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Linear Programming

The standard Linear Programming (SLP) problem:

subject to

cix
minimize cix1 + ¢cx2 + ... + cpTn
xr e R"
Aa:b
a1 + @122 + + aipnTn, = b
as21xr1 —|- aA292X9 —I- —I- A2nLn — b2
An1di + An2T2 + + AmnLn = bm

x;>0foralli=1,...,n



Define the feasible set of the SLP as
A:={x e R"|Ax =0b, x > 0}.

The SLP is given by
minimize {c’' x|z € A}.

Theorem 1. Consider the following problems

n = min{éTz|Alz < bl, AQZ = by and z > O}

and
v = min{c’ |4z = b,z > 0}

o C . All L bl
C_[O]’A_[Az O]andb_[lh].

where



Then
p=v
If the optimal solution of (1) is z° then an optimal solution x° of (~) is given by

where y° > 0 and vice versa.

Proof: Note that as x° is an optimal solution of (2) it follows that
v=cla® Az°=0bandz°>0.

Partition ¢ appropriately as



where z has the same dimension as ¢. Then it follows that
21 >0, A2t + y° = by, y° > 0 and Aozt = by,

This implies that
Zl Z O, Alzl S bl, AQZl = b2

and thus 2! is a feasible element for the optimization problem of (1). Thus it
follows that

v=clg’=¢é'z1 > min{éTz\Alz < by, Asz=byand z > 0} = p.

Note that as z¢ is an optimal solution of (7) it follows that
[ = cl2° A12° < by, Asz° = by and 2° > 0.

Define
yl = bl — Alzo Z 0.



Define

Then it follows that
x! > 0, Azt =band z' >0

and thus z! is a feasible element for the optimization problem of (7). Thus it
follows that

p=2c"2=clz! >min{c’z'|Ax=bandz >0} =v =¢"2' > L.

This proves i1 = v. Also we have shown that if the optimal solution of (1) is z°
then an optimal solution z° of () is given by

where y° > 0 and vice versa.



Theorem 2. Consider the following problems

4 = min{( & g)<§>|A1z+A2y:b, 2> 0)

and

v = min{c’ x| Az = b,z > 0}
where ) )

C1
C — 62 ,A:[Al A2 —AQ].

L _62 -

Then
[ =

If the optimal solution of () is ( ) then an optimal solution z° of (4) is



given by

.CUO

where y° = u° — v° > 0 and vice versa.

Proof: Note that as x° is an optimal solution of (4) it follows that

v=clz° Az°=band z° > 0.

Partition z° appropriately as

:,UO

where z!, «° and v° have dimensions same as ¢;, ¢, and ¢, respectively.

Then it follows that

21 >0, Azt + Ay(u® —0°) = b, u®, v° > 0.

U




Let y! := u® — v°. This implies that

21 >0, Azt + Asyl =0

1

and thus ;1 Is a feasible element for the optimization problem of ().

Thus it follows that

v = clx°
Zl
= (¢f & - )| v | =+ (u—0°)
,UO



o

o

Note that as ( .

y ) is an optimal solution of () it follows that

= észo + E:f{yo, A12°+ Ay = b, 22 > 0.

Define u° and v° to satisfy

ut(i) = y°(i) if y°(i) > 0

= 0if y°(i) <0
vt(i) = 0if y°(¢) >0

= —y°(i) if y°(i) <O.

forall: =1,...,n, n, being the dimension of y. Note that

ul > 0

o' > 0and

o _ 1 1

u —v-.



Therefore it follow that

Alzo -+ A2u1 — AQ’Ul = Alzo -+ Agyo = b
ul >1
vt >0
ZO
Thus z! := | u! | is afeasible solution for (4). Thus it follows that
1
p = izl +elye =clzo+élue —cloe
Tl
> min{c'z|Ax = band z > 0}
= v
= ¢l 4+ el (ue —v0)
>

This proves i = v. Also we have shown that if the optimal solution of (3) is



( ;O ) then an optimal solution x° of (4) is given by

ZO

:CO — uO

U

o

where y° = u® — v° > 0 and vice versa.



