Linear Algebra

Murti V. Salapaka Electrical Engineering Department University Of Minnesota, Twin Cities murtis@umn.edu

Preliminary Notation

- Column and row vectors
 - \star A column vector x is a n-tuple of real or complex numbers

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

 \star A row vector

$$x = \left[\begin{array}{ccc} x_1 & \dots & x_n \end{array} \right], \ x_i \in C, \ R$$

• $m \times n$ matrix is the following array

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}, \ a_{ij} \in C, \ R$$

short hand notation is $A = (a_{ij})$

It is useful to view A as a row vector of columns

$$A = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}, \text{ where } a_i = \begin{bmatrix} a_{1i} \\ \vdots \\ a_{mi} \end{bmatrix}$$

View A as a collection of row vectors

$$A = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}, a_i = \begin{bmatrix} a_{i1} & \dots & a_{in} \end{bmatrix}$$

• Upper and Lower triangular matrices

 $A = (a_{ij})$ is the upper triangular if $a_{ij} = 0, \ j < i$

- Transpose: A^T denotes the transpose of a matrix A whose elements are $A^T = (a_{ji})$ if $A = (a_{ij})$
- Conjugate Transpose:

 $A^* = (\overline{a_{ji}})$ if $A = (a_{ij})$

• Symmetric:

A matrix A is Symmetric if $A = A^T$

• Hermitian:

A matrix A is Hermitian if $A = A^*$

• Multiplication:

 $C = AB, \; A \in R^{m \times p} \text{, } \; B \in R^{p \times n}$

$$C_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj} = (i^{th} \ row \ of \ A)[j^{th} \ column \ of \ B]$$

Fact:
If
$$C = AB$$
, then $C^* = B^*A^*$

Suppose $B \in R^{p \times n}$

$$B = \begin{bmatrix} b_1 & \dots & b_n \end{bmatrix}$$

$$AB = \begin{bmatrix} Ab_1 & Ab_2 & \dots & Ab_n \end{bmatrix}$$

$$A = \begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix}$$

$$AB = \begin{bmatrix} a_1B \\ a_2B \\ \vdots \\ a_mB \end{bmatrix}$$

Orthogonal, Unitary Matrices, Linear Independence

Definition 1. • Orthogonal Matrix:

A is Orthogonal if $A^T A = A A^T = I$

- Unitary matrix:
 - A is unitary if $A^*A = AA^* = I$
- Orthogonal Vectors:

Given two column vectors x, y with n-element, they are said to be Orthogonal if $x^*y = 0$. They are Orthonormal if $x^*y = 0$, $x^*x = 1$, $y^*y = 1$

• Linear Independence:

Given a set of column vectors with element each denoted by x^1, x^2, \ldots, x^m .

They are said to be independent if

$$\sum_{i=1}^{m} c_i x^i = 0 \Rightarrow c_i = 0, \ c_i \in R$$

. If x^1, x^2, \ldots, x^m are not independent then they are said to be dependent.

Determinants

• Determinants:

Suppose

$$B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \text{ then } \det(B) \triangleq ad - bc$$

Suppose $A \in \mathbb{R}^{n \times n}$ then let A_{ij} be defined as the $(n-1) \times (n-1)$ matrix obtained by deleting the i^{th} row and the j^{th} column. A_{ij} is called the co-factor associated with a_{ij} . Determinant of A denoted by det(A) is defined by

$$det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} det(A_{ij}).$$

Properties of Determinants

• It can be shown that

$$det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} det(A_{ij}).$$

- If any two rows or any two columns of A are the same then det(A) = 0.
- If any two rows (columns) are interchanged then the sign of the determinant changes but the magnitude remains same.
- If an row (column) is scaled by α then the det also gets scaled by α .

•
$$deta(A) = det(A^T)$$
 and $det(A^*) = \overline{det(A)}$.

- If a scalar multiple if a particular row (column) is added to another row (column) then the determinant remains unchanged.
- det(AB) = det(A)det(B). (Not easy to prove).

Matrix Inverse

 Inverse of a matrix: Suppose A ∈ R^{n×n} and there exists a matrix X such that

$$AX = XA = I.$$

Then X is the inverse of A. An inverse of a matrix A is denoted by A^{-1} .

If A is invertible then

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I & 0 \\ CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & B \\ 0 & D - CA^{-1}B \end{bmatrix}$$

and if D is invertible then

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I & BD^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & 0 \\ C & D \end{bmatrix}$$

Simultaneous Equations

Consider the following set of *n* equations in *n* unknowns x_1, x_2, \ldots, x_n .

Another way of representing this set of equations is

$$Ax = b, \ x := \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \ b := \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \text{ and } A := (a_{ij})$$

Gaussian Elimination

Theorem 1. Consider the equation

Ax = b

where x and b are vectors in \mathbb{R}^n and $A \in \mathbb{R}^{n \times n}$. A and b are known and x is the solution to be determined. Then Ax = b admits a unique solution x^* if $det(A) \neq 0$.

Proof: Ax = b is a notation for

Note that there is at least one *i* such that $a_{i1} \neq 0$ (as $det(A) \neq 0$). Without loss

of generality assume that $a_{11} \neq 0$. Perform the following operation: multiply the first row by $-a_{i1}/a_{11}$ and add it to the i^{th} row for i = 2, ..., n. Replace the i^{th} row with this row. This leads us to the following set of equations

$$a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + \dots + a_{1n}^{(1)}x_n = b_1^{(1)} 0 + a_{22}^{(1)}x_2 + \dots + a_{1n}^{(1)}x_n = b_2^{(1)} \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 + a_{n2}^{(1)}x_2 + \dots + a_{nn}^{(1)}x_n = b_n^{(1)}$$

$$(2)$$

with the first row unchanged. The above set of equations can be denoted by $A^{(1)}x = b^{(1)}$ where $A^{(1)} = (a_{ij}^{(1)})$. Note that $det(A) = det(A^{(1)})$ and therefore $det(A^{(1)}) \neq 0$. Using this fact we can assert that there is at least one $i \in \{2, \ldots, n\}$ such that $a_{i2} \neq 0$. Without loss of generality assume that $a_{22}^{(1)} \neq 0$.

Perform the following operation: multiply the second row by $-a_{i2}^{(1)}/a_{22}^{(1)}$ and add it to the i^{th} row for i = 3, ..., n to obtain. Replace the i^{th} for rows

 $i = 3, \ldots, n$ with the new rows. This leads us to the following set of equations

$$a_{11}^{(2)}x_1 + a_{12}^{(2)}x_2 + \dots + a_{1n}^{(2)}x_n = b_1^{(2)} 0 + a_{22}^{(2)}x_2 + \dots + a_{1n}^{(2)}x_n = b_2^{(2)} \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ 0 + 0 + \dots + a_{nn}^{(2)}x_n = b_n^{(2)}$$
(3)

with the first two rows same as in (2). These iterations can be continued to obtain

with $a^* \neq 0$. Thus we have the unique solution

$$\begin{array}{rcl}
x_n &=& b_n^*/a_{nn}^* \\
x_{n-1} &=& \frac{b_{n-1}^* - a_{(n-1)n}^* x_n}{a_{(n-1)(n-1)}^*} \\
\vdots & \vdots & \vdots \\
x_1 &=& \frac{b_1^* - a_{12}^* x_2 - a^* 13 x_3 \dots a_{1n}^* x_n}{a_{11}^*}
\end{array}$$

The method used to obtain the solution of Ax = b in the proof above is called the *Gaussian Elimination* method.

Theorem 2. If $A \in \mathbb{R}^{n \times n}$, then $det(A) \neq 0$, if and only if A^{-1} exists.

Proof: Let e_i denote a column vector with 1 in the i^{th} position, a zero

otherwise.

$$e^{i} = \begin{bmatrix} 0\\0\\\vdots\\1\\0\\\vdots\\0\end{bmatrix}$$

where $e_k^i = \delta_{ik}$. From Theorem 1, $Ax = e^i$ has a unique solution x^i . Let

$$X = \begin{bmatrix} x^1 & x^2 & \dots & x^n \end{bmatrix}$$
$$AX = A \begin{bmatrix} x^1 & x^2 & \dots & x^n \end{bmatrix}$$
$$= \begin{bmatrix} Ax^1 & Ax^2 & \dots & Ax^n \end{bmatrix}$$
$$= \begin{bmatrix} e^1 & e^2 & \dots & e^n \end{bmatrix}$$
$$= I$$

If A^{-1} exists, then $\exists X$ such that

$$AX = I$$

$$det(AX) = det(I)$$

$$det(A) det(X) = det(I) = 1$$

$$\Rightarrow det(A) \neq 0$$

Therefore, A^{-1} exists $\Leftrightarrow \det(A) \neq 0$.

Theorem 3. Suppose A is a $n \times n$ real or complex matrix, then the following are equivalent:

1. $det(A) \neq 0$

- 2. \exists a matrix A^{-1} such that $A^{-1}A = AA^{-1} = I$
- 3. AX = b has a unique solution for every $b \in \mathbb{R}^n$

4. AX = 0 has the only solution X = 0

5. The rows and columns of A are independent.

Proof: We have shown that $1 \Leftrightarrow 2$ from Theorem 2. We have also shown $2 \Leftrightarrow 3$ and $3 \Leftrightarrow 4$

To show $4 \Rightarrow 5$: Assume that scalars $c_1, c_2, \ldots c_n$ such that

$$\begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = 0$$

$$\begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

$$Ac = 0$$

$$Ac = 0$$

$$c = 0 (from 4)$$

$$c_i = 0 \text{ for all } i$$

Thus $a_1, a_2 \dots a_n$ are independent

To show $5 \Rightarrow 4$:

Note that $det(A) = det(A^T) \Rightarrow$ rows of A are independent \Rightarrow columns of A^T are independent $\Rightarrow det(A^T) \neq 0 \Rightarrow det(A) \neq 0 \Rightarrow 4$ holds which follows from equivalence of 1 and 4

Eigenvectors and Eigenvalues

Definition 2. Eigenvectors and Eigenvalues: Given a square matrix $A \in R^{n \times n}$, (or $A \in C^{n \times n}$,) $\lambda \in C$ is an eigenvalue of A if there exists a vector $x \neq 0 \in C^n$ such that

 $Ax = \lambda x.$

Such a vector x is called an eigenvector of A associated with eigenvalue λ .

Theorem 4. Let $A \in \mathbb{R}^{n \times n}$. Then the following statements hold.

1. λ is an eigenvalue of A if and only if $det(A - \lambda I) = 0$.

2. If λ is an eigenvalue of A then λ^m is an eigenvalue of A^m .

Proof: (1) Suppose λ is an eigenvalue of A. Then from the definition there exists a $x \neq 0$ such that $Ax = \lambda x$ or in other words there exists $x \neq 0$ such that $(A - \lambda I)x = 0$. From Theorem 3 it follows that $det(A - \lambda I) = 0$.

Suppose $det(A - \lambda I) = 0$. Then from Theorem 3 it follows that there exists $x \neq 0$ such that $(A - \lambda I)x = 0$ which implied there exists $x \neq 0$ such that $Ax = \lambda x$. Thus λ is an eigenvalue of A.

This proves (1).

(2) Suppose λ is an eigenvalue of A. Then from the definition there exists a $x \neq 0$ such that $Ax = \lambda x$. Multiplying this equality by A on both sides we have $A^2x = \lambda Ax = \lambda^2 x$. Thus $A^2x = \lambda^2 x$. Repeating this step m times we have $A^m x = \lambda^m x$. This proves the theorem.

Theorem 5. Let $p(\lambda) = \alpha_0 + \alpha_1 \lambda + \alpha_2 \lambda^2 + \ldots + \alpha_m \lambda^m$ and $p(A) = \alpha_0 I + \alpha_1 A + \ldots + \alpha_m A^m$. If λ_0 is an eigenvalue of A then $p(\lambda_0)$ is an eigenvalue of p(A).

