operatorname{Range}(\mathcal{A}) \subset \operatorname{span}\left\{\mathcal{A} v_{1}, \mathcal{A} v_{2}, \ldots,, \mathcal{A} v_{n}\right\}$
Let $w \in \operatorname{Range}(\mathcal{A})$
From definition, it follows that $\exists v \in V$ such that $w=\mathcal{A} v$
$v \in V \Rightarrow \exists\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ such that $v=\sum_{i=1}^{n} \alpha_{i} v_{i}$

$$
\begin{aligned}
w=\mathcal{A} v & =\mathcal{A}\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right) \\
& =\sum_{i=1}^{n} \alpha_{i}\left(A v_{i}\right) \\
& \Rightarrow w \in \operatorname{span}\left(\left\{\mathcal{A} v_{1}, \mathcal{A} v_{2}, \ldots, \mathcal{A} v_{n}\right\}\right. \\
& \Rightarrow \operatorname{Range}\left(\mathcal{A} \subset \operatorname{span}\left\{\mathcal{A} v_{1}, \mathcal{A} v_{2}, \ldots,, \mathcal{A} v_{n}\right\}\right.
\end{aligned}
$$

Suppose we have $w \in \operatorname{span}\left\{\mathcal{A} v_{1}, \mathcal{A} v_{2}, \ldots, \mathcal{A} v_{n}\right\}$. Then

$$
\exists\left(\beta_{1}, \ldots, \beta_{n}\right) \text { such that } w=\sum_{i=1}^{n} \beta_{i} \mathcal{A} v_{i}=\mathcal{A}\left(\sum_{i=1}^{n} \beta_{i} v_{i}\right)=\mathcal{A} v
$$

where $v \in V$
$w \in \operatorname{Range}(\mathcal{A})$
$\operatorname{span}\left(\mathcal{A} v_{1}, \ldots, \mathcal{A} v_{1}\right) \subset \operatorname{Range}(\mathcal{A})$
Therefore,

$$
\operatorname{span}\left(\mathcal{A} v_{1}, \ldots, \mathcal{A} v_{1}\right)=\operatorname{Range}(\mathcal{A})
$$

We can show that $\operatorname{Range}(\mathcal{A})$ is a vector space.

Definition 14. $\operatorname{Rank}(\mathcal{A})$: Suppose \mathcal{A} is a linear operator from vector space V to vector space W. Then $\operatorname{Rank}(\mathcal{A})=\operatorname{dim}(\operatorname{Range}(\mathcal{A}))$.

Example 14.

$$
V=\{\text { set of polynomials of order } \leq 2\} \text { and } W \equiv V
$$

$\mathcal{A}: V \rightarrow W$ be the operator defined by

$$
\mathcal{A} V=\frac{d v}{d t} .
$$

Note that
$\operatorname{Range}(\mathcal{A})=\{$ all polynomials with degree $\leq 1\}$ and

$$
\operatorname{Rank}(\mathcal{A})=\operatorname{dim}\{\operatorname{Range}(\mathcal{A})\}=2 .
$$

$1, t, t^{2}$ forms a basis for V

$$
\begin{aligned}
\operatorname{Range}(\mathcal{A}) & =\operatorname{span}\left\{\mathcal{A}(1), \mathcal{A}(t), \mathcal{A}\left(t^{2}\right)\right\} \\
& =\operatorname{span}\{0,1,2 t\} \\
& =\operatorname{span}\{1,2 t\}
\end{aligned}
$$

Example 15. $\operatorname{Rank}(\mathcal{A})$: Suppose A is a $m \times n$ matrix, then $\operatorname{Rank}(\mathcal{A})=$ number of independent columns of A.

Theorem 17. Suppose $\mathcal{A}: V \rightarrow W$ is a linear operator and A is the matrix representation of \mathcal{A} in the basis $\left(v_{1}, \ldots, v_{n}\right)$ for V and $\left(w_{1}, \ldots, w_{n}\right)$ for W. Then $\operatorname{Rank}(A)=\operatorname{Rank}(\mathcal{A})$.

Proof: Suppose that $\operatorname{dim}(\operatorname{Range}(\mathcal{A}))=r=\operatorname{rank}(\mathcal{A})$. Then, there should be r independent vectors $\mathcal{A} v_{1}, \mathcal{A} v_{2}, \ldots, \mathcal{A} v_{n}$ which follows from Theorem 16.

Let us assume without loss of generality that only $\mathcal{A} v_{1}, \mathcal{A} v_{2}, \ldots, \mathcal{A} v_{r}$ are independent.

The matrix A was defined by the following

$$
\mathcal{A} v_{j}=\sum_{i=1}^{m} a_{i j} w_{i} .
$$

Consider a linear combination of the first r columns of A

$$
c_{1}\left[\begin{array}{l}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right]+c_{2}\left[\begin{array}{l}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right]+\ldots+c_{3}\left[\begin{array}{l}
a_{1 r} \\
a_{2 r} \\
\vdots \\
a_{m r}
\end{array}\right]=\left[\begin{array}{l}
\sum_{j=1}^{r} a_{1 j} c_{j} \\
\sum_{j=1}^{r} a_{2 j} c_{j} \\
\vdots \\
\sum_{j=1}^{r} a_{m j} c_{j}
\end{array}\right]
$$

Suppose $\exists c_{1}, c_{2}, \ldots, c_{r}$ such that

$$
c_{1} a_{1}+c_{2} a_{2}+\ldots+c_{r} a_{r}=0
$$

that is

$$
\sum_{j=1}^{r} a_{i j} c_{j}=0 ; \quad i=1,2, \ldots, m
$$

Consider the linear combination

$$
\begin{aligned}
c_{1} \mathcal{A} v_{1}+c_{2} \mathcal{A} v_{2}+\ldots+c_{1} \mathcal{A} v_{r} & =c_{1} \sum_{i=1}^{m} a_{i 1} w_{i}+c_{2} \sum_{i=1}^{m} a_{i 2} w_{i}+\ldots+c_{r} \sum_{i=1}^{m} a_{i r} w_{i} \\
& =\sum_{j=1}^{r} c_{j} \sum_{i=1}^{m} a_{i j} w_{i} \\
& =\sum_{i=1}^{m}\left(\sum_{j=1}^{r} c_{j} a_{i 1}\right) w_{i} \\
& =0
\end{aligned}
$$

Because $\mathcal{A} v_{1}, \mathcal{A} v_{2}, \ldots, \mathcal{A} v_{r}$ are independent, it follows that $c_{j}=0, \quad j=1,2, \ldots, r$.

In summary, if $c_{1} a_{1}+c_{2} a_{2}+\ldots+c_{r} a_{r}=0$ then $c_{j}=0 \forall j=1,2, \ldots, r$.
We have shown that $a_{1}, a_{2}, \ldots, a_{r}$ are independent.

Therefore, $\operatorname{Rank}(A) \geq r=\operatorname{Rank}(\mathcal{A})$. The proof that $\operatorname{Rank}(\mathcal{A}) \geq \operatorname{Rank}(A)$ follows similarly.

Theorem 18. If A and B are two matrix representations of the linear operator \mathcal{A}, then $\operatorname{Rank}(A)=\operatorname{Rank}(B)$.

Proof: Note that $\operatorname{Rank}(A)=\operatorname{Rank}(\mathcal{A})=\operatorname{Rank}(B)$.

