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Linear Programming

The standard Linear Programming (SLP) problem:

minimize
cTx︷ ︸︸ ︷

c1x1 + c2x2 + . . . + cnxn
x ∈ Rn

subject to
Ax=b︷ ︸︸ ︷

a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a2nxn = b2
... ... ... ... ... ... ... ... ...
an1x1 + an2x2 + . . . + amnxn = bm
xi ≥ 0 for all i = 1, . . . , n
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Define the feasible set of the SLP as

Λ := {x ∈ Rn|Ax = b, x ≥ 0}.

The SLP is given by
minimize {cTx|x ∈ Λ}.

Theorem 1. Consider the following problems

µ = min{c̃Tz|A1z ≤ b1, A2z = b2 and z ≥ 0} (1)

and
ν = min{cTx|Ax = b, x ≥ 0} (2)

where

c =

[
c̃
0

]
, A =

[
A1 I
A2 0

]
and b =

[
b1
b2

]
.



3

Then
µ = ν

If the optimal solution of (1) is zo then an optimal solution xo of (2) is given by

xo =

[
z0

yo

]

where yo ≥ 0 and vice versa.

Proof: Note that as xo is an optimal solution of (2) it follows that

ν = cTxo, Axo = b and xo ≥ 0.

Partition xo appropriately as

xo =

[
z1

yo

]
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where z has the same dimension as c̃. Then it follows that

z1 ≥ 0, A1z
1 + yo = b1, y

o ≥ 0 and A2z
1 = b2.

This implies that
z1 ≥ 0, A1z

1 ≤ b1, A2z
1 = b2

and thus z1 is a feasible element for the optimization problem of (1). Thus it
follows that

ν = cTxo = c̃Tz1 ≥ min{c̃Tz|A1z ≤ b1, A2z = b2 and z ≥ 0} = µ.

Note that as zo is an optimal solution of (1) it follows that

µ = c̃Tzo, A1z
o ≤ b1, A2z

o = b2 and zo ≥ 0.

Define
y1 := b1 −A1z

o ≥ 0.
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Define
x1 =

[
zo

y1

]
.

Then it follows that
x1 ≥ 0, Ax1 = b and x1 ≥ 0

and thus x1 is a feasible element for the optimization problem of (2). Thus it
follows that

µ = c̃Tzo = cTx1 ≥ min{cTx1|Ax = b and x ≥ 0} = ν = c̃Tz1 ≥ µ.

This proves µ = ν. Also we have shown that if the optimal solution of (1) is zo

then an optimal solution xo of (2) is given by

xo =

[
z0

yo

]
where yo ≥ 0 and vice versa.



6

Theorem 2. Consider the following problems

µ = min{
(
c̃T1 c̃T2

)( z
y

)
|A1z +A2y = b, z ≥ 0} (3)

and
ν = min{cTx|Ax = b, x ≥ 0} (4)

where

c =

 c̃1
c̃2
−c̃2

 , A =
[
A1 A2 −A2

]
.

Then
µ = ν

If the optimal solution of (3) is
(
zo

yo

)
then an optimal solution xo of (4) is
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given by

xo =

 z0

uo

vo


where yo = uo − vo ≥ 0 and vice versa.

Proof: Note that as xo is an optimal solution of (4) it follows that

ν = cTxo, Axo = b and xo ≥ 0.

Partition xo appropriately as

xo =

 z1

uo

vo


where z1, uo and vo have dimensions same as c̃1, c̃2 and c̃2 respectively.
Then it follows that

z1 ≥ 0, A1z
1 +A2(u

0 − vo) = b, uo, vo ≥ 0.
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Let y1 := u0 − vo. This implies that

z1 ≥ 0, A1z
1 +A2y

1 = b

and thus
(
z1

y1

)
is a feasible element for the optimization problem of (3).