Feasible solution and Optimal solution

Definition 1. Consider the Standard Linear Programming (SLP) problem
1 =min{c'z|Ax =b, £ >0, € R"}

where A is am x n matrix. Any x € R™ that satisfies Ax =b, x > 0Is a
feasible solution. If x° is such that

= CT:L'O, Ax° =bandx > 0,

then x° is an optimal solution.



Basic Solution, basic variable and nonbasic variables

Definition 2. Consider the Standard Linear Programming (SLP) problem
min{c'z|Ax =b, £ >0, v € R"}
where A is a m x n matrix. Suppose
Rank(A) = m.

Suppose



Is such that only m elements {zy,, x,, ..., xx,, } are non zero with

Ly

Exk2 :B_lb,B:[akl 07 T akm}.

Lk

m

Then x is a basic solution of the SLP

The variables {xy,, z,, - .., xx,, } are called the basic variables associated with
the matrix B. The variables x; withi & {ki,ks, ...k} are called the
non-basic variables.

Note that
e B is a matrix formed by m linearly independent columns of A.

e Basic solution depends only on A and b and not on c.



e A non-basic variable is set to zero in a basic solution
e A basic variable can be zero in a basic solution.

e There are only finitely many basic solutions associated with A € R™*™ and
be R™.

Definition 3. A basic solution is said to be degenerate if any of the basic
variables is zero.

Definition 4. 2« is said to be basic feasible solution if x is basic and is
feasible.

Definition 5. « is said to be basic optimal solution if x is basic and is optimal.



The Fundamental Theorem of Linear Programming

Theorem 3. Consider the optimization problem
min{c'z|Ax =b, x>0, z € R"},
where A € R™*™ has rank m. Then
1. If there exists a feasible solution then there exists a basic feasible solution.

2. If there is an optimal solution then there is a basic optimal solution

e SLP has only finitely many basic solutions.

e Fundamental theorem on Linear Programming asserts that LP can be
solved in a finite number of steps



Proof of (1.): Let x € R™ be a feasible solution. Suppose only p elements of
the vector x be nonzero. Without loss of generality assume these variables to
be x1,...,z,. Thus

Tpt1 = Tpy2 = ... = Ty = 0.
Note also that Az = band x > 0. Let

A:[al as - an},

where a; denotes the " column of A. Then as Ax = b we have

p
iaiﬂfi =b= Zaixi = b.
1=1 =1

Casel: Suppose ay, ..., a, are independent set of vectors. Thenas p < m as
Rank(A) = m. One can add columns a; . ,,...,a;, such that the

B = [ a1 “ . ap a'ip—l—l a/ip+2 « o aim j| :



has independent columns and thus is invertible. It is evident that
x > 0, Ax = b and the nonzero variables are basic variables associated with
the matrix B above. Thus it follows that x is a basic feasible solution.

Case 2: Suppose the columns ay, ..., a, form a dependent set. Then there
exists real variables vy, .. ., y, with at least one element strictly positive such
that

P
Z Y;Qq — 0.
1=1

Let
Y1

L dnxl1



It is evident that Ay = 0. Let

€ = min{ﬂ7 . .,@]yi >0} > 0.
Y1 Yp
Let
Z =1 — €y.
Then

2>0, Az= Az —ey) = Ax —eAy = Az = b

and z has p — 1 nonzero elements. Thus z is a feasible solution and has at
most p — 1 nonzero elements. This process can be continued to a stage when
the non-zero elements of a feasible element are associated with independent
columns and then we revert to Case 1.

This proves the first part of the theorem.