In particular, let A be a $m \times n$ matrix.
P and Q are nonsingular $m \times m, n \times n$ matrices respectively. Then,

$$
\begin{aligned}
\operatorname{Rank}(A) & =\operatorname{Rank}(P A) \\
& =\operatorname{Rank}(A Q) \\
& =\operatorname{Rank}(P A Q)
\end{aligned}
$$

$\mathcal{A}: R^{n} \rightarrow R^{m}$ and $\mathcal{A} v=A \alpha$.
$A, P A, A Q, P A Q$ are all matrix representations of \mathcal{A}

Null Space

Definition 15. Null Space: Suppose V and W are vector spaces and \mathcal{A} a linear operator from $V \rightarrow W$. Then,

$$
\operatorname{Null}(\mathcal{A}=\{v \in V \mid \mathcal{A} v=0\}
$$

Note that $\operatorname{Null}(\mathcal{A}) \subset V$ and $\operatorname{Range}(\mathcal{A}) \subset W$.

Example 16.

$$
V=\{\text { Vector space of all polynomials of degree } \leq 2\} .
$$

Let $W \equiv V, \quad \mathcal{A} v=\frac{d v}{d t}$. Then

$$
\operatorname{Null}(\mathcal{A})=\{\text { all constants }\}
$$

and

$$
\operatorname{Basis}(\operatorname{Null}(\mathcal{A}))=1 .
$$

Rank Nullity Theorem

Theorem 19. Suppose V and W are vector spaces, and $\operatorname{dim}(V)=n$. $\mathcal{A}: V \rightarrow W$ be a linear operator. Then

$$
\operatorname{dim}(\operatorname{Null}(\mathcal{A}))+\operatorname{dim}(\operatorname{Range}(\mathcal{A}))=n .
$$

Proof: Suppose $\operatorname{dim}(\operatorname{Null}(\mathcal{A}))=n$. Therefore, \exists independent vectors $v_{1}, v_{2}, \ldots, v_{n}$ such that

$$
\mathcal{A} v_{1}=\mathcal{A} v_{2}=\ldots=\mathcal{A} v_{n}=0 .
$$

Because $\operatorname{dim}(V)=n, v_{1}, v_{2}, \ldots, v_{n}$ forms a basis for V. Thus, given any vector $v \in V$,

$$
v=\sum_{i=1}^{n} \alpha_{i} v_{i}, \mathcal{A} v=\sum_{i=1}^{n} \alpha_{i} \mathcal{A} v_{i}=0
$$

Thus,

$$
\operatorname{Range}(\mathcal{A})=\{0\} .
$$

Suppose $\operatorname{dim}(\operatorname{null}(\mathcal{A}))=q<n$. Then there exist independent vector $v_{1}, v_{2}, \ldots, v_{q}$ such that

$$
\mathcal{A} v_{1}=\mathcal{A} v_{2}=\ldots=\mathcal{A} v_{q}=0
$$

From Theorem 12 one can extend the basis to $v_{1}, v_{2}, \ldots, v_{q}, v_{q+1}, \ldots, v_{n}$. We will show that $\mathcal{A} v_{q+1}, \ldots, \mathcal{A} v_{n}$ are independent. Note that

$$
\sum_{q+1}^{n} c_{i} \mathcal{A} v_{i}=0
$$

Then we have

$$
\mathcal{A}\left(\sum_{q+1}^{n} c_{i} v_{i}\right)=0
$$

$$
\sum_{q+1}^{n} c_{i} v_{i} \in \operatorname{null}(\mathcal{A})
$$

As v_{q+1}, \ldots, v_{n} are independent it follows that $c_{i}=0 \forall i=q+1, \ldots, n$. Thus we have shown that

$$
\mathcal{A} v_{q+1}, \ldots, \mathcal{A} v_{n}
$$

are independent.
Suppose $w \in \operatorname{Range}(\mathcal{A})$. Let $v \in V$ then $v=\sum_{i=1}^{n} \alpha_{i} v_{i}$. It follows that

$$
\mathcal{A} v=\sum_{i=1}^{n} \alpha_{i} \mathcal{A} v_{i}=\sum_{i=q+1}^{n} \alpha_{i} \mathcal{A} v_{i}
$$

$\left\{\mathcal{A} v_{q+1}, \mathcal{A} v_{q+2}, \ldots, \mathcal{A} v_{n}\right\}$ is a basis for $\operatorname{Range}(\mathcal{A})$. Thus

$$
\operatorname{Range}(\mathcal{A})=\operatorname{span}\left\{\mathcal{A} v_{q+1}, \ldots, \mathcal{A} v_{n}\right\}
$$

Thus

$$
\operatorname{dim}(\operatorname{Range}(\mathcal{A}))=n-q
$$

and it follows that

$$
\operatorname{dim}(\operatorname{Range}(\mathcal{A})+\operatorname{dim}(\operatorname{null}(\mathcal{A}))=n
$$

Theorem 20. Let B and C be $m \times n$ and $n \times p$ matrices with $\operatorname{rank}(B)=b$ and $\operatorname{rank}(C)=c$. Then

$$
\operatorname{rank}(B C) \leq \min (b, c)
$$

Proof: Note that Range $(B C) \subset$ RangeB. Indeed, suppose there exists a y such that $B C y=z$ with $z \in \operatorname{Range}(B C)$. It follows that $B y^{\prime}=z$ with $y^{\prime}=C y$.

Thus $z \in \operatorname{Range}(B)$. Thus it follows that Range $(B C) \subset \operatorname{Range} B$. Thus we can conclude that $\operatorname{dim}(\operatorname{Range}(B C) \leq \operatorname{dim}(\operatorname{Range}(B))=b$.

Suppose $V \in \operatorname{Null}(C)$. Then $C v=0$ and therefore $B C v=0$. Therefore $N u l l(C) \subset N u l l(B C)$. This implies that $\operatorname{dim}(N u l l(B C)) \geq \operatorname{dim}(N u l l(C))$. Also note that

$$
\begin{aligned}
p & =\operatorname{dim}(\operatorname{Null}(C))+\operatorname{dim}(\operatorname{Range}(C)) \\
& =\operatorname{dim}(\operatorname{Null}(B C))+\operatorname{dim}(\operatorname{Range}(B C))
\end{aligned}
$$

Since $\operatorname{dim}(\operatorname{Null}(B C)) \geq \operatorname{dim}(\operatorname{Null}(C))$ it follows that
$\operatorname{rank}(B C)=\operatorname{dim}(\operatorname{Range}(B C))=p-\operatorname{dim}(\operatorname{Null}(B C)) \leq p-\operatorname{dim}(N u l l(C))=\operatorname{dim}(R$
Thus

$$
\operatorname{rank}(B C) \leq \min (b, c)
$$

Theorem 21. Let A be a $m \times n$ matrix of rank r then A can be written as $A=B C$ where B is a $m \times r$ matrix of rank r and c is a $r \times n$ matrix of rank r.