Thus it follows that

ν = cTxo

=
(
c̃T1 c̃T2 −c̃T2

) z1

uo

vo

 = c̃T1 z
1 + c̃T2 (uo − vo)

=
(
c̃T1 c̃T2

)( z1

y1

)
≥ min{

(
c̃T1 c̃T2

)( z
y

)
|A1z +A2y = b, z ≥ 0}

= µ
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Note that as
(
zo

yo

)
is an optimal solution of (3) it follows that

µ = c̃T1 z
o + c̃T1 y

o, A1z
o +A2y

o = b, zo ≥ 0.

Define uo and vo to satisfy

u1(i) := yo(i) if yo(i) ≥ 0
= 0 if yo(i) < 0

v1(i) = 0 if yo(i) ≥ 0
= −yo(i) if yo(i) < 0.

for all i = 1, . . . , ny ny being the dimension of y. Note that

u1 ≥ 0
v1 ≥ 0 and
yo = u1 − v1.
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Therefore it follow that

A1z
o +A2u

1 −A2v
1 = A1z

o +A2y
o = b

u1 ≥ 1
v1 ≥ 0

Thus x1 :=

 zo

u1

v1

 is a feasible solution for (4). Thus it follows that

µ = c̃T1 z
o + c̃T2 y

o = c̃T1 z
o + c̃T2 u

o − c̃T2 vo
= cTx1

≥ min{cTx|Ax = b and x ≥ 0}
= ν
= c̃T1 z

1 + c̃T2 (uo − vo)
≥ µ

This proves µ = ν. Also we have shown that if the optimal solution of (3) is
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zo

yo

)
then an optimal solution xo of (4) is given by

xo =

 z0

uo

vo


where yo = uo − vo ≥ 0 and vice versa.
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Feasible solution and Optimal solution

Definition 1. Consider the Standard Linear Programming (SLP) problem

µ = min{cTx|Ax = b, x ≥ 0, x ∈ Rn}

where A is a m× n matrix. Any x ∈ Rn that satisfies Ax = b, x ≥ 0 is a
feasible solution. If xo is such that

µ = cTxo, Axo = b and x ≥ 0,

then xo is an optimal solution.
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Basic Solution, basic variable and nonbasic variables

Definition 2. Consider the Standard Linear Programming (SLP) problem

min{cTx|Ax = b, x ≥ 0, x ∈ Rn}

where A is a m× n matrix. Suppose

Rank(A) = m.

Suppose

x =


x1
x2
...
xn
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is such that only m elements {xk1, xk2, . . . , xkm} are non zero with
xk1
xk2...
xkm

 = B−1b, B =
[
ak1 ak2 . . . akm

]
.

Then x is a basic solution of the SLP.

The variables {xk1, xk2, . . . , xkm} are called the basic variables associated with
the matrix B. The variables xi with i 6∈ {k1, k2, . . . , km} are called the
non-basic variables.

Note that

• B is a matrix formed by m linearly independent columns of A.

• Basic solution depends only on A and b and not on c.
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• A non-basic variable is set to zero in a basic solution

• A basic variable can be zero in a basic solution.

• There are only finitely many basic solutions associated with A ∈ Rm×n and
b ∈ Rm.

Definition 3. A basic solution is said to be degenerate if any of the basic
variables is zero.

Definition 4. x is said to be basic feasible solution if x is basic and is
feasible.

Definition 5. x is said to be basic optimal solution if x is basic and is optimal.
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The Fundamental Theorem of Linear Programming

Theorem 3. Consider the optimization problem

min{cTx|Ax = b, x ≥ 0, x ∈ Rn},

where A ∈ Rm×n has rank m. Then

1. If there exists a feasible solution then there exists a basic feasible solution.

2. If there is an optimal solution then there is a basic optimal solution

• SLP has only finitely many basic solutions.

• Fundamental theorem on Linear Programming asserts that LP can be
solved in a finite number of steps
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Proof of (1.): Let x ∈ Rn be a feasible solution. Suppose only p elements of
the vector x be nonzero. Without loss of generality assume these variables to
be x1, . . . , xp. Thus

xp+1 = xp+2 = . . . = xn = 0.

Note also that Ax = b and x ≥ 0. Let

A =
[
a1 a2 · · · an

]
,

where ai denotes the ith column of A. Then as Ax = b we have

n∑
i=1

aixi = b⇒
p∑
i=1

aixi = b.