Proof of (2.): Suppose z is such that
u=c'z, Az =band i > 0

that is x is an optimal solution. Suppose only p elements of the vector x be

nonzero. Without loss of generality assume these variables to be x4, .. ., z,.
Thus

:ﬁp+1 :.fp_|_2: :Zgn:O
Note also that Az = band z > 0. Let

A:[al as - an}

Y

where a; denotes the it column of A. Then as A% = b we have

n p
1=1 =1



Casel: Suppose ay, ..., a, are independent set of vectors. Then as p < m as
Rank(A) = m. Using results from linear algebra, one can add columns

Aipivs- - -5 Qi SUCH that the

B — [ aq “ e ap a'ip—l—l aip+2 “ . aim :| :

has independent columns and thus is invertible. It is evident that

x > 0, Ax = b and the nonzero variables are basic variables associated with
the matrix B above. Thus it follows that x is a basic feasible solution. z is an
optimal solution too and thus z is a basic optimal solution.

Case 2: Suppose the columns aq, ..., a, forms a dependent set. Then there
exists real variables vy, . .., y, with at least one element strictly positive such
that

p
Z yia; = 0.
i—1



Let

L
_ | Yp
Y= 10
_ 0 dnxl
It is evident that Ay = 0.
Let 3 N
X
d = min{ﬂ, oy £ 0} > 0.
Y1 Y|
Let € be any real number such that
€| < 6.

Then
T —ey >0and A(x — ey) = b.



Thus Z — €y is a feasible solution. Suppose ¢’y # 0 then we can choose ¢
such that 0 < |€] < 6 and sgn(€) = sgn(c’y). Then

CT(~ ~ T ~ T~

F—éy)=cla—eély=claz—c' —|eécty| < 'z

As (Z — €y) is a feasible solution £ cannot be an optimal solution. This a
contradiction and thus

cTy = 0.
Now let i .
e := min{—, ..., Z|y; > 0} > 0.
Y1 Yp
Let
Z =T — €y.

Then z is a feasible solution with



and thus z is an optmal solution. Also z has at most p — 1 nonzero elements.
This process can be continued to a stage when the only non-zero terms in the
optimal solution are associated with independent columns of A.

This proves (2.).

Definition 6. [ConveXx sets] A subset () of a vector space X is said to be
convex if for any two elements ¢, and cy in 2 and for a real number A with
0 < A <1 the element A\c; + (1 — N)co € Q (see Figure ??). The set{} is
assumed to be convex.

Theorem 4. LetA., a € S be an arbitrary collection of convex sets. Then

s

aceS



IS a convex set.

Theorem 5. Suppose K and G are convex subsets of a vector space X.
Then

K+G={reX|lr=2,+2q, zx € K andzqg € G}
IS convex.

Definition 7. Let S be an arbitrary set of a vector space X. Then the convex
hull of S is the smallest convex set containing S and is denoted by co(.5).

Note that
co(S) = ﬂ A,
where A, is any set that contains S.
Definition 8. [Convex combination] A vector of the form Y, _, A\yxx, where

S A =1land ), >0forallk =1,...,n is aconvex combination of the
vectors x1, ..., Tn.



Definition 9. [Cones] A subset C of a vector space X is a cone if for every
non-negative o in R and c in C, ac € C.

A subset C of a vector space is a convex cone if C' is convex and is also a
cone.

Definition 10. [Positive cones] A convex cone P in a vector space X is a
positive convex cone if a relation’ >’ is defined on X based on P such that for
elementsx andyin X,z > yifx—y € P. Wewritex > 0 ifx € int(P).
Similarly x <y ifxr —y € —P:= N andx <0 ifx € int(N).

Example 1. Consider the real number system R. The set
P :={x : x is nonnegative},
defines a cone in R. It also induces a relation > on R where for any two

elements x andy in R, x > y if and only if x — y € P. The convex cone P with
the relation > defines a positive cone on R.



Definition 11. [Convex maps] Let X be a vector space and Z be a vector
space with positive cone P A mapping, G : X — Z is convex if

Gite+ (1 —t)y) <tG(x)+ (1 —t)G(y) forall z,y in X andt with0 <t <1 and
is strictly convex if G(tx + (1 — t)y) < tG(x) + (1 —t)G(y) forall x # y in X
andt with0 <t < 1.