Proof: Let $A: R^{n} \rightarrow R^{m}$ has rank r implies that there exist vectors $v_{1}, v_{2}, \ldots, v_{r}$ which forms a basis for Range (A). Now note that

$$
A=\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right]
$$

and $a_{i} \in \operatorname{Range}(A)$. Therefore c_{i} represents the coordinate vector of a_{i} in the basis $v_{1}, \ldots v_{r}$ then we have

$$
a_{i}=\sum_{j=1}^{r} c_{j i} v_{j}
$$

Thus

$$
A=\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right]=B\left[c_{1} c_{2} \ldots c_{n}\right]
$$

where $B=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{r}\end{array}\right]$. As v_{1}, \ldots, v_{r} are linearly independent it follows that B has rank r. Note that $r=\operatorname{rank}(A) \leq \operatorname{rank}(C)$. However C has only r rows and thus $\operatorname{rank}(C)=r$.

Theorem 22. Suppose $A \in R^{m \times n}$. Consider the equation

$$
\begin{equation*}
A \alpha=\beta \tag{5}
\end{equation*}
$$

where $\alpha \in R^{n}$ and $\beta \in R^{m}$. Then (5) has a solution if and only if $\beta \in \operatorname{Range}(A)$. If a solution exists then it is unique if and only if $N u l l(A)=\{0\}$.

Proof: We will prove only the second part of the theorem. Suppose Null $A=\{0\}$. If α_{1} and α_{2} are two elements such that $A \alpha_{1}=A \alpha_{2}$ then $A\left(\alpha_{1}-\alpha_{2}\right)=0$ and therefore $\alpha_{1}-\alpha_{2}=0$. Thus $\alpha_{1}=\alpha_{2}$. Thus the solution to $A \alpha=b$ is unique.

Suppose $\operatorname{Null}(A) \neq\{0\}$. Then there exists $\alpha_{1} \neq 0$ such that $A \alpha_{1}=0$.
Suppose $A \alpha=\beta$ then $A\left(\alpha+\alpha_{1}\right)=\beta$ and therefore the solution is not unique.

Definition 16. Let $\mathcal{A}: V \rightarrow W$ be a linear operator with V and W are vector spaces.
\mathcal{A} is said to be right invertible if there exist a map $\mathcal{A}^{-R}: W \rightarrow V$ such that $\mathcal{A} \mathcal{A}^{-R}=I_{w}$ where I_{w} is the identity transformation on W.
\mathcal{A} is said to be left invertible if there exist a map $\mathcal{A}^{-l}: W \rightarrow V$ such that $\mathcal{A}^{-l} \mathcal{A}=I_{v}$ where I_{v} is the identity transformation on V.
\mathcal{A} is invertible if it has both right and left inverses.
Theorem 23. Let $\mathcal{A}: V \rightarrow V$ where \mathcal{A} is linear and V is a vector space.

1. If there exists a unique right inverse to \mathcal{A} then \mathcal{A} is invertible.
2. If there exists a unique left inverse to \mathcal{A} then \mathcal{A} is invertible.

Proof: (1) Suppose \mathcal{A}^{-R} is the right inverse of \mathcal{A}. Note that

$$
\mathcal{A}\left(\mathcal{A}^{-R}+\mathcal{A}^{-R} \mathcal{A}-I\right)=\mathcal{A} \mathcal{A}^{-R}+\mathcal{A} \mathcal{A}^{-R} \mathcal{A}-\mathcal{A}=I+\mathcal{A}-\mathcal{A}=I .
$$

As the right inverse is unique it follows that

$$
\mathcal{A}^{-R}+\mathcal{A}^{-R} \mathcal{A}-I=\mathcal{A}^{-R} .
$$

Thus

$$
\mathcal{A}^{-R} \mathcal{A}=I
$$

and thus \mathcal{A}^{-R} is the left inverse of \mathcal{A}. Thus \mathcal{A} is invertible.
(2) follows in a similar way as (1).

Definition 17. Onto and into: $\mathcal{A}: V \rightarrow W$ is onto if $\operatorname{Range}(\mathcal{A})=W$. If \mathcal{A} is such that $\mathcal{A} \alpha_{1}=\mathcal{A} \alpha_{2}$ implies that $\alpha_{1}=\alpha_{2}$ for any pair $\alpha_{1}, \alpha_{2} \in V$ then \mathcal{A} is into.

Example 17. Let $\mathcal{A}: R^{2} \rightarrow R$ be defined by

$$
\mathcal{A} v=A v
$$

where

$$
A=\left(\begin{array}{ll}
1 & 2
\end{array}\right) .
$$

Notice that Range $(\mathcal{A})=R$. Indeed if $\alpha \in R$ then

$$
\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{l}
\alpha \\
0
\end{array}\right]=\alpha
$$

and this \mathcal{A} is onto.

Now we will find a right inverse to A. Consider the equation

$$
\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]=1
$$

and thus $\beta_{1}+2 \beta_{2}=1$ Thus any $\left(\beta_{1}, \beta_{2}\right)^{T}$ is a right inverse if β_{1}, β_{2} satisfy $\beta_{1}+2 \beta_{2}=1$. Evidently there are infinite number of right inverses.

$$
\binom{1}{0}
$$

is a right inverse.

$$
\binom{3}{-1}
$$

is a right inverse too.

Example 18. $A=\left[\begin{array}{l}1 \\ 2\end{array}\right], \quad \mathcal{A}: R^{1} \rightarrow R^{2}$.
Then \mathcal{A} is one to one. $(\because \operatorname{Null}(A)=0)$
\mathcal{A}^{-l} is a left inverse if $\left(\begin{array}{ll}\alpha_{1} & \alpha_{2}\end{array}\right)\binom{1}{2}=I$ where $\mathcal{A}^{-l} \equiv\left(\begin{array}{ll}\alpha_{1} & \alpha_{2}\end{array}\right)$
$\left(\begin{array}{cc}\alpha_{1} & \alpha_{2}\end{array}\right)$ is a left inverse if $\alpha_{1}+2 \alpha_{2}=1$
Again this has infinite solutions and thus there are infinite left inverses for \mathcal{A}.
Theorem 24. Consider $\mathcal{A}: V \rightarrow W$ where $\operatorname{dim}(V)=n, \operatorname{dim}(W)=m$. Then \mathcal{A} is one to one if and only if $m \geq n$ and the rank of any matrix representation of \mathcal{A} is n. In particular, if $n=m$ then $\operatorname{rank}(\mathcal{A})=n$ only if \mathcal{A} is non singular.

Proof: Note that from Theorem 19 it follows that

$$
\operatorname{dim}(N(\mathcal{A}))+\operatorname{dim}(R(\mathcal{A}))=n .
$$

If $m<n$, then $\operatorname{dim}(N(\mathcal{A}))=n-\operatorname{dim}(R(\mathcal{A})) \geq(n-\operatorname{dim}(W))=(n-m)>0$. Therefore, if $m<n$, then \mathcal{A} is not one to one as $N(\mathcal{A}) \neq\{0\}$.
$m \geq n$ and $\operatorname{rank}(\mathcal{A})=n$. Then $\operatorname{dim}(N(\mathcal{A}))=\{0\})$. Therefore \mathcal{A} is $1-1$.

Theorem 25. Let $\mathcal{A}: V \rightarrow W$ be a linear operator where V and W are vector spaces. Then

1. \mathcal{A} is right invertible if and only if \mathcal{A} is onto.
2. \mathcal{A} is left invertible if and only if \mathcal{A} is one to one.

Proof: Suppose \mathcal{A} is onto. Then given any $w \in W$ there exists $v \in V$ such that $\mathcal{A} v=w$ (note that v is not unique).