Proof: λ_0 is an eigenvalue, then $\exists x \neq 0$ such that $Ax = \lambda x$

$$p(A)x = (\alpha_0 x + \alpha_1 A x + \alpha_2 A^2 x + \ldots + \alpha_m A^m x)$$

= $(\alpha_0 x + \alpha_1 \lambda x + \alpha_2 \lambda^2 x + \ldots + \alpha_m \lambda^m x)$
= $(\alpha_0 + \alpha_1 \lambda + \alpha_2 \lambda^2 + \ldots + \alpha_m \lambda^m) x$
= $p(\lambda)x$

Theorem 6. Suppose A is an $n \times n$ matrix with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ and A is nonsingular($\det(A) \neq 0$)then $\lambda_1^{-1}, \lambda_2^{-1}, \ldots, \lambda_n^{-1}$ are eigenvalues of A^{-1} .

Proof: If λ is an eigenvalue, then $\exists x \neq 0$ such that

$$\begin{array}{rcrcrc} Ax &=& \lambda x\\ \Rightarrow & x &=& \lambda A^{-1}x\\ \Rightarrow & \frac{1}{\lambda}x &=& A^{-1}x \end{array}$$

Thus λ^{-1} is an eigenvalue of A^{-1}

Theorem 7. If A is an $n \times n$ matrix then A and A^T have the same eigenvalues. If A is an $n \times n$ matrix with eigenvalue λ then A^* has an eigenvalue $\overline{\lambda}$.

Proof: Note that $\lambda \in C$ is an eigenvalue of A if and only if

$$\begin{array}{rcl} & \displaystyle \frac{det(A-\lambda I)}{det(A-\lambda I)} & = & 0\\ \Leftrightarrow & \displaystyle \frac{det(A-\lambda I)}{det(\overline{A-\lambda I})} & = & 0\\ \Leftrightarrow & \displaystyle \frac{det(\overline{A-\lambda I})}{det(\overline{A-\lambda I})^T} & = & 0\\ \Leftrightarrow & \displaystyle \frac{det(A^*-\overline{\lambda I})}{det(A^*-\overline{\lambda I})} & = & 0 \end{array}$$

Theorem 8. If A is a $n \times n$ matrix then

$$det(\lambda I - A) = (\lambda - \lambda_1)(\lambda - \lambda_1)\dots(\lambda - \lambda_n)$$

where λ_i , i = 1, ..., n are eigenvalues of A. Thus $det(A) = \prod_{i=1}^n \lambda_i$.

Proof: The proof follows from the fact that $det(\lambda I - A)$ is a n^{th} order polynomial and thus will have n roots. From Theorem 4 it follows that λ_i , $i = 1, \ldots, n$ are all roots of polynomial $det(\lambda I - A)$. This proves the theorem.

Theorem 9. If A is a Hermitian matrix then all its eigenvalues are real.

Proof: Note that $A = A^*$. If λ is an eigenvalue of A then there exists a vector $x \neq 0$ such that $Ax = \lambda x$.

$$Ax = \lambda x$$

$$\Rightarrow x^*Ax = \lambda x^*x$$

$$\Rightarrow (x^*Ax)^* = (\lambda x^*x)^*$$

$$\Rightarrow x^*A^*x^* = \overline{\lambda}x^*x$$

$$\Rightarrow x^*Ax^* = \overline{\lambda}x^*x$$

$$\Rightarrow \frac{x^*Ax^*}{x^*x} = \overline{\lambda}$$

$$\Rightarrow \overline{\lambda} = \lambda$$

This proves that λ is real.

Definition 3. $A n \times n$ matrix A is said to be

- 1. positive definite if $x^*Ax > 0$, for all $x \neq 0$.
- 2. positive semi-definite if $x^*Ax \ge 0$, for all x.
- 3. negative definite if $x^*Ax < 0$, for all $x \neq 0$.
- 4. negative semi-definite if $x^*Ax \leq 0$, for all $x \neq 0$.

Theorem 10. A $n \times n$ is a Hermitian matrix. Then

- 1. all its eigenvalues are positive if A is positive definite
- 2. all its eigenvalues are non-negative if A is positive semi-definite

- *3. all its eigenvalues are negative if A is negative definite*
- 4. all its eigenvalues are non-negative if A is negative semi-definite

Proof: We will prove (1). Let $x \neq 0$ and $Ax = \lambda x$. As A is hermitian λ is real. Note that

$$\begin{array}{rcl}
x^*Ax &=& \lambda x^*x \\
\Rightarrow & \frac{x^*Ax^*}{x^*x} &=& \lambda \\
\Rightarrow & \lambda &>& 0
\end{array}$$

The last step follows as $x^*Ax > 0$, and $x^*x > 0$.

General Vector Spaces

Definition 4. A linear Vector Space is a collection of objects called vectors with two operations," + " and "." defined between two vectors and a vector and scalar respectively which satisfy

1.
$$x, y \in V \Rightarrow x + y \in V$$

2.
$$(x+y) + z = x + (y+z) \ \forall x, y, z \in V$$

3.
$$x + y = y + x \ \forall x, y \in V$$

4. There is an element 0 called the zero vector such that $\underbrace{0}_{scalar} . x = \underbrace{0}_{vector} \forall x \in V$

5. $1.x = x \ \forall x \in V$

6. $\alpha(\beta . x) = (\alpha \beta) . x$ where α, β are scalars and $x \in V$

7.
$$(\alpha + \beta).x = \alpha x + \beta x, \ \alpha, \beta$$
 are scalars and $x \in V$

8. $\alpha (x + y) = \alpha x + \beta y$, α is a scalar and $x, y \in V$

Example 2. Let scalars be the real numbers and $V = R^n$.

$$\left\{ x: x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \quad x_i \in R, \right\} \qquad \qquad '+': \ V \times V \to V$$

$$x+y := \begin{bmatrix} x_1+y_1 \\ x_2+y_2 \\ \vdots \\ x_n+y_n \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

$$x_i \in R, \ y_i \in R, \ \alpha . x = \begin{bmatrix} \alpha x_1 \\ \vdots \\ \alpha x_n \end{bmatrix}$$
$$\begin{bmatrix} x_1 \end{bmatrix} \begin{bmatrix} y_1 \end{bmatrix} \begin{bmatrix} z_1 \end{bmatrix}$$

$$x = \begin{bmatrix} \vdots \\ x_n \end{bmatrix}, \quad y = \begin{bmatrix} \vdots \\ y_n \end{bmatrix}, \quad z = \begin{bmatrix} \vdots \\ z_n \end{bmatrix}$$

$$(x+y)+z = \begin{bmatrix} x_1+y_1\\ \vdots\\ x_n+y_n \end{bmatrix} + \begin{bmatrix} z_1\\ \vdots\\ z_n \end{bmatrix} = \begin{bmatrix} x_1+y_1+z_1\\ \vdots\\ x_n+y_n+z_1 \end{bmatrix}$$

similarly, $x + (y+z) = \begin{bmatrix} x_1\\ \vdots\\ x_n \end{bmatrix} + \begin{bmatrix} y_1+z_1\\ \vdots\\ y_n+z_n \end{bmatrix} = \begin{bmatrix} x_1+y_1+z_1\\ \vdots\\ x_n+y_n+z_1 \end{bmatrix}$

Example 3. Let

 $V := \{ set of all polynomials of order less than or equal to n \}$

and the scalars be the real numbers. The vector addition operation is defined as follows: if

$$p(t) = p_0 + p_1 t + \ldots + p_n t^n$$
 and $q(t) = q_0 + q_1 t + \ldots + q_n t^n$

then

$$(p+q)(t) := (p_0+q_0) + (p_1+q_1)t + \ldots + (p_n+q_n)t^n$$
 and

$$(\alpha p)(t) = \alpha p_0 + \alpha p_1 t + \ldots + \alpha p_n t^n.$$

Then V with the R as the scalars satisfies all the properties of a vector space.

Definition 5. Linear Independence: Let *V* be a vector space and let v_1, v_2, \ldots, v_n be vectors in *V*. If $\sum_{i=1}^n c_i v_i \Rightarrow c_i = 0$ where c_1, c_2, \ldots, c_n are scalars, then we say v_1, v_2, \ldots, v_n are independent.

Definition 6. Linear Combination: Suppose *V* is a vector space and v_1, v_2, \ldots, v_n are any vectors in *V*. Then $V = \sum_{i=1}^{n} c_i v_i$ is said to be a Linear Combination of the vectors v_1, v_2, \ldots, v_n .

Definition 7. Subspace: Suppose *X* is a vector space. If $V \subset X$ and *V* is a vector space, then *V* is said to be a Subspace of *X*.

Definition 8. Span: Let X be a vector space and let $x_1, x_2, x_3, \ldots, x_n$ be vectors in X. Span (x_1, \ldots, x_n) is the set of all linear combination of vectors x_1, x_2, \ldots, x_n .

$$Span(x_1, \ldots, x_n) = \{x \in X, X = \sum_{i=1}^n c_i x_i \text{, where } c_i \text{ are scalars } \}$$

Figure 3: $Span(e^1, e^2) = E^2$, and $Span(v, w) = E^2$

Definition 9. Basis: Let X be a vector space. Then a set of independent vectors x_1, x_2, \ldots, x_n are said to be a Basis if $Span(x_1, \ldots, x_n) = X$.

Example 6. • e_1, e_2 is a Basis for E^2 .
• $X = all polynomials of degree \leq n$.

$$X = \{\alpha_0 + \alpha_1 t + \alpha_2 t^2 + \ldots + \alpha_n t^n | \alpha_i \in R\}$$

 $\{1, t, \ldots, t^n\}$ forms a Basis for X.

 $\{1, 1+t, 1+t+t^2, \dots, 1+t, \dots, +t^n\}$ also forms a Basis.

• $X = \{ polynomials or order \leq 3 \}$

 $\{1, 1+t, t^2, t, t^3\}$ is not a Basis (note that 1 - (1+t) + t = 0 and therefore not independent).

Definition 10. Finite Dimensional Vector Space: *X a Vector Space is said to be finite dimensional if it has a Basis which has a finite number of elements. Any Vector Space that is not finite dimensional is said to be Infinite Dimensional Vector Space.*

Example: $X = \{ all polynomials of any degree \}$ (infinite dimensional)

Dimension is unique

Theorem 11. Let *X* be a Vector Space. Suppose $x_1, x_2, ..., x_n$ and $y_1, y_2, ..., y_n$ are two set of basis Vectors for *X*, then n = m.

Proof: Assume without loss of generality that m > n. As $\{x_j\} j = 1^n$ is a basis there exist constants a_{ji} , i = 1, ..., m such that

$$y_i = \sum_{j=1}^n a_{ji} x_j.$$

Let

$$A := \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ \vdots & & & & \\ a_{j1} & a_{j2} & \dots & a_{jm} \\ \vdots & & & & \\ a_{n1} & a_{n2} & \dots & a_{nm} \\ \vdots & & & & \\ 0 & 0 & \dots & 0 \\ \vdots & & & & \\ 0 & 0 & \dots & 0 \end{bmatrix}_{m \times m}$$

det(A) = 0. It follows from Theorem 3 that \exists an $\alpha \in R^m$, $\alpha \neq 0$ such that $A\alpha = 0$.

Let us consider the linear combination

$$\sum_{i=1}^{m} \alpha_i y_i, \quad \alpha = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_m \end{bmatrix} \in R^m = \sum_{i=1}^{m} \alpha_i (\sum_{j=1}^{n} a_{ji} x_j)$$
$$= \sum_{j=1}^{n} (\sum_{i=1}^{m} a_{ji} \alpha_i) x_j$$
$$= 0$$

Thus we have shown that there exist scalars $\alpha_1, \ldots, \alpha_m$ and $\sum_{i=1}^m \alpha_i y_i = 0 \Rightarrow y_1, y_2, \ldots, y_m$ are not linearly independent. This is a contradiction to the fact that $\{y_i\}_{i=1}^m$ are independent and thus m = n.