Case1: Suppose a1, . . . , ap are independent set of vectors. Then as p ≤ m as
Rank(A) = m. One can add columns aip+1, . . . , aim such that the

B =
[
a1 · · · ap aip+1 aip+2 · · · aim

]
,
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has independent columns and thus is invertible. It is evident that
x ≥ 0, Ax = b and the nonzero variables are basic variables associated with
the matrix B above. Thus it follows that x is a basic feasible solution.

Case 2: Suppose the columns a1, . . . , ap form a dependent set. Then there
exists real variables y1, . . . , yp with at least one element strictly positive such
that

p∑
i=1

yiai = 0.

Let

y =


y1
...
yp
0
...
0


n×1

.
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It is evident that Ay = 0. Let

ε := min{x1
y1
, . . . ,

xp
yp
|yi > 0} > 0.

Let
z = x− εy.

Then
z ≥ 0, Az = A(x− εy) = Ax− εAy = Ax = b

and z has p− 1 nonzero elements. Thus z is a feasible solution and has at
most p− 1 nonzero elements. This process can be continued to a stage when
the non-zero elements of a feasible element are associated with independent
columns and then we revert to Case 1.

This proves the first part of the theorem.
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Proof of (2.): Suppose x̃ is such that

µ = cT x̃, Ax̃ = b and x̃ ≥ 0

that is x̃ is an optimal solution. Suppose only p elements of the vector x̃ be
nonzero. Without loss of generality assume these variables to be x1, . . . , xp.
Thus

x̃p+1 = x̃p+2 = . . . = x̃n = 0.

Note also that Ax̃ = b and x̃ ≥ 0. Let

A =
[
a1 a2 · · · an

]
,

where ai denotes the ith column of A. Then as Ax̃ = b we have

n∑
i=1

aix̃i = b⇒
p∑
i=1

aix̃i = b.
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Case1: Suppose a1, . . . , ap are independent set of vectors. Then as p ≤ m as
Rank(A) = m. Using results from linear algebra, one can add columns
aip+1, . . . , aim such that the

B =
[
a1 · · · ap aip+1 aip+2 · · · aim

]
,

has independent columns and thus is invertible. It is evident that
x̃ ≥ 0, Ax̃ = b and the nonzero variables are basic variables associated with
the matrix B above. Thus it follows that x̃ is a basic feasible solution. x̃ is an
optimal solution too and thus x̃ is a basic optimal solution.

Case 2: Suppose the columns a1, . . . , ap forms a dependent set. Then there
exists real variables y1, . . . , yp with at least one element strictly positive such
that

p∑
i=1

yiai = 0.
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Let

y =


y1
...
yp
0
...
0


n×1

.

It is evident that Ay = 0.

Let
δ := min{ x̃1

|y1|
, . . . ,

x̃p
|yp|
|yi 6= 0} > 0.

Let ε̃ be any real number such that

|ε̃| < δ.

Then
x̃− ε̃y ≥ 0 and A(x̃− ε̃y) = b.
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Thus x̃− ε̃y is a feasible solution. Suppose cTy 6= 0 then we can choose ε̃
such that 0 < |ε̃| ≤ δ and sgn(ε̃) = sgn(cTy). Then

cT (x̃− ε̃y) = cT x̃− ε̃cTy = cT x̃− cT − |ε̃cTy| < cT x̃.

As (x̃− ε̃y) is a feasible solution x̃ cannot be an optimal solution. This a
contradiction and thus

cTy = 0.

Now let
ε := min{x1

y1
, . . . ,

xp
yp
|yi > 0} > 0.

Let
z = x− εy.

Then z is a feasible solution with

cTz = cT (x̃− εcTy) = cT x̃ = µ
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and thus z is an optmal solution. Also z has at most p− 1 nonzero elements.
This process can be continued to a stage when the only non-zero terms in the
optimal solution are associated with independent columns of A.

This proves (2.).