Define $\mathcal{A}^{-R} w:=v$ where v is any vector that satisfies $\mathcal{A} v=w$. Then it follows that $\mathcal{A}\left(\mathcal{A}^{-R} w\right)=\mathcal{A} v=w$.

Suppose \mathcal{A} is not onto, then $\exists w^{1}$, such that $w^{1} \notin \operatorname{Range}(\mathcal{A})$
Suppose \exists a right inverse operator \mathcal{A}^{-R} Then for the given $w^{1} \in W$, $\mathcal{A}\left(\mathcal{A}^{-R} w^{1}\right)=w^{1}$.

Then with $v=\mathcal{A}^{-R} w^{1}$, we have $\mathcal{A} v=w^{1}$. Thus, $w^{1} \in \operatorname{Range}(\mathcal{A})$ and we have a contradiction.

This proves (1). (2) is left as an exercise.

Eigenvalues and Eigenvectors of operators

Definition 18. Let \mathcal{A} be a linear operator from V to W where V and W are of the same dimension n. Then λ, a scalar is called an eigenvalue if $\mathcal{A} v=\lambda v$ for some $v \neq 0, v \in V \quad v$ is the eigenvector associated with λ.

Theorem 26. Let $\mathcal{A}: V \rightarrow V$ be a linear operator, and let V be n-dimensional. Then all matrix representations of \mathcal{A} have the same n-eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Moreover, these eigenvalues are precisely the eigenvalues of \mathcal{A}.

Theorem 27. Similar matrices have the same characteristic polynomial and therefore they have the same eigenvalues. Moreover, if $\hat{A}=P^{-1} A P$ and V is an eigenvector of A, then $P v$ is an eigenvector of \hat{A}. A and \hat{A} are both matrix representations of the linear operator \mathcal{A} defined by $\mathcal{A} v=A v$.

Inner Product Spaces

Definition 19. Inner Product: (V, s) is a vector space V with scalar being s. An inner product on (V, s) is a function $<,>:(V, s) \times(V, s) \rightarrow s$ which has the following properties:

1. $\langle v, v\rangle \geq 0$ for all $v \in V$ and $\langle v, v\rangle=0$ only if $v=0$.
2. $\langle v, w\rangle=\langle w, v\rangle \quad v, w \in V, s \equiv R$
$\langle v, w\rangle=\langle w, v\rangle \quad v, w \in V, s \equiv C$
3. $\langle\alpha v, w\rangle=\bar{\alpha}\langle v, w\rangle \quad v, w \in V, \alpha \in s$.
4. $\left\langle v_{1}+v_{2}, w\right\rangle=\left\langle v_{1}, w\right\rangle+\left\langle v_{2}, w\right\rangle, \quad v_{1}, v, w \in V$.

Inner Product Spaces

Definition 20.

(V, s) is a vector space with an inner product defined is called an inner product space.

Example 19. Let $(V, s) \equiv\left(R^{2}, R\right)$

$$
\left\langle v_{1}, v_{2}\right\rangle:=\left(v_{1}\right)^{T} v_{2}=\sum_{i=1}^{2} v_{1}(i) v_{2}(i)
$$

where $v_{1}=\left[\begin{array}{l}v_{1}(1) \\ v_{1}(2)\end{array}\right] v_{2}=\left[\begin{array}{l}v_{2}(1) \\ v_{2}(2)\end{array}\right]$
$<,>$ is indeed an inner product on $\left(R^{2}, R\right)$

Orthogonal and orthonormal vectors

Definition 21. (V, s) be an inner product space. Then two non-zero vectors $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ are orthogonal if $\left\langle v_{i}, v_{j}\right\rangle=0$ if $i \neq j, j=1,2, \ldots, n$. They are orthonormal if in addition $\left\langle v_{i}, v_{i}\right\rangle=1$ for $i=1,2, \ldots, n$.

Orthogonal complements

Definition 22. suppose X is an inner product space and V and W are subspaces of X, then, V and W are said to be orthogonal complements of one another if $V \oplus W=X$ and $\langle v, w\rangle=0 \quad \forall v \in V, w \in W$.

Example 20. $X \equiv R^{2}$
NOTE;DRAW FIGURE Let

$$
V=\left\{v: v=\alpha\binom{1}{0}, \alpha \in R\right\},
$$

and

$$
W=\left\{w: w=\beta\binom{0}{1}, \beta \in R\right\} .
$$

Then

$$
V \cap W=\{0\},
$$

$$
V \oplus W \equiv R^{2}=\left\{v: v=\binom{\alpha}{\beta}, \alpha, \beta \in R\right\} .
$$

Also, for $v \in V, w \in W$,

$$
<v, w>=\binom{\alpha}{0}^{T}\binom{0}{\beta}=(\alpha, 0)\binom{0}{\beta}=0 .
$$

Thus V and W are orthogonal complements.
$X \equiv R^{3}$, then

$$
V=\left\{\left.\left[\begin{array}{l}
\alpha \\
0 \\
0
\end{array}\right] \right\rvert\, \alpha \in R\right\}, \text { and } W=\left\{\left.\left[\begin{array}{l}
0 \\
\alpha \\
0
\end{array}\right] \right\rvert\, \alpha \in R\right\}
$$

are not orthogonal complements.

Orthogonal Subspaces

Definition 23. V, and W subspaces of inner product space X are orthogonal to each other. If for every $v \in V, w \in W, \quad\langle v, w\rangle=0$.

If V is a subspace of an inner product space X, then

$$
V^{\perp}=\{x \in X \mid<x, v>=0, \forall v \in V\} .
$$

It can be shown that

- V^{\perp} is a subspace of X.
- $V \cap V^{\perp}=0$
- $V \oplus V^{\perp}=X$.

Adjoint Operator

Definition 24. Suppose V is an inner product space and let $\mathcal{A}: V \rightarrow W$ be a linear operator, where W is also an inner product space. Then the adjoint of the operator \mathcal{A} is an operator $\mathcal{A}^{*}: W \rightarrow V$ that is defined by

$$
<v, \mathcal{A}^{*} w>_{v}=<\mathcal{A} v, w>_{w}, v \in V, w \in W .
$$

Example 21. Let $V=R^{n}$ and $W=R^{m}$ and let $\mathcal{A}: V \rightarrow W$ be defined by

$$
\mathcal{A} v=A v,
$$

where $A=\left(a_{i j}\right)$. Let the inner product on V and W be defined by

$$
<v_{1}, v_{2}>_{v}=v_{1}^{T} v_{2} \text { and }<w_{1}, w_{2}>_{w}=w_{1}^{T} w_{2}, v_{1}, v_{2} \in V \text { and } w_{1}, w_{2} \in W
$$

Note that

$$
<v, A^{T} w>_{v}=v^{T} A^{T} w=(A v)^{T} w=<A v, w>_{w} .
$$

Thus the adjoint operator of \mathcal{A} is given by the matrix A^{T}.
If $V \subset X, \mathcal{A}: V \rightarrow W$ then, $N(\mathcal{A})^{\perp} \subset V, N(\mathcal{A}) \subset V, R(\mathcal{A}) \subset W, R(\mathcal{A})^{\perp} \subset W$, Range $\left(\mathcal{A}^{*}\right) \subset V, N\left(\mathcal{A}^{*}\right) \subset W, R\left(\mathcal{A}^{*}\right)^{\perp} \subset V, N\left(\mathcal{A}^{*}\right)^{\perp} \subset W$

Let V and W be two vector spaces and let $\mathcal{A}: V \rightarrow W$ be a linear operator. Then,

- \mathcal{A} is onto if $R(\mathcal{A})=W$
- \mathcal{A} is one to one if $N(\mathcal{A})=\{0\}$.