Definition 11. Dimension of a Finite Dimensional Vector Space: *The Dimension of a Finite Dimensional Vector Space is the number of vectors in any basis of the vector space.*

Suppose V_1, V_2 are subspaces of a Vector space V, then

$$V_1 \cap V_2 = \{ v \in V : v \in V_1 \text{ and } v \in V_2 \}$$

$$V_1 + V_2 = \{ v \in V : v = v_1 + v_2, v_1 \in V_1, v_2 \in V_2 \}$$

 $V_1 + V_2$ is called the Direct Sum of V_1 and V_2 if $V_1 \cap V_2 = \{0\}$. The notation $V_1 \oplus V_2$ is used to denote a Direct Sum.

$$\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2)$$

 $\dim(V_1 \oplus V_2) = \dim(V_1) + \dim(V_2).$

Independent vectors extended to form a basis

Theorem 12. Let *V* be a *n* dimensional vector space and let v_i , i = 1, ..., m be independent vectors with m < n. Then there exist *n* independent vectors \hat{v}_i , i = 1, ..., n such that $\hat{v}_i = v_i$ for i = 1, ..., m.

Proof: Let

$$V_0 := span\{v_1, \ldots, v_2\}.$$

Let $\hat{v}_{m+1} \in V$ such that $\hat{v}_{m+1} \notin V_0$. Such a vector exists from Theorem 11 and as m < n. Let

$$V_1 := span\{v_1, \dots, v_2, \hat{v}_{m+1}\}.$$

Clearly $dim(V_2) = m + 1$. Continuing the above process till we obtain

1

$$V_{(n-m)} := span\{v_1, \dots, v_2, \hat{v}_{m+1}, \dots, \hat{v}_n\}.$$

From Theorem 11 these set of vectors has to form a basis for V. The theorem follows by defining $\hat{v}_i := v_i$ for i = 1, ..., m.

Coordinates

Figure 4: The coordinates of w^1 in the basis e^1 and e^2 is $[\cos \theta \ \sin \theta]'$

Note that

$$\overrightarrow{w}^1 = \cos(\theta)\overrightarrow{e}^1 + \sin(\theta)\overrightarrow{e}^2.$$

$$\left[\begin{array}{c}\cos(\theta)\\\sin(\theta)\end{array}\right]$$

are the coordinates of \overrightarrow{w}^1 in the bases \overrightarrow{e}^1 and \overrightarrow{e}^2 .

Note that \overrightarrow{w}^1 and \overrightarrow{w}^2 also forms a basis for E^2 . As

$$\overrightarrow{w}^1 = 1\overrightarrow{w}^1 + 0\overrightarrow{w}^2.$$

And thus the coordinates of \vec{w}^1 in the basis \vec{w}^1 and \vec{w}^2 is

Let V be a vector space and suppose $\{v_i\}_{i=1}^n$ be a set of basis vectors. Then

 $\begin{bmatrix} 1\\ 0 \end{bmatrix}$.

any vector $v \in V$ can be written as

$$v = \sum_{i=1}^{n} \alpha_i v_i.$$

Then $\alpha_1, \ldots, \alpha_n$ are coordinates in the basis $\{v_i\}_{i=1}^n$ and

$$\left[\begin{array}{c} \alpha_1 \\ \vdots \\ \alpha_n \end{array}\right]$$

is the coordinate vector in the basis $\{v_i\}_{i=1}^n$. Note that if

$$v = \sum_{i=1}^{n} \hat{\alpha}_i v_i$$

then

$$0 = \sum_{i=1}^{n} (\hat{\alpha}_i - \alpha_i) v_i$$

and as v_1, \ldots, v_n are independent it follows that $(\hat{\alpha}_i - \alpha_i) = 0$ for $i = 1, \ldots, n$. Thus $\alpha_i = \hat{\alpha}_i$ for all $i = 1, \ldots, n$. This implies that coordinates are well defined.

Example 7. Suppose

 $V = \{a ll polynomials with degree less than or equal to n\}.$

Note that the polynomials $1, t, t^2, ..., t^n$ forms a basis for V. Suppose p is a polynomial given by

$$p(t) = \alpha_0 + \alpha_1 t + \alpha_2 t^2, \dots, \alpha_n t^n.$$

The coordinate vector of p in the basis $\{t^i\}_{i=0}^n$ is

$$egin{array}{ccc} lpha_0 & & \ dots & dots & \ lpha_n & & \ lpha_n & & \end{array}$$

One can check that

is also a set of basis vectors for V. Note that

$$p(t) = \alpha_0 + \alpha_1 t + \alpha_2 t^2, \dots, \alpha_n t^n$$

= $\alpha_0 + \alpha_1 (1 + t - 1) + \alpha_2 (1 + t + t^2 - (1 + t)) + \dots$
+ $\alpha_n (1 + t + \dots + t^n - (1 + t + \dots + t^{n-1}))$
= $(\alpha_0 - \alpha_1) + (\alpha_1 - \alpha_2)(1 + t) +$
 $\dots + (\alpha_{n-1} - \alpha_n)(1 + t + \dots + t^{n-1}) + \alpha_n (1 + t + t^2 + \dots + t^n)$

Thus in new basis the coordinate vector is

$$\begin{bmatrix} \alpha_0 - \alpha_1 \\ \alpha_1 - \alpha_2 \\ \vdots \\ \alpha_{n-1} - \alpha_n \\ \alpha_n \end{bmatrix}$$

•

Figure 5: A map

Let *X* and *Y* be vector spaces. A a mapping from *X* to *Y* which assigns a vector $Ax \in Y$ for every vector $x \in X$ is a linear operator if

 $\mathcal{A}(\alpha_1 x^1 + \alpha_2 x^2) = \alpha_1 \mathcal{A} x_1 + \alpha_2 \mathcal{A} x_2$ for all $x^1, x^2 \in X$ and α_1, α_2 scalars.

Example 8. Suppose V is the set of all polynomials of degree less than or equal to n. Suppose W is the set of all polynomials of degree less than or

equal to n-1. Let $\mathcal{A}: V \to W$ be defined by

$$\mathcal{A}p := \frac{dp}{dt}.$$

Note that for every $p \in V$, $Ap \in W$. Also note that

$$\mathcal{A}(\alpha p + \beta q) = \frac{d(\alpha p + \beta q)}{dt}$$
$$= \alpha \frac{dp}{dt} + \beta \frac{dq}{dt}$$
$$= \alpha \mathcal{A}p + \beta \mathcal{A}q$$

proving that A is a linear operator.

Example 9. Suppose $V = R^n$ and $W = R^m$. Suppose $\mathcal{A} : V \to W$ id defined

by

$$Ax := \overbrace{\left[\begin{array}{ccc}a_{11} & \dots & a_{1n}\\ \vdots & \vdots & \vdots\\ a_{n1} & \dots & a_{mn}\end{array}\right]}^{=:A} \left[\begin{array}{ccc}x_1\\ \vdots\\ x_n\end{array}\right]$$
where $x = \left[\begin{array}{ccc}x_1\\ \vdots\\ x_n\end{array}\right]$. Its evident that

$$A(\alpha_1x^1 + \alpha_2x^2) = A(\alpha_1x^1 + \alpha_2x^2) = \alpha_1Ax_1 + \alpha_2Ax^2$$

$$= \alpha_1Ax^1 + \alpha_2Ax^2$$

Thus \mathcal{A} is linear.

Matrix Representation of a Linear Operator

Suppose $\mathcal{A}: V \to W$ is a linear operator. Suppose $\{v_1, \ldots, v_n\}$ is a basis for V and $\{w_1, \ldots, w_2\}$ is a basis for W. Suppose $v \in V$ and suppose $\begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$ is its coordinate vector in the basis given. That is

 $v = \sum_{j=1}^{n} \alpha_j v_j.$

Note that $Av_j \in W$. Let the coordinate vector of Av_j be $\begin{bmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{bmatrix}$ for $j = 1, \ldots, n$. That is

$$\mathcal{A}v_j = \sum_{i=1}^m a_{ij}w_i, \ j = 1, \dots, n$$

Note that

$$\mathcal{A}v = \mathcal{A}(\sum_{j=1}^{n} \alpha_{j}v_{j})$$

$$= \sum_{j=1}^{n} \mathcal{A}(\alpha_{j}v_{j})$$

$$= \sum_{j=1}^{n} \alpha_{j}\mathcal{A}(v_{j})$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{m} \alpha_{j}a_{ij}w_{i}$$

$$= \sum_{i=1}^{m} (\sum_{j=1}^{n} a_{ij}\alpha_{j}) w_{i}$$

$$:= \beta_{i}$$

$$:= \sum_{i=1}^{m} \beta_{i}w_{i}$$

where we have defined $\beta_i = \sum_{j=1}^n a_{ij}\alpha_j, i = 1, \dots m$. Thus the coordinate vector of Av is

$$\beta := \left[\begin{array}{c} \beta_1 \\ \vdots \\ \beta_m \end{array} \right],$$

where

$$\beta = A\alpha,$$

with $A = (a_{ij})$.

Thus the method to obtain the matrix representation of a linear operator given a basis $\{v_j\}_{j=1}^n$ of the domain space V and a basis $\{w_i\}_{i=1}^m$ of the range space W is to follow the steps below:

- 1. Obtain the coordinates of Av_j in the basis $\{w_i\}_{i=1}^m$. Let $\begin{bmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{bmatrix}$ be the coordinate vector for v_j .
- 2. The coordinate vector of Av is $\beta = A\alpha$ if α is the coordinate vector of v in the basis $\{v_j\}_{j=1}^n$.

Example 10. Consider

$$V = \{ all polynomials of degree \leq n \}$$

and

$$W = \{ all polynomials of degree \leq n-1 \}.$$

Let $\mathcal{A}: V \to W$ be defined by

$$\mathcal{A}p = \frac{dp}{dt}.$$

Let $(1, t, t^2, ..., t^n)$ be the basis for V and let $(1, t, ..., t^{n-1})$ be the basis for W.

$$\mathcal{A}v_j = \sum_{i=1}^m a_{ij} w_i.$$

Note that $v_j = t^{j-1}$, $w_i = t^{i-1}$ Thus

$$\begin{aligned}
Av_{j} &= \frac{dv_{j}}{dt} \\
&= (j-1)t^{j-2} \\
&= \sum_{i=1}^{m} a_{ij}w_{i} = \sum_{i=1}^{m} a_{ij}t^{i-1}
\end{aligned}$$

This implies that

$$(j-1)t^{j-2} = \sum_{i=1}^{m} a_{ij}t^{i-1}$$

and thus

$$a_{ij} = 0 \quad if \ i \neq (j-1)$$

= $(j-1) \ if \ i = (j-1)$

Let p in V be given by

$$p = \alpha_0 1 + \alpha_1 t + \ldots + \alpha_n t^n$$

which has coordinate vector

$$\left[\begin{array}{c} \alpha_0 \\ \vdots \\ \alpha_n \end{array}\right]$$

Then Av has coordinates $\beta = A\alpha$ where $A = (a_{ij})$ where

$$a_{ij} = 0 \quad if \ i \neq (j-1)$$

= $(j-1) \ if \ i = (j-1)$

Example 11. $V = R^n$, $W = R^m$

to be the basis for \mathbb{R}^n and a similar basis for \mathbb{R}^m .