Definition 12. [Extreme points] Let C' be a convex set. Then a € C' is said
fo be an extreme point of the set C ifforany x, y € C and0 < A < 1

A+ (1—=XNy=a

implies that
r=1Y=aq.

Note that the feasible set of a SLP is given by

A ={z e R"|Ax = bx > 0}.



Clearly if x and y € A then it follows that
AAz+(1-N)y) = AMz+(1-N)Ay = b+ (1-N)Ab=band (A\z+(1—-N)y) > 0.

Thus (Ax+ (1 — AN)y) € Aifz and y € A. Thus A is convex.



Equivalence of extreme points and basic solutions

Theorem 6. Let A be a m x n matrix with Rank(A) = m and let
A ={x € R"|Ax = bx > 0}.

Then a vector x is an extreme point of A if and only if x is a basic feasible
solution.

Proof: Suppose z is a basic feasible solution. Assume without loss of
generality that the basic variables are the first m elements of = given by

xi, t=1,...,m. Also let

Then it follows that
r1a1 + oo + ...+ T;Qp = b



or in other words

— B~ b,

Now suppose 0 < A < 1and y and z € A are such that
Ay + (1 — X))z =w.
Thus it follows that
Ayi+ (1 =Nz, =x;foralli=1,... n.
Note thatas z; =0foralli =m+1,...,n, A >0and (1 —X) > 0 it follows that

yi=z =0foralli=m+1,... n.



Note thatas y and z € A, Ay = Az = b and thus

Y101+ ... + YmQ@m = 2101 + ... + 2@, = b.

Thus 3 3 3 3 _ )
Y1 21 I1
. — : — B—lb — .
| ym i | Z’I’)’L _ B xm i
Thus
Yy =2z=1.

Thus we have shown that every basic feasible solution is an extreme point.

Suppose z is an extreme point of the set A. Without loss of generality assume
that =4, ..., z, are the only non-zero elements of z. Suppose ay,...,a, form a
dependent set. Then there exists scalars y, . .., y, not all zero such that

yia1 + ... +ypa, = 0.



Let
e = min{z;/|y;||i € {1,...,p} and y; O} > 0.

Y1

L 4 nxl1

Note that
r—ey>0, x+ey >0, Alx —ey) =band A(x + ey) = b.

Also,

1 1
T = 5(37 —ey) + 5(1‘ + ey).

Clearly
r#x—eandx # (r + ey)



as y # 0 and € # 0. Thus we have written x as a non trivial convex combination
of x — e and (x + ey). Thus x is not an extreme point. This is a contradiction
and therefore ay, ..., a, are independent. Thus z is a basic feasible solution. =

The following corollaries follow easily from Theorem = and Theorem

Corollary 1. Suppose Rank(A) = m where A is a m x n matrix. The feasible
set of the SLP

A ={x € R"|Ax =bandzx > 0}
is nonempty if and only if there exists an extreme point of A.

Corollary 2. Suppose Rank(A) = m where A is a m x n matrix. Let the
feasible set of the SLP be

A={xr e R"|Ax =bandz > 0}.

Then an optimal solution to the SLP exists if and only if an optimal solution to
the SLP that is also an extreme point of A exists.



Which basic variable becomes non-basic
Consider the SLP with

A={z e R"|Ax =0b, x > 0}
as the feasible set. Lets assume that
e the first m columns of A are independent

e the basic solution x associated with the first m columns is feasible i.e.
x > 0.

Thus

ria1+Toas+. .. +xma, = b, Tmtl = Tma2 = ... =10 and z; > Oforall: = 1,...,m.