Theorem 28. The following statements are equivalent:

1. $N(\mathcal{A})=\{0\}$
2. If $\mathcal{A} v_{1}=\mathcal{A} v_{2}$, then $v_{1}=v_{2}$.
3. If $v_{1} \neq v_{2}$, then $\mathcal{A} v_{1} \neq \mathcal{A} v_{2}$.

Proof: Suppose $N(\mathcal{A})=\{0\}$. Also, if v_{1}, v_{2} are such that $\mathcal{A} v_{1}=\mathcal{A} v_{2}$, then
$\mathcal{A}\left(v_{1}-v_{2}\right)=0$
$\Rightarrow\left(v_{1}-v_{2}\right) \in N(\mathcal{A})$
$\Rightarrow v_{1}-v_{2}=0$
$\therefore v_{1}=v_{2}$
Suppose that $\mathcal{A} v_{1}=\mathcal{A} v_{2} \Rightarrow v_{1}=v_{2}$
Then if $v \in N(\mathcal{A}), \mathcal{A} v=0$ is same as
$\mathcal{A}(v-0)=0$
$\Rightarrow \mathcal{A} v-\mathcal{A} 0=0$
$\Rightarrow v=0$
$\therefore N(\mathcal{A})=\{0\}$
$\therefore 1 \Leftrightarrow 2$

Theorem 29. Let \mathcal{A} be a linear operator from an inner product space V to an inner product space W. Then

1. $N\left(\mathcal{A}^{*}\right)=[R(\mathcal{A})]^{\perp}$
2. $[N(\mathcal{A})]^{\perp}=R\left(\mathcal{A}^{*}\right)$

Proof: (1) Take $w \in[\operatorname{Range}(\mathcal{A})]^{\perp}$ then

$$
\begin{aligned}
& <w, \gamma>_{w}=0, \quad \forall \gamma \in \operatorname{Range}(\mathcal{A}) \\
& \Rightarrow<w, \mathcal{A} v>_{w}=0, \quad \forall v \in V \\
& \Rightarrow<\mathcal{A} v, w>_{w}=0, \quad \forall v \in V \\
& \Rightarrow<v, \mathcal{A}^{*} w>_{v}=0, \quad \forall v \in V
\end{aligned}
$$

In particular, $\left\langle\mathcal{A}^{*} w, \mathcal{A}^{*} w>{ }_{v}=0 . \mathcal{A}^{*} w=0\right.$ and thus $w \in \operatorname{Null}\left(\mathcal{A}^{*}\right)$. This shows that $\operatorname{Range}(\mathcal{A})]^{\perp} \subset \operatorname{Null}\left(\mathcal{A}^{*}\right)$.
Let $w \in N\left(\mathcal{A}^{*}\right)$, then $\mathcal{A}^{*} w=0$
$\therefore<v, \mathcal{A}^{*} w>_{v}=0 \quad \forall v \in V$
$\therefore<\mathcal{A} v, w\rangle_{w}=0 \quad \forall v \in V$
$\Rightarrow w \in[\operatorname{Range}(\mathcal{A})] \perp$
Thus, $(\operatorname{Range}(\mathcal{A}))^{\perp}=N\left(\mathcal{A}^{*}\right) \quad\left[v \notin[N(A)]^{\perp} \Leftrightarrow v \notin \operatorname{Range}\left(\mathcal{A}^{*}\right)\right.$.

Gram-Schmidt Orthonormalization

Theorem 30. Let V be a vector space with the inner product $<,>$ defined. Let v_{1}, \ldots, v_{n} be n independent vectors. Then there exist n orthonormal vectors e_{1}, \ldots, e_{n} such that

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\} .
$$

Proof: Let

$$
z_{1}:=v_{1}
$$

and let

$$
e_{1}:=\frac{z_{1}}{\left\|z_{1}\right\|} .
$$

Let

$$
z_{2}=v_{2}-<v_{2}, e_{1}>e_{1} \text { and } e_{2}:=\frac{z_{2}}{\left\|z_{2}\right\|} .
$$

Note that

$$
\begin{aligned}
<e_{2}, e_{1}> & =\frac{1}{\|z\|_{2}}\left[<v_{2}, e_{1}>-<v_{2}, e_{1}><e_{2}, e_{2}>\right] \\
& =\frac{1}{\|z\|_{2}}\left[<v_{2}, e_{1}>-<v_{2}, e_{1}>\right]=0
\end{aligned}
$$

Thus $e_{2} \perp e_{1}$. Given $e_{1}, e_{2}, \ldots, e_{i}$ orthonormal define

$$
\begin{aligned}
z_{i+1} & =v_{i+1}-<v_{i+1}, e_{1}>e_{1}-<v_{i+1}, e_{2}>e_{2}-\ldots-<v_{i+1}, e_{i}>e_{i} \\
& =v_{i+1}-\sum_{j=1}^{i}<v_{i+1}, e_{j}>e_{j}, \text { and } \\
e_{i+1} & :=\frac{z_{i+1}}{\left\|z_{i+1}\right\|}
\end{aligned}
$$

Let $k \leq i$ then

$$
\begin{aligned}
<z_{i+1}, e_{k}> & =<v_{i+1}, e_{k}>-\sum_{j=1}^{i}<v_{i+1}, e_{j}><e_{j}, e_{k}> \\
& =<v_{i+1}, e_{k}>-\sum_{j=1}^{i}<v_{i+1}, e_{j}>\delta_{j k} \\
& =<v_{i+1}, e_{k}>-<v_{i+1}, e_{k}> \\
& =0 \text { and } \\
<e_{i+1}, e_{k}> & =\frac{\leq z_{i+1}, e_{k}>}{\left\|z_{i+1}\right\|}=0
\end{aligned}
$$

Thus $\left\langle e_{i+1}, e_{j}\right\rangle=0$ for all $j=1, \ldots, i$. Thus this procedure yields vectors e_{1}, \ldots, e_{n} that are orthonormal. Note that e_{i} is a linear combination of $v_{j} j=1, \ldots, n$. Thus

$$
\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\} \subset \operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\} .
$$

Note that $e_{i}, i=1, \ldots, n$ forms an orthonormal set it also forms an independent set. Therefore

$$
\operatorname{dim}\left(\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}\right)=\operatorname{dim}\left(\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}\right)=n
$$

and thus

$$
\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\} .
$$

Theorem 31. Let A be a $n \times n$ Hermitian matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. There exists a unitary matrix P such that

$$
P^{*} A P=\Lambda=\left[\begin{array}{llll}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \ldots & 0 & \lambda_{n}
\end{array}\right]
$$

Proof: Let x_{1} such that $\left\|x_{1}\right\|_{2}=1$ and $A x_{1}=\lambda_{1} x_{1}$. Let $u_{2}, u_{3}, \ldots, u_{n}$ be orthonormal vectors such that $\left\{x_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ form an orthonormal set. Let

$$
P_{1}=\left[\begin{array}{llll}
x_{1} & u_{2} & \ldots & u_{n}
\end{array}\right],
$$