Definition 6. [Convex sets] A subset Ω of a vector space X is said to be
convex if for any two elements c1 and c2 in Ω and for a real number λ with
0 < λ < 1 the element λc1 + (1− λ)c2 ∈ Ω (see Figure ??). The set {} is
assumed to be convex.

Theorem 4. Let Λα, α ∈ S be an arbitrary collection of convex sets. Then

⋂
α∈S

Λα
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is a convex set.

Theorem 5. Suppose K and G are convex subsets of a vector space X.
Then

K +G := {x ∈ X|x = xk + xG, xK ∈ K and xG ∈ G}
is convex.

Definition 7. Let S be an arbitrary set of a vector space X. Then the convex
hull of S is the smallest convex set containing S and is denoted by co(S).

Note that
co(S) =

⋂
Λα

where Λα is any set that contains S.

Definition 8. [Convex combination] A vector of the form
∑n
k=1 λkxk, where∑n

k=1 λk = 1 and λk ≥ 0 for all k = 1, . . . , n is a convex combination of the
vectors x1, . . . , xn.
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Definition 9. [Cones] A subset C of a vector space X is a cone if for every
non-negative α in R and c in C, αc ∈ C.

A subset C of a vector space is a convex cone if C is convex and is also a
cone.

Definition 10. [Positive cones] A convex cone P in a vector space X is a
positive convex cone if a relation ′ ≥′ is defined on X based on P such that for
elements x and y in X, x ≥ y if x− y ∈ P. We write x > 0 if x ∈ int(P ).
Similarly x ≤ y if x− y ∈ −P := N and x < 0 if x ∈ int(N).

Example 1. Consider the real number system R. The set

P := {x : x is nonnegative},

defines a cone in R. It also induces a relation ≥ on R where for any two
elements x and y in R, x ≥ y if and only if x− y ∈ P. The convex cone P with
the relation ≥ defines a positive cone on R.
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Definition 11. [Convex maps] Let X be a vector space and Z be a vector
space with positive cone P. A mapping, G : X → Z is convex if
G(tx+ (1− t)y) ≤ tG(x) + (1− t)G(y) for all x, y in X and t with 0 ≤ t ≤ 1 and
is strictly convex if G(tx+ (1− t)y) < tG(x) + (1− t)G(y) for all x 6= y in X
and t with 0 < t < 1.

Definition 12. [Extreme points] Let C be a convex set. Then a ∈ C is said
to be an extreme point of the set C if for any x, y ∈ C and 0 < λ < 1

λx+ (1− λ)y = a

implies that
x = y = a.

Note that the feasible set of a SLP is given by

Λ = {x ∈ Rn|Ax = bx ≥ 0}.
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Clearly if x and y ∈ Λ then it follows that

A(λx+(1−λ)y) = λAx+(1−λ)Ay = λb+(1−λ)Ab = b and (λx+(1−λ)y) ≥ 0.

Thus (λx+ (1− λ)y) ∈ Λ if x and y ∈ Λ. Thus Λ is convex.
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Equivalence of extreme points and basic solutions

Theorem 6. Let A be a m× n matrix with Rank(A) = m and let

Λ = {x ∈ Rn|Ax = bx ≥ 0}.

Then a vector x is an extreme point of Λ if and only if x is a basic feasible
solution.

Proof: Suppose x is a basic feasible solution. Assume without loss of
generality that the basic variables are the first m elements of x given by
xi, i = 1, . . . ,m. Also let

B =
[
a1 a2 · · · am

]
.

Then it follows that
x1a1 + x2a2 + . . .+ xmam = b
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or in other words  x1
...
xm

 = B−1b.

Now suppose 0 < λ < 1 and y and z ∈ Λ are such that

λy + (1− λ)z = x.

Thus it follows that

λyi + (1− λ)zi = xi for all i = 1, . . . , n.

Note that as xi = 0 for all i = m+ 1, . . . , n, λ > 0 and (1− λ) > 0 it follows that

yi = zi = 0 for all i = m+ 1, . . . , n.
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Note that as y and z ∈ Λ, Ay = Az = b and thus

y1a1 + . . .+ ymam = z1a1 + . . .+ zmam = b.