The columns a4, as...a,, are the basic columns. Suppose it is determined
that a nonbasic column a, should become a basic column. Then we have to
determine which column has to leave from the basic set. Note that
ai,as...a,, form a basis for R™. Therefore we can write

Ag = Y1401 + - - - + YmqQm-

Suppose the variable associated with a, is increased from 0 to € > 0 while
keeping all other non-basic variables 0. Then to maintain feasibility we have
that coefficients of the initial basic set a4, ..., a,, will be altered to satisfy

:Elal—l—aj_2a2+...—|—:imam—|—eaq:b

where z;, i = 1,...,m have to be determined. Clearly

ri1a1 + Toao + ...+ TyQm, b—GCLq
m . . m . .
ZiZl Lilg — € qu:l Yiqls

> i1 (@i — €eyig)ai



. This implies that

m
Z[a_j — (% — €yig)la; = 0
=1
Thus
@:x@-—eyiqforalli: 1,...,m.
Thus we have



Thus we have a solution to the equation Az = b given by

L1 — €Y1q

Lm — €Ymgq

0

Sl
I

0
€

0

where the € is the ¢*" element.



Feasibility of =
Note that Az = b where

L1 — €Y1q

Lm — €Ymg

0

S
|

0
€

0

0
To be feasible z > 0. This may be satisfied by an appropriate choice of e.
Indeed there are two possible case for feasibility of x.

Case 1: y,, <Oforalli=1,...,m. Inthis case z is feasible (that is z € A) for
any ¢ > 0. Also we can conclude that A is an unbounded set.



Case 2: there exists at least one iy € {1,2,...,m} such that y;,, > 0. In this
case for any 0 < e < ¢y, 7 is feasible with
i

eyy = min {—|yig > 0} > 0.
1=1,....m Yiq



Making z basic feasible solution with a, basic

Note that _ _
L1 — €Y1q
Lm — €Ymgq
0
T
€
0
- O —
Case 1: Ify;, <Oforalli =1,...,mthenitis not possible to make
r; — €yiqg = 0 any e if z; > 0. If the initial basic feasible solution was degenerate
with z, =0, k € {1,..., m} then by choosing ¢ = 0 one can swap the role of

ar and a,. However in this case the solution z = .



Case 2: there exists at least one iy € {1,2,...,m} such that y;,, > 0. In this
case let € = ¢j, with

Let p a minimizing index above. Then a, can be replaced with a, in the basic
column set. Note again that if z, = 0 then again the new solution z = z.



Boundedness and Non-degeneracy assumption

L1 — €Yiq

Lm — €Ymg

0

Sl
1

0

0

0
If we make the assumption that A is bounded and that x is a non-degenerate
basic feasible solution the following steps can be performed to determine
which basic column leaves the basic column set to allow a, to enter the basic

column set.



€y = min { |yzq>0}>0
1=1,....m Yiq

with

P = a/rg{ Ilnln { |yzq > 0}}.
= Yiq

2. Let



1 — €MYiq

Lm — €EMYmq

8|
|

Note that z > 0 and it has the p'"* element zero. The only possible nonzero
elements are belongtothe set{1,...,(p—1),(p+1),...,m} U{q}.



Effect on the Cost of changing a basic feasible solution

Suppose z; ¢ IS a basic feasible solution. We will also assume that

A:[el cer Cm Ymal .- yn}andb:ynﬂ.

In this case we will have

On—m

:Ebfszly”H:b].

The cost associated with this basic feasible solution is

T T
Zbfs — C Tpfs — CpYn+1-

Suppose z is another feasible solution. How does the cost ¢!’ compare with



chbe. As zx is feasible Az = b =y,1. Thus

101 + .« TG + Ty 1Ym+1 T - - T TnlYn = Yn+1-



Thus

(]
3
Il
8
o
I

n
Yn+1 — Zi:m—l-l Lili

T —~m T T /" .
= cg(Qim1 Ti€i) = cp(Yn+1) — CB(Zq;:m+1 TiY;)
=Z;
m L n T
= D im1 TiCi = Rbfs T Zi:m—l—l Li CRYi
m n
n n n
= 21:1 LiCq =  Zbfs — Zi:m+1 TiZi 1 Zz’:m—i—l LiCi
n
=4 E TiCq = bes + g zi(ci — %)
1=1 xbfs 3_m—|—1 g P
cTx dif ference in cost
n n
= Z LiCi — @ — Z xi(c; — 2;)
1=1 T 1=m-+1
W—/ C ajbfs N _/

. V .
x dif ference in cost



Thusifc; —z; > 0forall: =m+1,...,nthen x4, is optimal.