Then we have that

$$
P_{1}^{*} P_{1}=I .
$$

Let $U_{1}=\left[u_{2} u_{3} \ldots u_{n}\right]$. Note that

$$
\begin{aligned}
P_{1}^{*} A P_{1} & =\left[\begin{array}{c}
x_{1}^{*} \\
U_{1}^{*}
\end{array}\right] A\left[\begin{array}{ll}
x_{1} & U_{1}
\end{array}\right] \\
& =\left[\begin{array}{c}
x_{1}^{*} \\
U_{1}^{*}
\end{array}\right]\left[\begin{array}{ll}
A x_{1} & A U_{1}
\end{array}\right] \\
& =\left[\begin{array}{c}
x_{1}^{*} \\
U_{1}^{*}
\end{array}\right]\left[\begin{array}{ll}
\lambda_{1} x_{1} & A U_{1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\lambda_{1} & x_{1}^{*} A U_{1} \\
0 & U_{1}^{*} A U_{1}
\end{array}\right] .
\end{aligned}
$$

Note that
$\left(P_{1}^{*} A P_{1}\right)^{*}=\left[\begin{array}{ll}\lambda_{1} & x_{1}^{*} A U_{1} \\ 0 & U_{1}^{*} A U_{1}\end{array}\right]^{*}=\left[\begin{array}{ll}\lambda_{1} & 0 \\ U_{1}^{*} A^{*} x_{1} & U_{1}^{*} A^{*} U_{1}\end{array}\right]=\left[\begin{array}{ll}\lambda_{1} & 0 \\ U_{1}^{*} A x_{1} & U_{1}^{*} A U_{1}\end{array}\right]$.
However

$$
\left(P_{1}^{*} A P_{1}\right)^{*}=P_{1}^{*} A^{*} P_{1}=P_{1}^{*} A P_{1}=\left[\begin{array}{cc}
\lambda_{1} & x_{1}^{*} A U_{1} \\
0 & U_{1}^{*} A U_{1}
\end{array}\right] .
$$

Thus

$$
\left[\begin{array}{ll}
\lambda_{1} & 0 \\
U_{1}^{*} A x_{1} & U_{1}^{*} A U_{1}
\end{array}\right]=\left[\begin{array}{ll}
\lambda_{1} & x_{1}^{*} A U_{1} \\
0 & U_{1}^{*} A U_{1}
\end{array}\right] .
$$

Thus

$$
\begin{aligned}
& x_{1}^{*} A U_{1}=0=U_{1}^{*} A^{*} x_{1} \text { and } \\
& P_{1}^{*} A P_{1}=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & U_{1}^{*} A U_{1}
\end{array}\right] .
\end{aligned}
$$

Recall that

$$
P_{1}^{*} P_{1}=I .
$$

Therefore eigenvalues of $P_{1}^{*} A P_{1}$ are the eigenvalues of A and thus eigenvalues of $U_{1}^{*} A U_{1}:=A_{2}$ are $\lambda_{2}, \ldots, \lambda_{n}$. Let x_{2} such that $\left\|x_{2}\right\|_{2}=1$ and $A_{2} x_{2}=\lambda_{2} x_{2}$. Let $\hat{u}_{3}, \hat{u}_{4}, \ldots, \hat{u}_{n}$ be orthonormal vectors such that $\left\{x_{2}, \hat{u}_{3}, \ldots, \hat{u}_{n}\right\}$ form an orthonormal set. Let $U_{2}:=\left[\hat{u}_{3} \ldots \hat{u}_{n}\right]$. Let

$$
Q_{2}:=\left[x_{2} U_{2}\right] \text { and } P_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & Q_{2}
\end{array}\right] .
$$

Note that $P_{2}^{*} P_{2}=I$. Note that

$$
Q_{2}^{*} A_{2} Q_{2}=\left[\begin{array}{ll}
\lambda_{2} & 0 \\
0 & U_{2}^{*} A_{2} U_{2}
\end{array}\right]
$$

Note that

$$
\begin{aligned}
\left(P_{1} P_{2}\right)^{*} A\left(P_{1} P_{2}\right) & \\
& =P_{2}^{*}\left(P_{1}^{*} A P_{1}\right) P_{2} \\
& =P_{2}^{*}\left[\begin{array}{ll}
\lambda_{1} & 0 \\
0 & A_{2}
\end{array}\right] P_{2} \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & Q_{2}^{*}
\end{array}\right]\left[\begin{array}{ll}
\lambda_{1} & 0 \\
0 & A_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & Q_{2}
\end{array}\right] . \\
& =\left[\begin{array}{ll}
\lambda_{1} & 0 \\
0 & Q_{2}^{*} A_{2} Q_{2}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & U_{2}^{*} A_{2} U_{2}
\end{array}\right]
\end{aligned}
$$

Continue the argument to obtain

$$
P=P_{1} P_{2} \ldots P_{n} \text { and } P^{*} A P=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Definition 25. Suppose A and B are matrices such that there exists a P with $P^{*} P=I$ such that $B=P^{*} A P$. Then A and B are unitarily similar.

Theorem 32. Any $n \times n$ Hermitian matrix A has n orthogonal eigenvectors that form a basis for C^{n}. In this basis A has a diagonal representation.

Theorem 33. If \mathcal{A} is a self adjoint operator on a finite dimensional space V then \mathcal{A} has real eigenvalues and corresponding eigenvectors form a basis for V. In this basis \mathcal{A} has a diagonal representation.

Theorem 34. Let A be a $n \times n$ Hermitian matrix with eigenvalues
$\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$. Then for all $x \in C^{n}$

$$
\lambda_{1} x^{*} x \leq x^{*} A x \leq \lambda_{n} x^{*} x
$$

Proof: Note that $A=A^{*}$ and that there exists a P such that $P^{*} A P=\Lambda$ and $P^{*} P=I$ with Λ diagonal. Thus

$$
\begin{aligned}
x^{*} A x & =x^{*} P \Lambda P^{*} x \\
& =\left(P^{*} x\right)^{*} \Lambda \overbrace{\left(P^{*} x\right)}^{=y} \\
& =y^{*} \Lambda y \\
& =\sum_{i=1}^{n} \lambda_{i} y_{i}^{*} y_{i}=\sum_{i=1}^{n} \lambda_{i}\left|y_{i}\right|^{2} \\
& \leq \lambda_{n}\|y\|_{2}^{2} \\
& =\lambda_{n}\|x\|_{2}^{2}
\end{aligned}
$$

Note that as $y=P^{*} x, y^{*} y=x^{*} P P^{*} x=x^{*} x$.

The fact that $x^{*} A x \geq \lambda_{1} x^{*} x$ is left as an exercise.

Theorem 35. Let A be a $n \times n$ Hermitian matrix.

1. A is positive definite if and only if its eigenvalues are positive.
2. A is positive semi-definite if and only if all its eigenvalues are nonnegative.
3. A is negative definite if and only if all its eigenvalues are negative.
4. A is negative semi-definite if and only if all its eigenvalues are non-positive.

Definition 26. Suppose $A: R^{n} \rightarrow R^{n}$. Then

$$
\|A\|_{2-i n}:=\max _{\|x\|_{2}=1}\|A x\|_{2}=\max _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}
$$

Schur's Theorem

Theorem 36. If A is a $n \times n$ matrix, then there is a unitary matrix P such that $P^{*} A P=T \quad\left(P^{*} P=1\right)$, where T is an upper triangular matrix.