Let $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ be defined by

$$\mathcal{A}v = \overbrace{\left[\begin{array}{ccc}a_{11}&\ldots&a_{1n}\\\vdots&&&\\a_{m1}&\ldots&a_{mn}\end{array}\right]}^{\mathcal{A}} \overbrace{\left[\begin{array}{c}\alpha_{1}\\\alpha_{2}\\\vdots\\\alpha_{n}\end{array}\right]}^{v}$$

 $\beta = A\alpha$.

Composition of Linear Operators

Figure 6: Composition of two operators

Theorem 13. Suppose U, V and W are vector spaces with bases $\{u_1, \ldots, u_n\}, \{v_1, \ldots, v_m\}$ and $\{w_1, \ldots, w_q\}$ respectively. $\mathcal{A} : U \to V$ and $\mathcal{B} : V \to W$ are linear operators with matrix representations A and B respectively in the bases given. Then the matrix representation of the linear operator $\mathcal{B}\mathcal{A} : U \to W$ has a matrix representation BA with $\{u_1, \ldots, u_n\}, \text{ and } \{w_1, \ldots, w_q\}$ as bases for U and W respectively.

Change of basis

 $\mathcal{A}: V \to W$ is a linear operator, then the matrix representation of \mathcal{A} depends on the basis of V and W.

Example 12. $V = R^3$, $W = R^3$ and $A : V \to W$ is defined by Av = Av where $A = (a_{ij})$.

$$v_{1} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, v_{2} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, v_{3} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$
$$w_{1} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, w_{2} = \begin{bmatrix} 0\\2\\0 \end{bmatrix}, w_{3} = \begin{bmatrix} 0\\0\\3 \end{bmatrix}$$
$$\mathcal{A}v_{1} = \begin{bmatrix} a_{11}\\a_{21}\\a_{31} \end{bmatrix} = \sum_{i=1}^{3} \alpha_{i1}w_{i} = \begin{bmatrix} \alpha_{11}\\2\alpha_{21}\\3\alpha_{31} \end{bmatrix}$$

. Thus the coordinate vector of Av_1 is given by

$$\begin{bmatrix} \alpha_{11} \\ \alpha_{21} \\ \alpha_{31} \end{bmatrix} = \begin{bmatrix} a_{11} \\ \frac{1}{2}a_{21} \\ \frac{1}{3}a_{31} \end{bmatrix}$$

$$\mathcal{A}v_2 = \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix} = \sum_{i=1}^3 \alpha_{i2} w_i = \begin{bmatrix} \alpha_{12} \\ 2\alpha_{22} \\ 3\alpha_{32} \end{bmatrix}$$

Thus the coordinate vector of Av_2 is given by

$$\begin{bmatrix} \alpha_{12} \\ \alpha_{22} \\ \alpha_{32} \end{bmatrix} = \begin{bmatrix} a_{12} \\ \frac{1}{2}a_{22} \\ \frac{1}{3}a_{32} \end{bmatrix}$$

$$\mathcal{A}v_3 = \begin{bmatrix} a_{13} \\ a_{23} \\ a_{33} \end{bmatrix} = \sum_{i=1}^3 \alpha_{i3} w_i = \begin{bmatrix} \alpha_{13} \\ 2\alpha_{23} \\ 3\alpha_{33} \end{bmatrix}$$

Thus the coordinate vector of Av_3 is given by

α_{13}		a_{13}
$lpha_{23}$	=	$\frac{1}{2}a_{23}$
α_{33}		$\left[\frac{1}{3}a_{33} \right]$

Matrix Representation of A is given by

a_{11}	a_{12}	a_{13}
$\frac{1}{2}a_{21}$	$\frac{1}{2}a_{22}$	$\frac{1}{2}a_{23}$
$\frac{1}{2}a_{21}$	$\frac{1}{2}a_{22}$	$\frac{1}{2}a_{22}$
$\overline{3}a_{31}$	$\overline{3}a_{32}$	$-\frac{1}{3}a_{33}$

Suppose V is a vector space with two sets of basis vectors given by $\{v_i\}_{i=1}^n$ and $\{\hat{v}_i\}_{i=1}^n$. Suppose the coordinate vector of a vector $v \in V$ in the

bases $\{v_i\}_{i=1}^n$ and $\{\hat{v}_i\}_{i=1}^n$ is given by

$$\alpha = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \text{ and } \hat{\alpha} = \begin{bmatrix} \hat{\alpha}_1 \\ \vdots \\ \hat{\alpha}_n \end{bmatrix}$$

respectively. Suppose

$$\hat{v}_j = \sum_{i=1}^n q_{ij} v_i$$

Note that

$$v = \sum_{j=1}^{n} \hat{\alpha}_{j} \hat{v}_{j}$$

=
$$\sum_{j=1}^{n} \hat{\alpha}_{j} \sum_{i=1}^{n} q_{ij} v_{i}$$

=
$$\sum_{i=1}^{n} (\sum_{j=1}^{n} q_{ij} \hat{\alpha}_{j}) v_{i}$$

Therefore we have

$$\alpha = Q\hat{\alpha}$$
 where $Q = (q_{ij})$.

Lemma 1. The matrix Q above is invertible.

Proof: Suppose *Q* is not invertible. Then from Theorem 3 it follows that there exists $\hat{\alpha} \neq 0$ such that $Q\hat{\alpha} = 0$. This implies that

$$\sum_{j=1}^{n} q_{ij} \hat{\alpha}_j = 0 \text{ for all } i = 1, \dots, n.$$

Consider

$$\sum_{j=1}^{n} \hat{\alpha}_{j} \hat{v}_{j} = \sum_{j=1}^{n} \hat{\alpha}_{j} \left(\sum_{i=1}^{n} q_{ij} v_{i} \right)$$
$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{n} q_{ij} \hat{\alpha}_{j} \right) v_{i}$$
$$\underbrace{= 0.$$

This implies there exists $\hat{\alpha} \neq 0$ such that $\sum_{j=1}^{n} \hat{\alpha}_j \hat{v}_j = 0$. This would imply that $\{\hat{v}_j\}$ is not an independent set. This is a contradiction.

Example 13.
$$V = R^3$$
, with basis (e_1, e_2, e_3) and $(e_1, \frac{1}{2}e_2, \frac{1}{3}e_3)$

$$\hat{v}_{1} = (1)v_{1} + (0)v_{2} + (0)v_{3}
\hat{v}_{2} = (0)v_{1} + (\frac{1}{2})v_{2} + (0)v_{3}
\hat{v}_{3} = (0)v_{1} + (0)v_{2} + (\frac{1}{3})v_{3}
Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$$

If α is the coordinate vector in (e_1, e_2, e_3) , then the coordinate vector in $(e_1, \frac{1}{2}e_2, \frac{1}{3}e_3)$ is $Q^{-1}\alpha$.

Theorem 14. Suppose $\mathcal{A}: V \to W$ is a linear operator from vector space V to vector space w. Furthermore, suppose $(v_1, v_2, \ldots, v_n), (\hat{v}_1, \hat{v}_2, \ldots, \hat{v}_n)$ forms two sets of basis for V with the associated change of basis matrix Q. Also,

suppose (w_1, \ldots, w_m) and $(\hat{w}_1, \ldots, \hat{w}_m)$ form basis for W with change of basis matrix T. Let A be the matrix representation of A in the basis (v_1, \ldots, v_n) for V and (w_1, \ldots, w_m) for W. Let B be the matrix representation of A in the basis $(\hat{v}_1, \ldots, \hat{v}_n)$ for V and $(\hat{w}_1, \ldots, \hat{w}_m)$ for W. Then, B = PAQ, $P = T^{-1}$.

Proof: Suppose α is the coordinate vector of $v \in V$ in the basis (v_1, \ldots, v_n) . Let $\hat{\alpha}$ be the coordinate vector in the basis $(\hat{v}_1, \ldots, \hat{v}_n)$. Then

$$\alpha = Q\hat{\alpha}.$$

Suppose β is the coordinate vector of Av in the basis (w_1, w_2, \ldots, w_m) . Then

$$\beta = A\alpha.$$

Suppose $\hat{\beta}$ is the coordinate vector of Av in the basis $(\hat{w}_1, \ldots, \hat{w}_m)$. Then

$$\beta = T\hat{\beta}.$$

$$\beta = T\hat{\beta} \Rightarrow \hat{\beta} = T^{-1}\beta = T^{-1}A\alpha = \underbrace{T^{-1}AQ}_{B}\hat{\alpha}$$
. Therefore, $B = T^{-1}AQ$.

1

Example:
$$C: \overset{V}{R^3} \to \overset{W}{\overset{W}{R^3}}$$

$$C = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix}$$
$$\Rightarrow Cv = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{3} \end{bmatrix} \text{ where } v = \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{3} \end{bmatrix}$$

Let (e_1, e_2, e_3) be a basis for V and W. Then we have argued earlier that the

matrix representation in these basis vectors is

$$A = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix}$$

Let another set of basis vector for V and W be (e_1, e_2, e_3) and $(e_1, \frac{1}{2}e_2, \frac{1}{3}e_3)$.

 $B = T^{-1}AQ.$

From the previous example, we have

$$T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}, Q = I.$$

$$B = T^{-1}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ 2c_{21} & 2c_{22} & 2c_{23} \\ 3c_{31} & 3c_{32} & 3c_{33} \end{bmatrix}.$$

Equivalence and Similarity Transformations

- **Definition 12.** Equivalence Transformation: If A and B are $m \times n$ matrices and P and Q are nonsingular $m \times m$ and $n \times n$ matrices respectively. Then A and B are equivalent if B = PAQ. It immediately follows that if A and B are two matrix representation of a linear operator $\mathcal{A}: V \to W$ then A and B are equivalent.
- Similarity Transformation: If A and B are m × m matrices, Q ∈ R^{m×m} is invertible, then A and B are similar if B = Q⁻¹AQ.

Theorem 15. If $A: V \to V$ be a linear operator with a matrix representation A in the basis (v_1, \ldots, v_n) and B in the basis $(\hat{v}_1, \ldots, \hat{v}_n)$. Then A and B are similar.

Proof: We know from Theorem 14 that $B = T^{-1}AQ$. *T* is the basis transformation between $(w_1, \ldots, w_n) \rightarrow (\hat{w}_1, \ldots, \hat{w}_n)$. $T = Q \Rightarrow B = Q^{-1}AQ$.

Definition 13. Range of a Linear Operator A: Let A be a linear operator from vector space V to vector space W.

 $Range(\mathcal{A}) = \{ w \in W \text{ such that } \exists v \in V \text{ with } \mathcal{A}v = w \}$

Figure 7: Range of a operator

 $Range(\mathcal{A}) \subset W.$

Theorem 16. If (v_1, \ldots, v_n) is a basis for a vector space and $\mathcal{A} : V \to W$ where W is a vector space with \mathcal{A} is linear, then $span(\mathcal{A}v_1, \mathcal{A}v_2, \dots, \mathcal{A}v_n) = Range(\mathcal{A})$

Proof: To prove that $Range(\mathcal{A}) \subset span\{\mathcal{A}v_1, \mathcal{A}v_2, \ldots, \mathcal{A}v_n\}$

Let $w \in Range(\mathcal{A})$

From definition, it follows that $\exists v \in V$ such that w = Av

$$v \in V \Rightarrow \exists (\alpha_1, \alpha_2, \dots, \alpha_n) \text{ such that } v = \sum_{i=1}^n \alpha_i v_i$$

$$w = \mathcal{A}v = \mathcal{A}(\sum_{i=1}^{n} \alpha_{i}v_{i})$$

$$= \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_{i}(\mathcal{A}v_{i})$$

$$\Rightarrow w \in span(\{\mathcal{A}v_{1}, \mathcal{A}v_{2}, \dots, \mathcal{A}v_{n}\})$$

$$\Rightarrow Range(\mathcal{A} \subset span\{\mathcal{A}v_{1}, \mathcal{A}v_{2}, \dots, \mathcal{A}v_{n}\})$$
Suppose we have $w \in span\{Av_1, Av_2, \ldots, Av_n\}$. Then

$$\exists (\beta_1, \dots, \beta_n) \text{ such that } w = \sum_{i=1}^n \beta_i \mathcal{A} v_i = \mathcal{A}(\sum_{i=1}^n \beta_i v_i) = \mathcal{A} v$$

where $v \in V$

 $w \in Range(\mathcal{A})$

```
span(\mathcal{A}v_1,\ldots,\mathcal{A}v_1) \subset Range(\mathcal{A})
```

Therefore,

$$span(\mathcal{A}v_1,\ldots,\mathcal{A}v_1) = Range(\mathcal{A})$$

We can show that $Range(\mathcal{A})$ is a vector space.