Minimize
subject to:

C1I1

aij1xri
a21x1

An1li
L1

_|_

The Simplex Method
Consider the following SLP.

Ca2X2

a12x2
a22x2

An2T2
L2

++++

~»

+ +

Cndn

A1ndn
A2nTn

afmnxn

AVA

Lets assume that the matrix A has rank m. We will assume that the matrix A
issuchthata; =¢;, 1=1,...,manda; =vy;, i =m+1,...,n. We will denote

the vector b by y,,.1. Thus we have



min

subject to

Lets assume that y1,,11, ...
feasible solution is given by

Suppose it is decided that =, will enter the basic set.

[Cl C9o

1 0
0 1

0 0

[5131 L2

Cm

Cm+1

0 Yim+1
0 Yom+1

Lm xm—{—l

Ymm+1

>0

Yin+1
Yoan+1

Ymn+1 _

. Umns1 > 0. Then for the above table a basic

:El :y1n+17..ojxm:ymn+1’ xm_|_1 207...7:,Un20.




Consider the table:

1 0 -+ 0 Yimer - Yin | | yine1
O 1 -+ 0 Yomy1 -+ Yon Y2n+1
i O O v 1 Ymm+1 e Ymn i i Ymn+1 _
[ c1 Co Cm  Cm+1 Cn ] [ 0 }

Suppose we do the following operation:

[row (m+1)] < [row (m +1)] —cy [row 1] —co [row 2] — ... ¢y, [ rOW m].



Then we have the table: Consider the table:

L 0 - 0 yims1 .-+ Yin Yin+1
0 1 0 Yom+t1 --- Yon Y2n+1
i O O 1 Ymm+1 e Ymn _ i Ymn+1 i
00 o 0 X Cilimtr o D C¥in ||~ iy Cilfint1 |
Note that
ri = C; — cgyi forall:i=1,...,nand r, 1 = — Z Cillin+1 = —Zbfs-

1=1



Note that if any other feasible solution has cost ¢!’z then

n

Z— Zpfs = Z CiT5. (9)

1=m-+1

e Determining the variable that will enter:
First determine
rqe =min{r;,t=1,...,n}.

|
rq > 0,

then the current bfs is the optimal solution as the cost of any other feasible
solution is greater than or equal to z; ¢ (see Equation 5).

If r, < 0 then ¢ is chosen as the variable to become basic.

e Determining the basic variable that will leave the basic set:



Note that the bfs is given by

Tpfs = [ g"“ ] .

Also note that

Yj = Y1;€1 + Y2€2 + ... + Ymjilm = Y1;Y1 + Y25€2 + ... + YmiYm.

Suppose ¢ enters the basic set. Suppose we denote the new solution to be
z. Then as Az = b it follows that

rie1 + o€+ ... + Tm€m + €Yg = Yni1-

Thus

m

Z(i‘z + €Yiq — :UZ')GZ' = 0.

1=1



Thus
T, =x; —eyforalli=1,... . mand z, =e.

That is

Yin+1 — €Y14q

Ymn+1 — €Ymg
0

Sl
|
I

0
€

0

0

To be feasible z > 0.

If y;,, <Oforalli=1,...,mthenany e > 0 does not violate feasibility and



the feasible set is unbounded. Note that in this case as r, < 0 and the cost
of making the non-basic ¢ variable to take a nonzero value ¢ is from
Equation () is

Z — Zpfs = T4€.
As € > 0 can be arbitrarily large without violating feasibility we conclude that
the SLP has no solution and the minimum value is —oo. Thus if

yiqg <O0forall:=1,...,m

then one can stop the Simplex algorithm and conclude that the optimal
value is —oo.
If y;,, > 0 for some iy € {1,...,m} then let

p=arg| min {M\yzq > 0}]and e = min {M\yiq > 0}.