Theorem 37. $n \times n$ matrix A is a unitary matrix similar to a diagonal matrix if and only if it commutes with its conjugate transpose ($A A^{*}=A^{*} A$).

Proof: (\Rightarrow) There exists a P such that $P^{*} P=I$ and

$$
P^{*} A P=\Lambda .
$$

Thus

$$
A=P \Lambda P^{*} \text { and } A^{*}=P \Lambda^{*} P^{*} .
$$

Thus

$$
A A^{*}=P \Lambda P^{*} P \Lambda^{*} P^{*}=P \Lambda \Lambda^{*} P^{*}=P \Lambda^{*} \Lambda P^{*}=P \Lambda^{*} P^{*} P \Lambda P^{*}=A^{*} A .
$$

Note that we have used the fact that ss Λ is diagonal $\Lambda \Lambda^{*}=\Lambda^{*} \Lambda$. The rest of the proof is left to the reader.

Definition 27. $n \times n$ matrix A commute with its conjugate transpose is called Normal Matrix.
A is normal if $A A^{*}=A^{*} A$.

Theorem 38. Let A be a $n \times n$ matrix, then A is similar to a diagonal matrix if and only if A has n independent eigenvectors.

Proof: (\Leftarrow) : Assume there exists n independent eigen vectors $x_{1}, x_{2}, \ldots, x_{n}$. Then

$$
\begin{array}{ll}
A \overbrace{\left[x_{1}, x_{2}, \ldots, x_{n}\right]}^{:=P} & =\left[\lambda_{1} x_{1}, \lambda_{2} x_{2}, \ldots, \lambda_{n} x_{n}\right] \\
A P & =P \Lambda(P \text { is invertible }) \\
P^{-1} A P & =\Lambda
\end{array}
$$

(\Rightarrow) : There exists P (invertible) such that

$$
\begin{array}{ll}
P^{-1} A P & =\Lambda \\
A P & =P \Lambda \\
P & =\left[p_{1}, p_{2}, \ldots, p_{n}\right] \\
A\left[p_{1}, p_{2}, \ldots, p_{n}\right] & =\left[p_{1} \lambda_{1}, p_{2} \lambda_{2}, \ldots, p_{n} \lambda_{n}\right] \\
A p_{i} & =\lambda_{i} p_{i}
\end{array}
$$

Thus A has $i=n$ independent eigen vectors as P is invertible.

Theorem 39. If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ are distinct eigen values of A, then the corresponding eigen vectors $x_{1}, x_{2}, \ldots, x_{m}$ are independent.

Proof: Suppose to the contrary, $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ are distinct but $x_{1}, x_{2}, \ldots, x_{m}$ are dependent. Then
$\sum_{i=1}^{m} c_{i} x_{i}=0$ and without loss of generality say $c_{m} \neq 0$. Then

$$
\begin{align*}
\lambda_{1}\left(\sum_{i=1}^{m} c_{i} x_{i}\right) & =0 \tag{6}\\
A\left(\sum_{i=1}^{m} c_{i} x_{i}\right) & =0 \tag{7}
\end{align*}
$$

$$
\begin{aligned}
(7)-(6) \Rightarrow \sum_{i=1}^{m} c_{i}\left(A x_{i}-\lambda_{1} x_{i}\right) & =0 \\
& \Rightarrow \sum_{i=2}^{m} c_{i}\left(\lambda_{1}-\lambda_{i}\right) x_{i}=0
\end{aligned}
$$

Multiply by λ_{2} and A and subtract each other and follow the same by λ_{3} and A Then

$$
c_{m}\left(\lambda_{1}-\lambda_{m}\right)\left(\lambda_{1}-\lambda_{m}\right) \ldots\left(\lambda_{m-1}-\lambda_{m}\right)=0
$$

which is a contradiction to our assumption.

Theorem 40. If a $n \times n$ matrix A has n distinct eigenvalues then A is similar to a diagonal matrix.

Proof: Follows from the previous two theorems

Theorem 41. Let A be a $m \times n$ matrix with rank r. Then there exist $m \times m$ unitary matrix P and $n \times n$ unitary matrix Q such that

$$
\Sigma=P^{*} A Q
$$

where Σ is a $m \times n$ matrix with only the first r diagonal elements called the singular values $\sigma_{1}, \ldots, \sigma_{r}$ nonzero and rest of the elements zero. The first r singular values are given by

$$
\sigma_{i}=\left\{\lambda_{i}\left(A^{*} A\right)\right\}^{\frac{1}{2}}
$$

Proof: Note that $\operatorname{rank}\left(A^{*} A\right)=\operatorname{rank}(A)=r$. Let the eigenvalues of $A^{*} A$ be given by $\lambda_{1}, \ldots, \lambda_{n}$ with corresponding eigenvectors x_{1}, \ldots, x_{n} that are orthogonal (see Theorem 32). Note that $A^{*} A$ is Hermitian positive seim-definite and thus all its eigenvalues are non-negative. Define

$$
\sigma_{i}=\left\{\lambda_{i}\left(A^{*} A\right)\right\}^{\frac{1}{2}}
$$

Let

$$
y_{i}=\frac{1}{\sigma_{i}} A x_{i}, \quad i=1,2, \ldots, r
$$

Note that

$$
\begin{aligned}
y_{i}^{*} y_{j} & =\frac{1}{\sigma_{i} \sigma_{j}}\left(A x_{i}\right)^{*}\left(A x_{j}\right) \\
& =\frac{1}{\sigma_{i} \sigma_{j}} x_{i}^{*} A^{*} A x_{j} \\
& =\frac{1}{\sigma_{j} \sigma_{j}} \lambda_{j} x_{i}^{*} x_{j} \\
& =\frac{\sigma_{j}}{\sigma_{i}} \delta_{i j}
\end{aligned}
$$

$\left\{y_{1}, y_{2}, \ldots, y_{r}\right\}$ forms an orthonormal and can be extended to $\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ to form a orthonormal basis for C^{m}. Let

$$
Q=\left[\begin{array}{lll}
x_{1} & \ldots & x_{n}
\end{array}\right] \text { and } P=\left[\begin{array}{lll}
y_{1} & \ldots & y_{m}
\end{array}\right]
$$

Note that $P^{*} P=P P^{*}=Q^{*} Q=Q Q^{*}=I$. Note that for all
$j=1, \ldots, n$ and $i=1, \ldots, r$

$$
\begin{aligned}
\left(P^{*} A Q\right)_{i j} & =y_{i}^{*} A x_{j} \\
& =\frac{1}{\sigma_{i}}\left(A x_{i}\right)^{*} A x_{j} \\
& =\frac{1}{\sigma_{i}} x_{i}^{*} A^{*} A x_{j} \\
& =\frac{\lambda_{j}}{\sigma_{i}} x_{i}^{*} x_{j} \\
& =\frac{\lambda_{j}}{\sigma_{i}} \delta_{i j}
\end{aligned}
$$

Also, if $j=1, \ldots, r$ and $i=r+1, \ldots, m$ then

$$
\left(P^{*} A Q\right)_{i j}=y_{i}^{*} A x_{j}=y_{i}^{*}\left(\sigma_{j} y_{j}\right)=\sigma_{j} y_{i}^{*} y_{j}=0
$$