Definition 14. Rank(A): Suppose A is a linear operator from vector space V to vector space W. Then Rank(A) = dim(Range(A)).

Example 14.

 $V = \{ set of polynomials of order \leq 2 \} and W \equiv V$

 $\mathcal{A}: V \to W$ be the operator defined by

$$\mathcal{A}V = \frac{dv}{dt}.$$

Note that

 $Range(\mathcal{A}) = \{ all \text{ polynomials with degree } \leq 1 \} and$

$$Rank(\mathcal{A}) = dim\{Range(\mathcal{A})\} = 2.$$

 $1, t, t^2$ forms a basis for V

$$Range(\mathcal{A}) = span\{\mathcal{A}(1), \mathcal{A}(t), \mathcal{A}(t^2)\}$$

= span\{0, 1, 2t\}
= span\{1, 2t\}

Example 15. Rank(A): Suppose A is a $m \times n$ matrix, then Rank(A) = number of independent columns of A.

Theorem 17. Suppose $\mathcal{A}: V \to W$ is a linear operator and A is the matrix representation of \mathcal{A} in the basis (v_1, \ldots, v_n) for V and (w_1, \ldots, w_n) for W. Then $Rank(A) = Rank(\mathcal{A})$.

Proof: Suppose that $dim(Range(\mathcal{A})) = r = rank(\mathcal{A})$. Then, there should be r independent vectors $\mathcal{A}v_1, \mathcal{A}v_2, \ldots, \mathcal{A}v_n$ which follows from Theorem 16.

Let us assume without loss of generality that only Av_1, Av_2, \ldots, Av_r are independent.

The matrix *A* was defined by the following

$$\mathcal{A}v_j = \sum_{i=1}^m a_{ij} w_i.$$

Consider a linear combination of the first r columns of A

Suppose $\exists c_1, c_2, \ldots, c_r$ such that

$$c_1 a_1 + c_2 a_2 + \ldots + c_r a_r = 0.$$

that is

$$\sum_{j=1}^{r} a_{ij} c_j = 0; \ i = 1, 2, \dots, m$$

Consider the linear combination

$$c_{1}\mathcal{A}v_{1} + c_{2}\mathcal{A}v_{2} + \ldots + c_{1}\mathcal{A}v_{r} = c_{1}\sum_{i=1}^{m} a_{i1}w_{i} + c_{2}\sum_{i=1}^{m} a_{i2}w_{i} + \ldots + c_{r}\sum_{i=1}^{m} a_{ir}w_{i}$$
$$= \sum_{i=1}^{r} c_{j}\sum_{i=1}^{m} a_{ij}w_{i}$$
$$= \sum_{i=1}^{m} (\sum_{j=1}^{r} c_{j}a_{i1})w_{i}$$
$$= 0$$

Because Av_1, Av_2, \ldots, Av_r are independent, it follows that $c_j = 0, \quad j = 1, 2, \ldots, r.$

In summary, if $c_1a_1 + c_2a_2 + \ldots + c_ra_r = 0$ then $c_j = 0 \ \forall j = 1, 2, \ldots, r$.

We have shown that a_1, a_2, \ldots, a_r are independent.

Therefore, $Rank(A) \ge r = Rank(A)$. The proof that $Rank(A) \ge Rank(A)$ follows similarly.

Theorem 18. If *A* and *B* are two matrix representations of the linear operator A, then Rank(A) = Rank(B).

Proof: Note that Rank(A) = Rank(A) = Rank(B).

In particular, let A be a $m \times n$ matrix.

P and *Q* are nonsingular $m \times m$, $n \times n$ matrices respectively. Then,

$$Rank(A) = Rank(PA)$$

= Rank(AQ)
= Rank(PAQ)

 $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m \text{ and } \mathcal{A}v = A\alpha.$

A, PA, AQ, PAQ are all matrix representations of \mathcal{A}

Null Space

Definition 15. Null Space: Suppose V and W are vector spaces and A a linear operator from $V \rightarrow W$. Then,

$$Null(\mathcal{A} = \{ v \in V | \mathcal{A}v = 0 \}$$

Note that $Null(\mathcal{A}) \subset V$ and $Range(\mathcal{A}) \subset W$.

Example 16.

 $V = \{ Vector space of all polynomials of degree \leq 2 \}.$

Let $W \equiv V$, $Av = \frac{dv}{dt}$. Then

 $Null(\mathcal{A}) = \{ all \ constants \}$

and

 $Basis(Null(\mathcal{A})) = 1.$

Rank Nullity Theorem

Theorem 19. Suppose *V* and *W* are vector spaces, and dim(V) = n. $A: V \to W$ be a linear operator. Then

 $dim(Null(\mathcal{A})) + dim(Range(\mathcal{A})) = n.$

Proof: Suppose $dim(Null(\mathcal{A})) = n$. Therefore, \exists independent vectors v_1, v_2, \ldots, v_n such that

$$\mathcal{A}v_1 = \mathcal{A}v_2 = \ldots = \mathcal{A}v_n = 0.$$

Because $dim(V) = n, v_1, v_2, \ldots, v_n$ forms a basis for V. Thus, given any vector $v \in V$,

$$v = \sum_{i=1}^{n} \alpha_i v_i, \ \mathcal{A}v = \sum_{i=1}^{n} \alpha_i \mathcal{A}v_i = 0.$$

Thus,

$$Range(\mathcal{A}) = \{0\}.$$

Suppose $dim(null(\mathcal{A})) = q < n$. Then there exist independent vector v_1, v_2, \ldots, v_q such that

$$\mathcal{A}v_1 = \mathcal{A}v_2 = \ldots = \mathcal{A}v_q = 0.$$

From Theorem 12 one can extend the basis to $v_1, v_2, \ldots, v_q, v_{q+1}, \ldots, v_n$. We will show that Av_{q+1}, \ldots, Av_n are independent. Note that

$$\sum_{q+1}^{n} c_i \mathcal{A} v_i = 0.$$

Then we have

$$\mathcal{A}(\sum_{q+1}^{n} c_i v_i) = 0$$

$$\sum_{q+1}^{n} c_i v_i \in null(\mathcal{A}).$$

As v_{q+1}, \ldots, v_n are independent it follows that $c_i = 0 \quad \forall i = q+1, \ldots, n$. Thus we have shown that

$$\mathcal{A}v_{q+1},\ldots,\mathcal{A}v_n$$

are independent.

Suppose
$$w \in Range(\mathcal{A})$$
. Let $v \in V$ then $v = \sum_{i=1}^{n} \alpha_i v_i$. It follows that

$$\mathcal{A}v = \sum_{i=1}^{n} \alpha_i \mathcal{A}v_i = \sum_{i=q+1}^{n} \alpha_i \mathcal{A}v_i.$$

 $\{Av_{q+1}, Av_{q+2}, \dots, Av_n\}$ is a basis for Range(A). Thus

$$Range(\mathcal{A}) = span\{\mathcal{A}v_{q+1}, \dots, \mathcal{A}v_n\}.$$

Thus

$$dim(Range(\mathcal{A})) = n - q$$

and it follows that

$$dim(Range(\mathcal{A}) + dim(null(\mathcal{A})) = n.$$

Theorem 20. Let *B* and *C* be $m \times n$ and $n \times p$ matrices with rank(B) = b and rank(C) = c. Then

 $rank(BC) \le min(b,c).$

Proof: Note that $Range(BC) \subset RangeB$. Indeed, suppose there exists a y such that BCy = z with $z \in Range(BC)$. It follows that By' = z with y' = Cy.

Thus $z \in Range(B)$. Thus it follows that $Range(BC) \subset RangeB$. Thus we can conclude that $dim(Range(BC) \leq dim(Range(B)) = b$.

Suppose $V \in Null(C)$. Then Cv = 0 and therefore BCv = 0. Therefore $Null(C) \subset Null(BC)$. This implies that $dim(Null(BC)) \ge dim(Null(C))$. Also note that

$$p = dim(Null(C)) + dim(Range(C))$$

= $dim(Null(BC)) + dim(Range(BC)).$

Since $dim(Null(BC)) \ge dim(Null(C))$ it follows that

 $rank(BC) = dim(Range(BC)) = p - dim(Null(BC)) \leq p - dim(Null(C)) = dim(Range(BC)) = p - dim(Null(C)) \leq p - dim(Null(C)) = dim(Range(BC)) = p - dim(Null(BC)) \leq p - dim(Null(C)) = dim(Range(BC)) = p - dim(Range(BC)) = p - dim(Null(BC)) \leq p - dim(Null(C)) = dim(Range(BC)) = p - dim(Range(BC)) = p - dim(Null(BC)) \leq p - dim(Null(C)) = dim(Range(BC)) = p - dim(Range(BC)) = p - dim(Range(BC)) = p - dim(Range(BC)) = dim(Range(BC)) = p - dim(Range(BC)) \leq p - dim(Null(C)) = dim(Range(BC)) = dim(Range(BC)) = p - dim(Range(BC)) = dim(Ran$

Thus

 $rank(BC) \le min(b,c)$

Theorem 21. Let A be a $m \times n$ matrix of rank r then A can be written as A = BC where B is a $m \times r$ matrix of rank r and c is a $r \times n$ matrix of rank r.

Proof: Let $A : \mathbb{R}^n \to \mathbb{R}^m$ has rank r implies that there exist vectors v_1, v_2, \ldots, v_r which forms a basis for Range(A). Now note that

$$A = [a_1 \ a_2 \ \dots \ a_n]$$

and $a_i \in Range(A)$. Therefore c_i represents the coordinate vector of a_i in the basis $v_1, \ldots v_r$ then we have

$$a_i = \sum_{j=1}^r c_{ji} v_j.$$

Thus

$$A = [a_1 \ a_2 \ \dots a_n] = B[c_1 \ c_2 \dots c_n]$$

where $B = [v_1 \ v_2 \ \dots \ v_r]$. As v_1, \dots, v_r are linearly independent it follows that *B* has rank *r*. Note that $r = rank(A) \le rank(C)$. However *C* has only *r* rows and thus rank(C) = r.

Theorem 22. Suppose $A \in \mathbb{R}^{m \times n}$. Consider the equation

$$A\alpha = \beta \tag{5}$$

where $\alpha \in \mathbb{R}^n$ and $\beta \in \mathbb{R}^m$. Then (5) has a solution if and only if $\beta \in Range(A)$. If a solution exists then it is unique if and only if $Null(A) = \{0\}$.

Proof: We will prove only the second part of the theorem. Suppose $NullA = \{0\}$. If α_1 and α_2 are two elements such that $A\alpha_1 = A\alpha_2$ then $A(\alpha_1 - \alpha_2) = 0$ and therefore $\alpha_1 - \alpha_2 = 0$. Thus $\alpha_1 = \alpha_2$. Thus the solution to $A\alpha = b$ is unique.

Suppose $Null(A) \neq \{0\}$. Then there exists $\alpha_1 \neq 0$ such that $A\alpha_1 = 0$. Suppose $A\alpha = \beta$ then $A(\alpha + \alpha_1) = \beta$ and therefore the solution is not unique.