Thus  y1
...
ym

 =

 z1
...
zm

 = B−1b =

 x1
...
xm

 .
Thus

y = z = x.

Thus we have shown that every basic feasible solution is an extreme point.

Suppose x is an extreme point of the set Λ. Without loss of generality assume
that x1, . . . , xp are the only non-zero elements of x. Suppose a1, . . . , ap form a
dependent set. Then there exists scalars y1, . . . , yp not all zero such that

y1a1 + . . .+ ypap = 0.
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Let
ε = min{xi/|yi||i ∈ {1, . . . , p} and yi 6 0} > 0.

y =


y1
...
yp
0
...0


n×1

.

Note that

x− εy ≥ 0, x+ εy ≥ 0, A(x− εy) = b and A(x+ εy) = b.

Also,

x =
1

2
(x− εy) +

1

2
(x+ εy).

Clearly
x 6= x− ε and x 6= (x+ εy)
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as y 6= 0 and ε 6= 0. Thus we have written x as a non trivial convex combination
of x− ε and (x+ εy). Thus x is not an extreme point. This is a contradiction
and therefore a1, . . . , ap are independent. Thus x is a basic feasible solution.

The following corollaries follow easily from Theorem 3 and Theorem 6.

Corollary 1. Suppose Rank(A) = m where A is a m× n matrix. The feasible
set of the SLP

Λ = {x ∈ Rn|Ax = b and x ≥ 0}
is nonempty if and only if there exists an extreme point of Λ.

Corollary 2. Suppose Rank(A) = m where A is a m× n matrix. Let the
feasible set of the SLP be

Λ = {x ∈ Rn|Ax = b and x ≥ 0}.

Then an optimal solution to the SLP exists if and only if an optimal solution to
the SLP that is also an extreme point of Λ exists.
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Which basic variable becomes non-basic

Consider the SLP with

Λ = {x ∈ Rn|Ax = b, x ≥ 0}

as the feasible set. Lets assume that

• the first m columns of A are independent

• the basic solution x associated with the first m columns is feasible i.e.
x ≥ 0.

Thus

x1a1+x2a2+. . .+xmam = b, xm+1 = xm+2 = . . . = 0 and xi > 0 for all i = 1, . . . ,m.



35

The columns a1, a2 . . . am are the basic columns. Suppose it is determined
that a nonbasic column aq should become a basic column. Then we have to
determine which column has to leave from the basic set. Note that
a1, a2 . . . am form a basis for Rm. Therefore we can write

aq = y1qa1 + . . .+ ymqam.

Suppose the variable associated with aq is increased from 0 to ε > 0 while
keeping all other non-basic variables 0. Then to maintain feasibility we have
that coefficients of the initial basic set a1, . . . , am will be altered to satisfy

x̄1a1 + x̄2a2 + . . .+ x̄mam + εaq = b

where x̄i, i = 1, . . . ,m have to be determined. Clearly

x̄1a1 + x̄2a2 + . . .+ x̄mam = b− εaq
=

∑m
i=1 xiai − ε

∑m
i=1 yiqai

=
∑m
i=1(xi − εyiq)ai
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. This implies that

m∑
i=1

[x̄− (xi − εyiq)]ai = 0.

Thus

x̄i = xi − εyiq for all i = 1, . . . ,m.

Thus we have

m∑
i=1

[(xi − εyiq)]ai + εaq = b.
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Thus we have a solution to the equation Az = b given by

x̄ =



x1 − εy1q
...

xm − εymq
0
...
0
ε
0
...
0


,

where the ε is the qth element.
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Feasibility of x̄

Note that Ax̄ = b where

x̄ =



x1 − εy1q
...

xm − εymq
0
...
0
ε
0
...
0


.

To be feasible x̄ ≥ 0. This may be satisfied by an appropriate choice of ε.
Indeed there are two possible case for feasibility of x̄.