Thus

$$
y_{i}^{*} A x_{j}=\sigma_{i} \delta_{i j} \text { for all } i=1, \ldots, r \text { and } j=1, \ldots, n
$$

Note that

$$
\left\|A x_{j}\right\|_{2}^{2}=x_{j}^{*} A^{*} A x_{j}=0, \text { for all } j=r+1, \ldots, n
$$

Thus

$$
A x_{j}=0 \text { for all } j=r+1, \ldots, n .
$$

Thus

$$
\begin{aligned}
& y_{i}^{*} A x_{j}=\sigma_{i} \delta_{i j} \text { for all } i=1, \ldots, r \text { and } j=1, \ldots, r . \\
& y_{i}^{*} A x_{j}=0 \text { for all } i=1, \ldots, r \text { and } j=r+1, \ldots, n . \\
& y_{i}^{*} A x_{j}=0 \text { for all } i=r+1, \ldots, m \text { and } j=1, \ldots, r .
\end{aligned}
$$

Thus

$$
P^{*} A Q=\left|\begin{array}{cccc}
\sigma_{1} & & & 0 \\
& \ddots & & \vdots \\
& & \sigma_{r} & 0 \\
\hline 0 & \ldots & 0 & 0
\end{array}\right|
$$

Two Induced Norm

Theorem 42. Let $A \in R^{n \times n}$. Then

$$
\|A\|_{2-i n d}=\sqrt{\rho\left(A^{*} A\right)} .
$$

where $\rho(B)$ denotes the spectral radius of B.

Jordan Canonical Form

Consider a matrix of the form

$$
J_{i}=\left[\begin{array}{ccccc}
\lambda_{i} & 1 & & & \\
& \lambda_{i} & 1 & & \\
& & \ddots & \ddots & \\
& & & \ddots & 1 \\
& & & & \lambda_{i}
\end{array}\right]_{r \times r}
$$

Then J_{i} is said to be a Jordan block with eigenvalue λ_{i} and size r. Note that e_{1} is the only eigenvector of J_{i}.

Theorem 43. $A n \times n$ matrix A is similar to the matrix

$$
\left[\begin{array}{llll}
J_{1} & & & \\
& J_{2} & & \\
& & \ddots & \\
& & & J_{p}
\end{array}\right]
$$

where J_{i} is the Jordan block with eigenvalue λ_{i} and size $r_{i} \times r_{i}$ given by

$$
J_{i}=\left[\begin{array}{ccccc}
\lambda_{i} & 1 & & & \\
& \lambda_{i} & 1 & & \\
& & \ddots & \ddots & \\
& & & \ddots & 1 \\
& & & & \lambda_{i}
\end{array}\right]_{r_{i} \times r_{i}}
$$

and

$$
\sum_{i=1}^{p} r_{i}=n
$$

Definition 28. The number of Jordan blocks associated with an eigenvalue λ_{i} is said to be the geometric multiplicity of λ_{i}. The number of eigenvalues at λ_{i} is called the algebraic multiplicity of the eigenvalue λ_{i}.

Note that from Theorem 43 there exists a invertible matrix P such that

$$
P^{-1} A P=\left[\begin{array}{llll}
J_{1} & & & \\
& J_{2} & & \\
& & \ddots & \\
& & & J_{p}
\end{array}\right]
$$

Thus

$$
A P=P J=\left[\begin{array}{llll}
p_{1} & p_{2} & \ldots & p_{n}
\end{array}\right]\left[\begin{array}{llll}
J_{1} & & & \\
& J_{2} & & \\
& & \ddots & \\
& & & J_{p}
\end{array}\right] .
$$

Thus

$$
\left.\begin{array}{rl}
{\left[\begin{array}{llllll}
A p_{1} & A p_{2} & \ldots & A p_{r_{1}} & \ldots & A p_{n}
\end{array}\right]=\left[\begin{array}{lllll}
p_{1} & p_{2} & \ldots & p_{r_{1}} & \ldots
\end{array}\right.} & p_{n}
\end{array}\right] .
$$

This implies that

$$
\begin{array}{lll}
A p_{1} & = & \lambda_{1} p_{1} \\
\left(A-\lambda_{1} I\right) p_{2} & = & p_{1} \\
\left(A-\lambda_{1} I\right) p_{3} & = & p_{2} \\
\vdots & \vdots & \vdots \\
\left(A-\lambda_{1} I\right) p_{r_{1}} & = & p_{r_{1}-1}
\end{array}
$$

$p_{r_{1}}$ is called the generator. $p_{2}, \ldots, p_{r_{1}}$ are called generalized eigenvectors.
Definition 29. Y is an invariant set with respect to A if for all $y \in Y, A y \in Y$.
$S_{1}=\operatorname{span}\left\{p_{1}, p_{2}, \ldots, p_{r_{1}}\right\}$ associated with eigenvalue λ_{1} is invariant with respect to A. Similarly S_{j}, the corresponding set with respect to λ_{j} is invariant with respect to A for all $j=1, \ldots, p$

Theorem 44. Let $A=P^{-1} J P$ be the Jordan decomposition of A with

$$
J=\left[\begin{array}{llll}
J_{1} & & & \\
& J_{2} & & \\
& & \ddots & \\
& & & J_{p}
\end{array}\right] .
$$

If S_{i} is defined as above then $S_{i}^{\prime} s$ are invariant with respect to A and

$$
C^{n}=S_{1} \oplus S_{2} \oplus \ldots \oplus S_{p} .
$$

Cayley Hamilton Theorem

Theorem 45. The characteristic polynomial associated with matrix A is

$$
f(\lambda)=\left(\lambda-\lambda_{1}\right) \ldots\left(\lambda-\lambda_{n}\right) .
$$

Then

$$
f(A)=0 .
$$

Proof: Let the Jordan decomposition be given by

$$
J=P^{-1} A P .
$$

Thus

$$
A^{m}=P J^{m} P^{-1} .
$$

Note that

$$
f(\lambda)=\left(\lambda-\lambda_{1}\right)^{r_{1}}\left(\lambda-\lambda_{2}\right)^{r_{2}} \ldots\left(\lambda-\lambda_{p}\right)^{r_{p}} .
$$

Thus it follows that

$$
f(A)=P(f(J)) P^{-1}
$$

where f is any polynomial. Note that

$$
\begin{aligned}
f(J) & =f\left(\left[\begin{array}{llll}
J_{1} & & & \\
& J_{2} & & \\
& & \ddots & \\
& & & J_{p}
\end{array}\right]\right) \\
& =\left(J-\lambda_{1} I\right)^{r_{1}}\left(J-\lambda_{2} I\right)^{r_{2}} \cdots\left(J-\lambda_{p} I\right)^{r_{p}} \\
& =0
\end{aligned}
$$

Thus $f(A)=0$.

Minimal polynomial

Definition 30. The minimal polynomial of a square matrix A is the least ordered polynomial $p(\lambda)$ such that $p(A)=0$.

Theorem 46. Suppose A has m distinct eigenvalues. Let t_{i} be the size of the largest Jordan block of A associated with eigenvalue λ_{i}. Then the minimum polynomial is given by

$$
\Pi_{i=1}^{m}\left(\lambda-\lambda_{i}\right)^{t_{i}}
$$