Definition 16. Let $A : V \to W$ be a linear operator with V and W are vector spaces.

 \mathcal{A} is said to be right invertible if there exist a map $\mathcal{A}^{-R}: W \to V$ such that $\mathcal{A}\mathcal{A}^{-R} = I_w$ where I_w is the identity transformation on W.

 \mathcal{A} is said to be left invertible if there exist a map $\mathcal{A}^{-l}: W \to V$ such that $\mathcal{A}^{-l}\mathcal{A} = I_v$ where I_v is the identity transformation on V.

 \mathcal{A} is invertible if it has both right and left inverses.

Theorem 23. Let $\mathcal{A}: V \to V$ where \mathcal{A} is linear and V is a vector space.

1. If there exists a unique right inverse to A then A is invertible.

2. If there exists a unique left inverse to A then A is invertible.

Proof: (1) Suppose \mathcal{A}^{-R} is the right inverse of \mathcal{A} . Note that

$$\mathcal{A}(\mathcal{A}^{-R} + \mathcal{A}^{-R}\mathcal{A} - I) = \mathcal{A}\mathcal{A}^{-R} + \mathcal{A}\mathcal{A}^{-R}\mathcal{A} - \mathcal{A} = I + \mathcal{A} - \mathcal{A} = I.$$

As the right inverse is unique it follows that

$$\mathcal{A}^{-R} + \mathcal{A}^{-R}\mathcal{A} - I = \mathcal{A}^{-R}.$$

Thus

$$\mathcal{A}^{-R}\mathcal{A} = I$$

and thus \mathcal{A}^{-R} is the left inverse of \mathcal{A} . Thus \mathcal{A} is invertible.

(2) follows in a similar way as (1).

Definition 17. Onto and into: $\mathcal{A} : V \to W$ is onto if $Range(\mathcal{A}) = W$. If \mathcal{A} is such that $\mathcal{A}\alpha_1 = \mathcal{A}\alpha_2$ implies that $\alpha_1 = \alpha_2$ for any pair $\alpha_1, \ \alpha_2 \in V$ then \mathcal{A} is into.

Example 17. Let $\mathcal{A} : \mathbb{R}^2 \to \mathbb{R}$ be defined by

 $\mathcal{A}v = Av$

where

$$A = \left(\begin{array}{cc} 1 & 2 \end{array} \right).$$

Notice that $Range(\mathcal{A}) = R$. Indeed if $\alpha \in R$ then

$$\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} \alpha \\ 0 \end{bmatrix} = \alpha$$

and this \mathcal{A} is onto.

Now we will find a right inverse to A. Consider the equation

$$\left[\begin{array}{cc}1&2\end{array}\right]\left[\begin{array}{c}\beta_1\\\beta_2\end{array}\right]=1.$$

and thus $\beta_1 + 2\beta_2 = 1$ Thus any $(\beta_1, \beta_2)^T$ is a right inverse if β_1, β_2 satisfy $\beta_1 + 2\beta_2 = 1$. Evidently there are infinite number of right inverses.

 $\left(\begin{array}{c}1\\0\end{array}\right)$

is a right inverse.

 $\left(\begin{array}{c}3\\-1\end{array}\right)$

is a right inverse too.

Example 18. $A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathcal{A} : \mathbb{R}^1 \to \mathbb{R}^2$.

Then \mathcal{A} is one to one. (: Null(A) = 0)

$$\mathcal{A}^{-l}$$
 is a left inverse if $\begin{pmatrix} lpha_1 & lpha_2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = I$ where $\mathcal{A}^{-l} \equiv \begin{pmatrix} lpha_1 & lpha_2 \end{pmatrix}$

 $\begin{pmatrix} \alpha_1 & \alpha_2 \end{pmatrix}$ is a left inverse if $\alpha_1 + 2\alpha_2 = 1$

Again this has infinite solutions and thus there are infinite left inverses for A.

Theorem 24. Consider $\mathcal{A}: V \to W$ where dim(V) = n, dim(W) = m. Then \mathcal{A} is one to one if and only if $m \ge n$ and the rank of any matrix representation of \mathcal{A} is n. In particular, if n = m then $rank(\mathcal{A}) = n$ only if \mathcal{A} is non singular.

Proof: Note that from Theorem 19 it follows that

 $dim(N(\mathcal{A})) + dim(R(\mathcal{A})) = n.$

If m < n, then $dim(N(\mathcal{A})) = n - dim(R(\mathcal{A})) \ge (n - dim(W)) = (n - m) > 0$. Therefore, if m < n, then \mathcal{A} is not one to one as $N(\mathcal{A}) \neq \{0\}$.

 $m \ge n$ and $rank(\mathcal{A}) = n$. Then $dim(N(\mathcal{A})) = \{0\}$). Therefore \mathcal{A} is 1 - 1.

Theorem 25. Let $\mathcal{A}: V \to W$ be a linear operator where V and W are vector spaces. Then

1. A is right invertible if and only if A is onto.

2. A is left invertible if and only if A is one to one.

Proof: Suppose A is onto. Then given any $w \in W$ there exists $v \in V$ such that Av = w (note that v is not unique).

Define $\mathcal{A}^{-R}w := v$ where v is any vector that satisfies $\mathcal{A}v = w$. Then it follows that $\mathcal{A}(\mathcal{A}^{-R}w) = \mathcal{A}v = w$.

Suppose \mathcal{A} is not onto, then $\exists w^1$, such that $w^1 \notin Range(\mathcal{A})$

Suppose \exists a right inverse operator \mathcal{A}^{-R} Then for the given $w^1 \in W$, $\mathcal{A}(\mathcal{A}^{-R}w^1) = w^1$.

Then with $v = \mathcal{A}^{-R}w^1$, we have $\mathcal{A}v = w^1$. Thus, $w^1 \in Range(\mathcal{A})$ and we have a contradiction.

This proves (1). (2) is left as an exercise.

Eigenvalues and Eigenvectors of operators

Definition 18. Let \mathcal{A} be a linear operator from V to W where V and W are of the same dimension n. Then λ , a scalar is called an eigenvalue if $\mathcal{A}v = \lambda v$ for some $v \neq 0, v \in V$ v is the eigenvector associated with λ .

Theorem 26. Let $\mathcal{A} : V \to V$ be a linear operator, and let V be *n*-dimensional. Then all matrix representations of \mathcal{A} have the same *n*-eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. Moreover, these eigenvalues are precisely the eigenvalues of \mathcal{A} .

Theorem 27. Similar matrices have the same characteristic polynomial and therefore they have the same eigenvalues. Moreover, if $\hat{A} = P^{-1}AP$ and V is an eigenvector of A, then Pv is an eigenvector of \hat{A} . A and \hat{A} are both matrix representations of the linear operator A defined by Av = Av.

Inner Product Spaces

Definition 19. Inner Product: (V, s) is a vector space V with scalar being s. An inner product on (V, s) is a function $\langle \rangle >: (V, s) \times (V, s) \rightarrow s$ which has the following properties:

- 1. $\langle v, v \rangle \geq 0$ for all $v \in V$ and $\langle v, v \rangle = 0$ only if v = 0.
- $\begin{array}{ll} \textbf{2.} < v,w > = < w,v > & v,w \in V, s \equiv R \\ < v,w > = \overline{< w,v >} & v,w \in V, s \equiv C \end{array}$
- $\textbf{3.} < \alpha v, w >= \overline{\alpha} < v, w > \qquad v, w \in V, \alpha \in s.$
- 4. $\langle v_1 + v_2, w \rangle = \langle v_1, w \rangle + \langle v_2, w \rangle, \quad v_1, v, w \in V.$

Inner Product Spaces

Definition 20.

(V, s) is a vector space with an inner product defined is called an inner product space.

Example 19. Let $(V, s) \equiv (R^2, R)$

$$< v_1, v_2 >:= (v_1)^T v_2 = \sum_{i=1}^2 v_1(i) v_2(i)$$

where $v_1 = \begin{bmatrix} v_1(1) \\ v_1(2) \end{bmatrix} v_2 = \begin{bmatrix} v_2(1) \\ v_2(2) \end{bmatrix}$

<,> is indeed an inner product on (R^2,R)

Orthogonal and orthonormal vectors

Definition 21. (V, s) be an inner product space. Then two non-zero vectors $v_1, v_2, v_3, \ldots, v_n$ are orthogonal if $\langle v_i, v_j \rangle = 0$ if $i \neq j, j = 1, 2, \ldots, n$. They are orthonormal if in addition $\langle v_i, v_i \rangle = 1$ for $i = 1, 2, \ldots, n$.

Orthogonal complements

Definition 22. suppose *X* is an inner product space and *V* and *W* are subspaces of *X*, then, *V* and *W* are said to be orthogonal complements of one another if $V \oplus W = X$ and $\langle v, w \rangle = 0$ $\forall v \in V, w \in W$.

Example 20. $X \equiv R^2$

NOTE;DRAW FIGURE Let

$$V = \{ v : v = \alpha (\begin{array}{c} 1 \\ 0 \end{array}), \alpha \in R \},$$

and

$$W = \{w : w = \beta (\begin{array}{c} 0 \\ 1 \end{array}), \beta \in R\}.$$

Then

$$V \cap W = \{0\},$$

$$V \oplus W \equiv R^2 = \{v : v = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}, \alpha, \beta \in R\}.$$

Also, for $v \in V, w \in W$,

$$\langle v,w \rangle = (\begin{array}{c} \alpha \\ 0 \end{array})^T (\begin{array}{c} 0 \\ \beta \end{array}) = (\alpha,0) (\begin{array}{c} 0 \\ \beta \end{array}) = 0.$$

Thus V and W are orthogonal complements.

 $X \equiv R^3$, then

$$V = \left\{ \begin{bmatrix} \alpha \\ 0 \\ 0 \end{bmatrix} | \alpha \in R \right\}, \text{ and } W = \left\{ \begin{bmatrix} 0 \\ \alpha \\ 0 \end{bmatrix} | \alpha \in R \right\}$$

are not orthogonal complements.

Orthogonal Subspaces

Definition 23. *V*, and *W* subspaces of inner product space *X* are orthogonal to each other. If for every $v \in V$, $w \in W$, < v, w >= 0.

If V is a subspace of an inner product space X, then

$$V^{\perp} = \{ x \in X | < x, v \ge 0, \ \forall v \in V \}.$$

It can be shown that

- V^{\perp} is a subspace of X.
- $V \cap V^{\perp} = 0$
- $V \oplus V^{\perp} = X$.

Adjoint Operator

Definition 24. Suppose V is an inner product space and let $\mathcal{A} : V \to W$ be a linear operator, where W is also an inner product space. Then the adjoint of the operator \mathcal{A} is an operator $\mathcal{A}^* : W \to V$ that is defined by

$$\langle v, \mathcal{A}^*w \rangle_v = \langle \mathcal{A}v, w \rangle_w, v \in V, w \in W.$$

Example 21. Let $V = R^n$ and $W = R^m$ and let $\mathcal{A} : V \to W$ be defined by

$$\mathcal{A}v = Av,$$

where $A = (a_{ij})$. Let the inner product on V and W be defined by

$$< v_1, v_2 >_v = v_1^T v_2$$
 and $< w_1, w_2 >_w = w_1^T w_2, v_1, v_2 \in V$ and $w_1, w_2 \in W$.

Note that

$$\langle v, A^T w \rangle_v = v^T A^T w = (Av)^T w = \langle Av, w \rangle_w$$
.

Thus the adjoint operator of \mathcal{A} is given by the matrix A^T .