Case 1: yiq ≤ 0 for all i = 1, . . . ,m. In this case x̄ is feasible (that is x̄ ∈ Λ) for
any ε > 0. Also we can conclude that Λ is an unbounded set.
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Case 2: there exists at least one i0 ∈ {1, 2, . . . ,m} such that yi0q > 0. In this
case for any 0 ≤ ε ≤ εM , x̄ is feasible with

εM = min
i=1,...,m

{ xi
yiq
|yiq > 0} ≥ 0.
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Making x̄ basic feasible solution with aq basic

Note that

x̄ =



x1 − εy1q
...

xm − εymq
0
...
0
ε
0
...
0


.

Case 1: If yiq ≤ 0 for all i = 1, . . . ,m then it is not possible to make
xi − εyiq = 0 any ε if xi > 0. If the initial basic feasible solution was degenerate
with xk = 0, k ∈ {1, . . . ,m} then by choosing ε = 0 one can swap the role of
ak and aq. However in this case the solution x̄ = x.
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Case 2: there exists at least one i0 ∈ {1, 2, . . . ,m} such that yi0q > 0. In this
case let ε = εM , with

εM = min
i=1,...,m

{ xi
yiq
|yiq > 0} ≥ 0.

Let p a minimizing index above. Then ap can be replaced with aq in the basic
column set. Note again that if xp = 0 then again the new solution x̄ = x.
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Boundedness and Non-degeneracy assumption

x̄ =



x1 − εy1q
...

xm − εymq
0
...
0
ε
0
...
0


.

If we make the assumption that Λ is bounded and that x is a non-degenerate
basic feasible solution the following steps can be performed to determine
which basic column leaves the basic column set to allow aq to enter the basic
column set.
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1.

εM = min
i=1,...,m

{ xi
yiq
|yiq > 0} > 0

with

p = arg{ min
i=1,...,m

{ xi
yiq
|yiq > 0}}.

2. Let
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x̄ =



x1 − εMy1q
...

xm − εMymq
0
...
0
εM
0
...
0


.

Note that x̄ ≥ 0 and it has the pth element zero. The only possible nonzero
elements are belong to the set {1, . . . , (p− 1), (p+ 1), . . . ,m} ∪ {q}.
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Effect on the Cost of changing a basic feasible solution

Suppose xbfs is a basic feasible solution. We will also assume that

A =
[
e1 . . . em ym+1 . . . yn

]
and b = yn+1.

In this case we will have

xbfs =

[
yn+1 = b

0n−m

]
.

The cost associated with this basic feasible solution is

zbfs = cTxbfs = cTByn+1.

Suppose x is another feasible solution. How does the cost cTx compare with
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cTxbfs. As x is feasible Ax = b = yn+1. Thus

x1a1 + . . . xmam + xm+1ym+1 + . . .+ xnyn = yn+1.
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Thus ∑m
i=1 xiei = yn+1 −

∑n
i=m+1 xiyi

⇒ cTB(
∑m
i=1 xiei) = cTB(yn+1)− cTB(

∑n
i=m+1 xiyi)

⇒
∑m
i=1 xici = zbfs −

∑n
i=m+1 xi

=:zi︷︸︸︷
cTByi

⇒
∑m
i=1 xici = zbfs −

∑n
i=m+1 xizi

⇒
∑n
i=1 xici = zbfs −

∑n
i=m+1 xizi +

∑n
i=m+1 xici

⇒
n∑
i=1

xici︸ ︷︷ ︸
cTx

= zbfs︸︷︷︸
cTxbfs

+

n∑
i=m+1

xi(ci − zi)︸ ︷︷ ︸
difference in cost

⇒
n∑
i=1

xici︸ ︷︷ ︸
cTx

− zbfs︸︷︷︸
cTxbfs

=

n∑
i=m+1

xi(ci − zi)︸ ︷︷ ︸
difference in cost
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Thus if ci − zi ≥ 0 for all i = m+ 1, . . . , n then xbfs is optimal.
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The Simplex Method
Consider the following SLP.