1=1,....m Yiq 1=1,....m Yiq

p is the basic variable that will leave the basic set to be replaced by ¢ as the
basic variable.



If the initial bfs is not degenerate then y;,,.1 > 0foralli =1,...m. Thus,
e > 0 and from Equation (5) as r, < 0 and € > 0 the new cost z < z,¢5. Thus
if all bfs are non-degenerate then at every time the simplex table is updated
the cost strictly decreases and thus the same solution cannot be visited

twice. Thus there is no cycling in the iterations.

Update the table by the following operations

Yij S Yij — yoYps WiFED
Ypj :
Ypj Yo

In other words

[row i] <« [row 4] —E—Z[row pl ifi#p

row p| <« -[row p|



Note that with this operation

yi=e;forallie[{1,2,....p—1,p...,m}tU{q}].



The Simplex Algorithm

e (Step 1) Find index g such that
rqo =min{r;|j =1,...,n.}
If r, > 0 STOP. The current basic feasible solution is the optimal solution.

e (Step 2) Let r, be the solution in Step 1 with r, < 0.

1. Ify;, <Oforalli=1,...,mthen STOP. There is no optimal solution and
the optimal value is —oc.
2. If there exists i such that y;,, > 0 then let

€ = min{Mwm > 0}
1q



and let Yime1
p= arg[min{ﬂmq > 0}].

q

e (Step 3) Update the table by the following operations

Yij < Yij — y_;Zypj ifi #p
Ypy :
Ipi Ypq

A new basic feasible solution is obtained

e (Step 4) Update the relative cost vector to assure that all the relative cost
with respect to basic variables are zero.

Return to Step 1

Theorem 7. The simplex algorithm will yield an optimal basic feasible

solution in a finite number of steps if the SLP has any optimal solution and all
basic feasible solutions are non-degenerate.



Proof: Follows from the fact that there are finite number of basic feasible
solutions and that the simplex algorithm at each iteration yields a new basic
feasible solution that has a cost strictly smaller than the previous iteration cost
(if all basic feasible solutions are non-degenerate there is no cycling).



Revised Simplex: Matrix Method

Let the SLP be given by
1 = min{c’ z|Ax = b, x > 0}

where A € R™*" and b € R™.

Suppose the first m columns of A are independent. Let
B::[al as --- am]andD::[amH Q42
With this definition we have

A=[B D].



Partition any feasible x according to

Let the basic feasible solution associated with B be given by
_ [ B ]
r = _
T D

rp = B~ b and rp = 0.

where

X — [ B ID }
is feasible then from Ax = b it follows that

| B D ||z xp | =0



Thus
Bxg + Dxp =0b.

Thus
rg=B'v— B 'Dxp=25— B 'Dxp.

The cost associated with this feasible solution is

z=cly = [cg cg}[B D]
chB—l—clzjD
cL(B~'b — B™'Dxp) + chaxp

ckzp + (¢ — LB 1D)xp

2 Zhps + (ch — c5B~'D)xp
Z— Zpps = (ch —cEB™1D)xp
— 7"17;331)

where rf, = (c5 — c5B~'D).

Thus the following algorithm can be followed



e (Step 1): Compute
rt = (¢h — ckB™'D).

If rp > 0 STOP. The current solution is optimal.

o (Step 2) Let ¢ be the most negative element of rp. a, will enter the basic
set.

o (Step 3) Let
Yqg = B_laq

the coordinate vector of a, in the basis given by B.

o (Step4) Ify,, <Oforalli=1,...,m STOP. The SLP has no solution and
the optimal value is —oco. Else calculate

. Yin+1
p= cw“g[mm{—.Jr Yiq > 0}]
iq



where
Yn+1 = B_lb.

Replace the vector a, in B by a,.

Go to step 1.



