
EE 5501 Prof. N. Jindal
Digital Communication Nov. 5, 2009

Homework 6
Due: Thursday, Nov. 12, 11:15 AM

1. In class we have found the log-likelihood ratio of each information bit by computing
the likelihood’s of the trellis transitions associated with different information bits. In
this problem we will see that the same can be done by computing the likelihood of
each codeword (although this is very computationally inefficient). We assume that K
information bits plus 2 terminating bits are sent, so the information bit sequence ~u is
length K + 2 and the received symbol vector ~y is length 2(K + 2).

(a) Show that the likelihood of a particular information bit sequence ~u conditioned
on the received symbols ~y can be written as:

P[~u|~y] = P[~y|~u]
P[~u]

P[~y]

(b) Show that

P[~y|~u] =
1√

(2πσ2)2(K+2)
exp

[
− 1

2σ2
||~y − ~c(~u)||2

]

where ~c(~u) is the codeword (including the energy scaling) corresponding to infor-
mation bit sequence ~u.

(c) Explain why the LLR of the k-th information bit can be written as:

P[uk = 0|~y] =
∑

~u:uk=0

P[~u|~y].

(d) Combine the results of the previous parts to show

LLR(uk) , log

(
P [uk = 0|~y]

P [uk = 1|~y]

)

= log

(∑
~u:uk=0 exp

[− 1
2σ2 ||~y − ~c(~u)||2]∑

~u:uk=1 exp
[− 1

2σ2 ||~y − ~c(~u)||2]
)

.

This (inefficient) computation of the information bit LLR is performed in a file
that has been provided to you to help you verify the correctness of your BCJR
code (see next question).

1

2. In this problem you will implement the BCJR algorithm for the four state, R = 1/2
systematic binary convolutional code (recursive, systematic [7,5]) that was discussed
in class (the trellis for this code is given on pg. 313 of the textbook).

To get you started the following Matlab files are provided:

• encode_75_recursive_function.m

This function encodes the information bits that are provided to it, and also adds
the necessary termination bits so that the codeword always ends in state 00.

• maxstar.m

This function implements the maxstar function.

• bcjr_bruteforce_75_recursive.m

This function computes LLR’s in the brute force manner derived in problem 1
of this assignment, and should be used to verify the correctness of your BCJR
algorithm.

• test_bcjr_75_recursive.m

This file generates random information bits, encodes them, creates a received
signal, and calls your BCJR function and the brute-force LLR function. This file
should be used to test your BCJR algorithm against the brute force algorithm.

• bcjr_function_75_recursive.m

This function will implement the BCJR algorithm. Only inputs and outputs are
specified.

Your assignment is to fill out the BCJR function (bcjr function 75 recursive.m). (You
should also go through the files that are provided to make sure you understand what
they are doing.)

Note: You should implement BCJR in the log-domain. In order to prevent numerical
overflow when performing the forwards and backwards recursion, you should period-
ically (at every step, or every few steps) re-center the ak (and bk) values about zero.
Recall that in the log-domain, at any step k you can add a constant to all of the ak(s)
values without affecting the algorithm.

3. Once you have written the BCJR algorithm, your final assignment is to implement
the R = 1/3 parallel concatenated turbo code that uses the recursive, systematic [7,
5] code as its component code. The file parallel turbo 75 recursive shell.m has been
provided to you to serve as a shell. The file encodes the information bits (including the
definition of an interleaver), creates the received symbols, and plots the corresponding
bit error curves.

Using the BCJR function from the previous section, you should be able to define the
turbo decoder. Generate a plot of the bit error probability vs. Eb/N0 for 0 to 5 dB
after one, three, six, and thirteen iterations.

2