Minimize c1x1 + c2x2 + . . . + cnxn
subject to:

a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a2nxn = b2
... +
an1x1 + an2x2 + . . . + amnxn = bm
x1 , x2 , . . . , xn ≥ 0

Lets assume that the matrix A has rank m. We will assume that the matrix A
is such that ai = ei, i = 1, . . . ,m and ai = yi, i = m+ 1, . . . , n. We will denote
the vector b by yn+1. Thus we have
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min
[
c1 c2 · · · cm cm+1 · · · cn

]
x

subject to 
1 0 · · · 0 y1m+1 . . . y1n
0 1 · · · 0 y2m+1 . . . y2n
...
0 0 · · · 1 ymm+1 . . . ymn



x1
x2
...
xn

 =


y1n+1

y2n+1
...
ymn+1


[
x1 x2 · · · xm xm+1 · · · xn

]
≥ 0

Lets assume that y1n+1, . . . , ymn+1 ≥ 0. Then for the above table a basic
feasible solution is given by

x1 = y1n+1, . . . , xm = ymn+1, xm+1 = 0, . . . , xn = 0.

Suppose it is decided that xq will enter the basic set.
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Consider the table:


1 0 · · · 0 y1m+1 . . . y1n
0 1 · · · 0 y2m+1 . . . y2n
...
0 0 · · · 1 ymm+1 . . . ymn



y1n+1

y2n+1
...
ymn+1


[
c1 c2 · · · cm cm+1 · · · cn

] [
0
]

Suppose we do the following operation:

[ row (m+ 1)] ← [ row (m+ 1)] − c1 [ row 1]− c2 [ row 2]− . . . cm [ row m].
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Then we have the table: Consider the table:


1 0 · · · 0 y1m+1 . . . y1n
0 1 · · · 0 y2m+1 . . . y2n
...
0 0 · · · 1 ymm+1 . . . ymn



y1n+1

y2n+1
...
ymn+1


[

0 0 · · · 0
∑m
i=1 ciyim+1 · · ·

∑m
i=1 ciyin

] [
−
∑m
i=1 ciyin+1

]

Note that

ri = ci − cTByi for all i = 1, . . . , n and rn+1 = −
m∑
i=1

ciyin+1 = −zbfs.
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Note that if any other feasible solution has cost cTx then

z − zbfs =

n∑
i=m+1

ciri. (5)

• Determining the variable that will enter:

First determine
rq = min{ri, i = 1, . . . , n}.

If
rq ≥ 0,

then the current bfs is the optimal solution as the cost of any other feasible
solution is greater than or equal to zbfs (see Equation 5).

If rq < 0 then q is chosen as the variable to become basic.

• Determining the basic variable that will leave the basic set:
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Note that the bfs is given by

xbfs =

[
yn+1

0

]
.

Also note that

yj = y1je1 + y2je2 + . . .+ ymjem = y1jy1 + y2je2 + . . .+ ymjym.

Suppose q enters the basic set. Suppose we denote the new solution to be
x̄. Then as Ax̄ = b it follows that

x̄1e1 + x̄2e2 + . . .+ x̄mem + εyq = yn+1.

Thus
m∑
i=1

(x̄i + εyiq − xi)ei = 0.
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Thus
x̄i = xi − εyiq for all i = 1, . . . ,m and x̄q = ε.

That is

x̄ =



y1n+1 − εy1q
...

ymn+1 − εymq
0
...
0
ε
0
...
0


= .

To be feasible x̄ ≥ 0.

If yiq ≤ 0 for all i = 1, . . . ,m then any ε > 0 does not violate feasibility and
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the feasible set is unbounded. Note that in this case as rq < 0 and the cost
of making the non-basic q variable to take a nonzero value ε is from
Equation (5) is

z − zbfs = rqε.

As ε ≥ 0 can be arbitrarily large without violating feasibility we conclude that
the SLP has no solution and the minimum value is −∞. Thus if

yiq ≤ 0 for all i = 1, . . . ,m

then one can stop the Simplex algorithm and conclude that the optimal
value is −∞.
If yiq > 0 for some i0 ∈ {1, . . . ,m} then let

p = arg[ min
i=1,...,m

{yin+1

yiq
|yiq > 0}] and ε = min

i=1,...,m
{yin+1

yiq
|yiq > 0}.

p is the basic variable that will leave the basic set to be replaced by q as the
basic variable.
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If the initial bfs is not degenerate then yin+1 > 0 for all i = 1, . . .m. Thus,
ε > 0 and from Equation (5) as rq < 0 and ε > 0 the new cost z < zbfs. Thus
if all bfs are non-degenerate then at every time the simplex table is updated
the cost strictly decreases and thus the same solution cannot be visited
twice. Thus there is no cycling in the iterations.