If $V \subset X, \mathcal{A} : V \to W$ then, $N(\mathcal{A})^{\perp} \subset V, N(\mathcal{A}) \subset V, R(\mathcal{A}) \subset W, R(\mathcal{A})^{\perp} \subset W$, $Range(\mathcal{A}^*) \subset V, N(\mathcal{A}^*) \subset W, R(\mathcal{A}^*)^{\perp} \subset V, N(\mathcal{A}^*)^{\perp} \subset W$

Let V and W be two vector spaces and let $\mathcal{A}: V \to W$ be a linear operator. Then,

- \mathcal{A} is onto if $R(\mathcal{A}) = W$
- \mathcal{A} is one to one if $N(\mathcal{A}) = \{0\}$.

Theorem 28. The following statements are equivalent:

1. $N(A) = \{0\}$

2. If $Av_1 = Av_2$, then $v_1 = v_2$.

3. If $v_1 \neq v_2$, then $Av_1 \neq Av_2$.

Proof: Suppose $N(\mathcal{A}) = \{0\}$. Also, if v_1, v_2 are such that $\mathcal{A}v_1 = \mathcal{A}v_2$, then

 $\mathcal{A}(v_1 - v_2) = 0$ $\Rightarrow (v_1 - v_2) \in N(\mathcal{A})$ $\Rightarrow v_1 - v_2 = 0$

 $\therefore v_1 = v_2$

Suppose that $Av_1 = Av_2 \Rightarrow v_1 = v_2$

Then if $v \in N(\mathcal{A}), \mathcal{A}v = 0$ is same as

 $\mathcal{A}(v-0) = 0$

 $\Rightarrow \mathcal{A}v - \mathcal{A}0 = 0$

 $\Rightarrow v = 0$

$$\therefore N(\mathcal{A}) = \{0\}$$

$$\therefore 1 \Leftrightarrow 2$$

Theorem 29. Let \mathcal{A} be a linear operator from an inner product space V to an inner product space W. Then

1. $N(\mathcal{A}^*) = [R(\mathcal{A})]^{\perp}$

2. $[N(A)]^{\perp} = R(A^*)$

Proof: (1) Take $w \in [Range(\mathcal{A})]^{\perp}$ then

In particular, $\langle \mathcal{A}^* w, \mathcal{A}^* w \rangle_v = 0$. $\mathcal{A}^* w = 0$ and thus $w \in Null(\mathcal{A}^*)$. This shows that $Range(\mathcal{A})]^{\perp} \subset Null(\mathcal{A}^*)$.

Let $w \in N(\mathcal{A}^*)$, then $\mathcal{A}^*w = 0$ $\therefore \langle v, \mathcal{A}^*w \rangle_v = 0 \quad \forall v \in V$ $\therefore \langle \mathcal{A}v, w \rangle_w = 0 \quad \forall v \in V$ $\Rightarrow w \in [Range(\mathcal{A})] \perp$ Thus, $(Range(\mathcal{A}))^{\perp} = N(\mathcal{A}^*) \quad [v \notin [N(\mathcal{A})]^{\perp} \Leftrightarrow v \notin Range(\mathcal{A}^*).$
Gram-Schmidt Orthonormalization

Theorem 30. Let *V* be a vector space with the inner product <,> defined. Let v_1, \ldots, v_n be *n* independent vectors. Then there exist *n* orthonormal vectors e_1, \ldots, e_n such that

$$span\{v_1,\ldots,v_n\} = span\{e_1,\ldots,e_n\}.$$

Proof: Let

$$z_1 := v_1$$

and let

$$e_1 := \frac{z_1}{\|z_1\|}.$$

Let

$$z_2 = v_2 - \langle v_2, e_1 \rangle e_1$$
 and $e_2 := \frac{z_2}{\|z_2\|}$.

Note that

$$< e_2, e_1 > = \frac{1}{\|z\|_2} [< v_2, e_1 > - < v_2, e_1 > < e_2, e_2 >]$$

 $= \frac{1}{\|z\|_2} [< v_2, e_1 > - < v_2, e_1 >] = 0$

Thus $e_2 \perp e_1$. Given e_1, e_2, \ldots, e_i orthonormal define

$$\begin{array}{rcl} z_{i+1} &=& v_{i+1} - < v_{i+1}, e_1 > e_1 - < v_{i+1}, e_2 > e_2 - \ldots - < v_{i+1}, e_i > e_i \\ &=& v_{i+1} - \sum_{j=1}^i < v_{i+1}, e_j > e_j, \text{ and} \\ e_{i+1} &:=& \frac{z_{i+1}}{\|z_{i+1}\|} \end{array}$$

٠

Let $k \leq i$ then

Thus $\langle e_{i+1}, e_j \rangle = 0$ for all j = 1, ..., i. Thus this procedure yields vectors $e_1, ..., e_n$ that are orthonormal. Note that e_i is a linear combination of $v_j \ j = 1, ..., n$. Thus

$$span\{e_1,\ldots,e_n\} \subset span\{v_1,\ldots,v_n\}.$$

Note that e_i , i = 1, ..., n forms an orthonormal set it also forms an independent set. Therefore

$$dim(span\{e_1,\ldots,e_n\}) = dim(span\{v_1,\ldots,v_n\}) = n$$

$$span\{e_1,\ldots,e_n\} = span\{v_1,\ldots,v_n\}.$$

Theorem 31. Let *A* be a $n \times n$ Hermitian matrix with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. There exists a unitary matrix *P* such that

$$P^*AP = \Lambda = \begin{bmatrix} \lambda_1 & 0 & \dots & 0\\ 0 & \lambda_2 & \dots & 0\\ \vdots & & \ddots & \vdots\\ 0 & \dots & 0 & \lambda_n \end{bmatrix}$$

Proof: Let x_1 such that $||x_1||_2 = 1$ and $Ax_1 = \lambda_1 x_1$. Let u_2, u_3, \ldots, u_n be orthonormal vectors such that $\{x_1, u_2, u_3, \ldots, u_n\}$ form an orthonormal set. Let

$$P_1 = [x_1 \ u_2 \ \ldots \ u_n],$$

Then we have that

$$P_1^*P_1 = I.$$

Let $U_1 = [u_2 \ u_3 \dots \ u_n]$. Note that

$$P_{1}^{*}AP_{1} = \begin{bmatrix} x_{1}^{*} \\ U_{1}^{*} \end{bmatrix} A \begin{bmatrix} x_{1} & U_{1} \end{bmatrix}$$
$$= \begin{bmatrix} x_{1}^{*} \\ U_{1}^{*} \end{bmatrix} \begin{bmatrix} Ax_{1} & AU_{1} \end{bmatrix}$$
$$= \begin{bmatrix} x_{1}^{*} \\ U_{1}^{*} \end{bmatrix} \begin{bmatrix} \lambda_{1}x_{1} & AU_{1} \end{bmatrix}$$
$$= \begin{bmatrix} \lambda_{1} & x_{1}^{*}AU_{1} \\ 0 & U_{1}^{*}AU_{1} \end{bmatrix}.$$

Note that

$$(P_1^*AP_1)^* = \begin{bmatrix} \lambda_1 & x_1^*AU_1 \\ 0 & U_1^*AU_1 \end{bmatrix}^* = \begin{bmatrix} \lambda_1 & 0 \\ U_1^*A^*x_1 & U_1^*A^*U_1 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ U_1^*Ax_1 & U_1^*AU_1 \end{bmatrix}$$

However

$$(P_1^*AP_1)^* = P_1^*A^*P_1 = P_1^*AP_1 = \begin{bmatrix} \lambda_1 & x_1^*AU_1 \\ 0 & U_1^*AU_1 \end{bmatrix}$$

٠

Thus

$$\begin{bmatrix} \lambda_1 & 0\\ U_1^*Ax_1 & U_1^*AU_1 \end{bmatrix} = \begin{bmatrix} \lambda_1 & x_1^*AU_1\\ 0 & U_1^*AU_1 \end{bmatrix}.$$

Thus

$$x_1^* A U_1 = 0 = U_1^* A^* x_1$$
 and
 $P_1^* A P_1 = \begin{bmatrix} \lambda_1 & 0\\ 0 & U_1^* A U_1 \end{bmatrix}.$

Recall that

$$P_1^*P_1 = I.$$

Therefore eigenvalues of $P_1^*AP_1$ are the eigenvalues of A and thus eigenvalues of $U_1^*AU_1 := A_2$ are $\lambda_2, \ldots, \lambda_n$. Let x_2 such that $||x_2||_2 = 1$ and $A_2x_2 = \lambda_2x_2$. Let $\hat{u}_3, \hat{u}_4, \ldots, \hat{u}_n$ be orthonormal vectors such that $\{x_2, \hat{u}_3, \ldots, \hat{u}_n\}$ form an orthonormal set. Let $U_2 := [\hat{u}_3 \ldots \hat{u}_n]$. Let

$$Q_2 := [x_2 \ U_2] \text{ and } P_2 = \begin{bmatrix} 1 & 0 \\ 0 & Q_2 \end{bmatrix}$$

Note that $P_2^*P_2 = I$. Note that

$$Q_2^*A_2Q_2 = \left[\begin{array}{cc} \lambda_2 & 0\\ 0 & U_2^*A_2U_2 \end{array}\right].$$

Note that

 $= P_2^*(P_1^*AP_1)P_2$ $= P_2^* \left[\begin{array}{cc} \lambda_1 & 0 \\ 0 & A_2 \end{array} \right] P_2$ $= \begin{bmatrix} 1 & 0 \\ 0 & Q_2^* \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & A_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & Q_2 \end{bmatrix}.$ $= \left[\begin{array}{cc} \lambda_1 & 0\\ 0 & Q_2^* A_2 Q_2 \end{array} \right]$ $= \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & U_2^* A_2 U_2 \end{bmatrix}$

 $(P_1P_2)^*A(P_1P_2)$

Continue the argument to obtain

$$P = P_1 P_2 \dots P_n$$
 and $P^* A P = diag(\lambda_1, \dots, \lambda_n)$.

Definition 25. Suppose *A* and *B* are matrices such that there exists a *P* with $P^*P = I$ such that $B = P^*AP$. Then *A* and *B* are unitarily similar.

Theorem 32. Any $n \times n$ Hermitian matrix A has n orthogonal eigenvectors that form a basis for C^n . In this basis A has a diagonal representation.

Theorem 33. If A is a self adjoint operator on a finite dimensional space V then A has real eigenvalues and corresponding eigenvectors form a basis for V. In this basis A has a diagonal representation.

Theorem 34. Let A be a $n \times n$ Hermitian matrix with eigenvalues

 $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$. Then for all $x \in C^n$

$$\lambda_1 x^* x \le x^* A x \le \lambda_n x^* x.$$

Proof: Note that $A = A^*$ and that there exists a *P* such that $P^*AP = \Lambda$ and $P^*P = I$ with Λ diagonal. Thus

$$x^*Ax = x^*P\Lambda P^*x$$

$$= (P^*x)^*\Lambda \overbrace{(P^*x)}^{:=y}$$

$$= y^*\Lambda y$$

$$= \sum_{i=1}^n \lambda_i y_i^* y_i = \sum_{i=1}^n \lambda_i |y_i|^2$$

$$\leq \lambda_n ||y||_2^2$$

$$= \lambda_n ||x||_2^2$$

Note that as $y = P^*x$, $y^*y = x^*PP^*x = x^*x$.

The fact that $x^*Ax \ge \lambda_1 x^*x$ is left as an exercise.

Theorem 35. Let A be a $n \times n$ Hermitian matrix.

- 1. A is positive definite if and only if its eigenvalues are positive.
- 2. A is positive semi-definite if and only if all its eigenvalues are nonnegative.
- 3. A is negative definite if and only if all its eigenvalues are negative.
- *4. A* is negative semi-definite if and only if all its eigenvalues are non-positive. **Definition 26.** Suppose $A : \mathbb{R}^n \to \mathbb{R}^n$. Then

$$||A||_{2-in} := \max_{||x||_2=1} ||Ax||_2 = \max_{x \neq 0} \frac{||Ax||_2}{||x||_2}.$$

Schur's Theorem

Theorem 36. If *A* is a $n \times n$ matrix, then there is a unitary matrix *P* such that $P^*AP = T$ ($P^*P = 1$), where *T* is an upper triangular matrix.