Update the table by the following operations

yij ← yij −
yiq
ypq
ypj if i 6= p

ypj ←
ypj
ypq

.

In other words

[row i] ← [row i]− yiq
ypq

[row p] if i 6= p

row p] ← 1
ypq

[row p]
.
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Note that with this operation

yi = ei for all i ∈ [{1, 2, . . . , p− 1, p . . . ,m} ∪ {q}].
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The Simplex Algorithm

• (Step 1) Find index q such that

rq = min{rj|j = 1, . . . , n.}

If rq ≥ 0 STOP. The current basic feasible solution is the optimal solution.

• (Step 2) Let rq be the solution in Step 1 with rq < 0.

1. If yiq ≤ 0 for all i = 1, . . . ,m then STOP. There is no optimal solution and
the optimal value is −∞.

2. If there exists i0 such that yi0q > 0 then let

ε = min{yin+1

yiq
|yiq > 0}
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and let
p = arg[min{yin+1

yiq
|yiq > 0}].

• (Step 3) Update the table by the following operations

yij ← yij −
yiq
ypq
ypj if i 6= p

ypj ←
ypj
ypq

.

A new basic feasible solution is obtained

• (Step 4) Update the relative cost vector to assure that all the relative cost
with respect to basic variables are zero.

Return to Step 1

Theorem 7. The simplex algorithm will yield an optimal basic feasible
solution in a finite number of steps if the SLP has any optimal solution and all
basic feasible solutions are non-degenerate.



61

Proof: Follows from the fact that there are finite number of basic feasible
solutions and that the simplex algorithm at each iteration yields a new basic
feasible solution that has a cost strictly smaller than the previous iteration cost
(if all basic feasible solutions are non-degenerate there is no cycling).
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Revised Simplex: Matrix Method

Let the SLP be given by

µ = min{cTx|Ax = b, x ≥ 0}

where A ∈ Rm×n and b ∈ Rm.

Suppose the first m columns of A are independent. Let

B :=
[
a1 a2 · · · am

]
and D :=

[
am+1 am+2 · · · an

]
.

With this definition we have

A =
[
B D

]
.
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Partition any feasible x according to

x =

[
xB
xD

]
.

Let the basic feasible solution associated with B be given by

x̄ =

[
x̄B
x̄D

]
where

x̄B = B−1b and x̄D = 0.

If
x =

[
xB xD

]
is feasible then from Ax = b it follows that[

B D
] [

xB xD
]

= b.
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Thus
BxB +DxD = b.

Thus
xB = B−1b−B−1DxD = x̄B −B−1DxD.

The cost associated with this feasible solution is

z = cTx =
[
cTB cTD

] [
B D

]
= cTBxB + cTDxD
= cTB(B−1b−B−1DxD) + cTDxD
= cTBx̄B + (cTD − cTBB−1D)xD

z = zbfs + (cTD − cTBB−1D)xD
z − zbfs = (cTD − cTBB−1D)xD

= rTDxD

where rTD = (cTD − cTBB−1D).

Thus the following algorithm can be followed
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• (Step 1): Compute
rTD = (cTD − cTBB−1D).

If rD ≥ 0 STOP. The current solution is optimal.

• (Step 2) Let q be the most negative element of rD. aq will enter the basic
set.

• (Step 3) Let
yq = B−1aq

the coordinate vector of aq in the basis given by B.

• (Step 4) If yiq ≤ 0 for all i = 1, . . . ,m STOP. The SLP has no solution and
the optimal value is −∞. Else calculate

p = arg[min{yin+1

yiq
|yiq > 0}]
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where
yn+1 = B−1b.

Replace the vector ap in B by aq.

Go to step 1.