Theorem 37. $n \times n$ matrix A is a unitary matrix similar to a diagonal matrix if and only if it commutes with its conjugate transpose ($AA^* = A^*A$).

Proof: (\Rightarrow) There exists a *P* such that $P^*P = I$ and

$$P^*AP = \Lambda.$$

Thus

$$A = P\Lambda P^*$$
 and $A^* = P\Lambda^* P^*$.

Thus

$$AA^* = P\Lambda P^* P\Lambda^* P^* = P\Lambda\Lambda^* P^* = P\Lambda^*\Lambda P^* = P\Lambda^* P^* P\Lambda P^* = A^*A.$$

Note that we have used the fact that ss Λ is diagonal $\Lambda\Lambda^* = \Lambda^*\Lambda$. The rest of the proof is left to the reader.

Definition 27. $n \times n$ matrix A commute with its conjugate transpose is called Normal Matrix.

A is normal if $AA^* = A^*A$.

Theorem 38. Let A be a $n \times n$ matrix, then A is similar to a diagonal matrix if and only if A has n independent eigenvectors.

Proof: (\Leftarrow) : Assume there exists *n* independent eigen vectors x_1, x_2, \ldots, x_n . Then

$$A [x_1, x_2, \dots, x_n] = [\lambda_1 x_1, \lambda_2 x_2, \dots, \lambda_n x_n]$$

$$AP = P\Lambda(P \text{ is invertible })$$

$$P^{-1}AP = \Lambda$$

 (\Rightarrow) : There exists *P* (invertible) such that

$$P^{-1}AP = \Lambda$$

$$AP = P\Lambda$$

$$P = [p_1, p_2, \dots, p_n]$$

$$A[p_1, p_2, \dots, p_n] = [p_1\lambda_1, p_2\lambda_2, \dots, p_n\lambda_n]$$

$$Ap_i = \lambda_i p_i$$

Thus A has i = n independent eigen vectors as P is invertible.

Theorem 39. If $\lambda_1, \lambda_2, \ldots, \lambda_m$ are distinct eigen values of A, then the corresponding eigen vectors x_1, x_2, \ldots, x_m are independent.

Proof: Suppose to the contrary, $\lambda_1, \lambda_2, \ldots, \lambda_m$ are distinct but x_1, x_2, \ldots, x_m are dependent. Then

$$\sum_{i=1}^{m} c_i x_i = 0$$
 and without loss of generality say $c_m \neq 0$. Then

$$\lambda_{1} (\sum_{i=1}^{m} c_{i} x_{i}) = 0$$

$$A(\sum_{i=1}^{m} c_{i} x_{i}) = 0$$
(6)
(7)

(7) - (6)
$$\Rightarrow \sum_{i=1}^{m} c_i (Ax_i - \lambda_1 x_i) = 0$$

$$\Rightarrow \sum_{i=2}^{m} c_i (\lambda_1 - \lambda_i) x_i = 0$$

Multiply by λ_2 and A and subtract each other and follow the same by λ_3 and A Then

$$c_m(\lambda_1 - \lambda_m)(\lambda_1 - \lambda_m)\dots(\lambda_{m-1} - \lambda_m) = 0$$

which is a contradiction to our assumption.

Theorem 40. If a $n \times n$ matrix A has n distinct eigenvalues then A is similar to a diagonal matrix.

Proof: Follows from the previous two theorems

Theorem 41. Let *A* be a $m \times n$ matrix with rank *r*. Then there exist $m \times m$ unitary matrix *P* and $n \times n$ unitary matrix *Q* such that

$$\Sigma = P^* A Q$$

where Σ is a $m \times n$ matrix with only the first r diagonal elements called the singular values $\sigma_1, \ldots, \sigma_r$ nonzero and rest of the elements zero. The first r singular values are given by

$$\sigma_i = \{\lambda_i(A^*A)\}^{\frac{1}{2}}.$$

Proof: Note that $rank(A^*A) = rank(A) = r$. Let the eigenvalues of A^*A be given by $\lambda_1, \ldots, \lambda_n$ with corresponding eigenvectors x_1, \ldots, x_n that are orthogonal (see Theorem 32). Note that A^*A is Hermitian positive seim-definite and thus all its eigenvalues are non-negative. Define

$$\sigma_i = \{\lambda_i(A^*A)\}^{\frac{1}{2}}.$$

Let

$$y_i = \frac{1}{\sigma_i} A x_i, \quad i = 1, 2, \dots, r.$$

Note that

$$y_i^* y_j = \frac{1}{\sigma_i \sigma_j} (Ax_i)^* (Ax_j)$$

= $\frac{1}{\sigma_i \sigma_j} x_i^* A^* Ax_j$
= $\frac{1}{\sigma_i \sigma_j} \lambda_j x_i^* x_j$
= $\frac{\sigma_j}{\sigma_i} \delta_{ij}.$

 $\{y_1, y_2, \ldots, y_r\}$ forms an orthonormal and can be extended to $\{y_1, y_2, \ldots, y_m\}$ to form a orthonormal basis for C^m . Let

$$Q = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}$$
 and $P = \begin{bmatrix} y_1 & \dots & y_m \end{bmatrix}$

Note that $P^*P = PP^* = Q^*Q = QQ^* = I$. Note that for all

$$j = 1, ..., n \text{ and } i = 1, ..., r$$

$$(P^*AQ)_{ij} = y_i^*Ax_j$$

= $\frac{1}{\sigma_i}(Ax_i)^*Ax_j$
= $\frac{1}{\sigma_i}x_i^*A^*Ax_j$
= $\frac{\lambda_j}{\sigma_i}x_i^*x_j$
= $\frac{\lambda_j}{\sigma_i}\delta_{ij}$

٠

Also, if $j = 1, \ldots, r$ and $i = r + 1, \ldots, m$ then

$$(P^*AQ)_{ij} = y_i^*Ax_j = y_i^*(\sigma_j y_j) = \sigma_j y_i^* y_j = 0.$$

Thus

$$y_i^*Ax_j = \sigma_i\delta_{ij}$$
 for all $i = 1, \ldots, r$ and $j = 1, \ldots, n$.

Note that

$$\|Ax_j\|_2^2 = x_j^* A^* A x_j = 0$$
, for all $j = r + 1, \dots, n$.

Thus

$$Ax_j = 0$$
 for all $j = r + 1, ..., n$.

Thus

$$y_i^* A x_j = \sigma_i \delta_{ij}$$
 for all $i = 1, ..., r$ and $j = 1, ..., r$.
 $y_i^* A x_j = 0$ for all $i = 1, ..., r$ and $j = r + 1, ..., n$.
 $y_i^* A x_j = 0$ for all $i = r + 1, ..., m$ and $j = 1, ..., r$.

Thus

$$P^*AQ = \begin{bmatrix} \sigma_1 & & \mathbf{0} \\ & \ddots & & \vdots \\ & & \sigma_r & \mathbf{0} \\ \mathbf{0} & \dots & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

Two Induced Norm

Theorem 42. Let $A \in \mathbb{R}^{n \times n}$. Then

$$|A||_{2-ind} = \sqrt{\rho(A^*A)}.$$

where $\rho(B)$ denotes the spectral radius of *B*.

Jordan Canonical Form

Consider a matrix of the form

$$J_i = \begin{bmatrix} \lambda_i & 1 & & & \\ & \lambda_i & 1 & & \\ & & \ddots & \ddots & \\ & & & \ddots & 1 \\ & & & & \lambda_i \end{bmatrix}_{r \times r}$$

Then J_i is said to be a Jordan block with eigenvalue λ_i and size r. Note that e_1 is the only eigenvector of J_i .

Theorem 43. A $n \times n$ matrix A is similar to the matrix

$$\begin{bmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_p \end{bmatrix}$$

where J_i is the Jordan block with eigenvalue λ_i and size $r_i \times r_i$ given by

$$J_i = \begin{bmatrix} \lambda_i & 1 & & & \\ & \lambda_i & 1 & & \\ & & \ddots & \ddots & \\ & & & \ddots & 1 \\ & & & & \lambda_i \end{bmatrix}_{r_i \times r_i}$$

and

$$\sum_{i=1}^{p} r_i = n.$$

Definition 28. The number of Jordan blocks associated with an eigenvalue λ_i is said to be the geometric multiplicity of λ_i . The number of eigenvalues at λ_i is called the algebraic multiplicity of the eigenvalue λ_i .

Note that from Theorem 43 there exists a invertible matrix *P* such that

$$P^{-1}AP = \begin{bmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_p \end{bmatrix}$$

Thus

$$AP = PJ = \begin{bmatrix} p_1 & p_2 & \dots & p_n \end{bmatrix} \begin{bmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_p \end{bmatrix}$$

٠

Thus

$$\begin{bmatrix} Ap_1 & Ap_2 & \dots & Ap_{r_1} & \dots & Ap_n \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & \dots & p_{r_1} & \dots & p_n \end{bmatrix}.$$
$$\begin{bmatrix} J_1 & & & & \\ & J_2 & & \\ & & \ddots & & \\ & & & J_p \end{bmatrix}$$

This implies that

$$\begin{array}{rcl} Ap_1 & = & \lambda_1 p_1 \\ (A - \lambda_1 I) p_2 & = & p_1 \\ (A - \lambda_1 I) p_3 & = & p_2 \\ \vdots & \vdots & \vdots \\ (A - \lambda_1 I) p_{r_1} & = & p_{r_1 - 1} \end{array}$$

 p_{r_1} is called the generator. p_2, \ldots, p_{r_1} are called generalized eigenvectors.

Definition 29. *Y* is an invariant set with respect to *A* if for all $y \in Y$, $Ay \in Y$.

 $S_1 = span\{p_1, p_2, \ldots, p_{r_1}\}$ associated with eigenvalue λ_1 is invariant with respect to A. Similarly S_j , the corresponding set with respect to λ_j is invariant with respect to A for all $j = 1, \ldots, p$

Theorem 44. Let $A = P^{-1}JP$ be the Jordan decomposition of A with

$$J = \begin{bmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_p \end{bmatrix}$$

If S_i is defined as above then $S'_i s$ are invariant with respect to A and

$$C^n = S_1 \oplus S_2 \oplus \ldots \oplus S_p.$$

Cayley Hamilton Theorem

Theorem 45. The characteristic polynomial associated with matrix A is

$$f(\lambda) = (\lambda - \lambda_1) \dots (\lambda - \lambda_n).$$

Then

$$f(A) = 0.$$

Proof: Let the Jordan decomposition be given by

$$J = P^{-1}AP.$$

Thus

$$A^m = PJ^mP^{-1}.$$

Note that

$$f(\lambda) = (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} \dots (\lambda - \lambda_p)^{r_p}.$$

Thus it follows that

$$f(A) = P(f(J))P^{-1}$$

where f is any polynomial. Note that

$$f(J) = f\left(\begin{bmatrix}J_1 & & \\ & J_2 & \\ & \ddots & \\ & & J_p\end{bmatrix}\right)$$
$$= (J - \lambda_1 I)^{r_1} (J - \lambda_2 I)^{r_2} \dots (J - \lambda_p I)^{r_p}$$
$$= 0$$

Thus f(A) = 0.

.

Minimal polynomial

Definition 30. The minimal polynomial of a square matrix A is the least ordered polynomial $p(\lambda)$ such that p(A) = 0.

Theorem 46. Suppose A has m distinct eigenvalues. Let t_i be the size of the largest Jordan block of A associated with eigenvalue λ_i . Then the minimum polynomial is given by

 $\Pi_{i=1}^m (\lambda - \lambda_i)^{t_i}.$