Homework Set \# 1

Due: Thursday, Jan. 27, 2005

1. Entropy. Show the following expression holds for any probability mass function $\left(p_{1}, p_{2}, p_{3}\right)$:

$$
H\left(p_{1}, p_{2}, p_{3}\right)=H\left(p_{1}\right)+\left(p_{2}+p_{3}\right) H\left(\frac{p_{2}}{p_{2}+p_{3}}, \frac{p_{3}}{p_{2}+p_{3}}\right) .
$$

2. Entropy of functions. Let X be a random variable taking on a finite number of values. What is the inequality relationship between $H(X)$ and $H(Y)$ if:
(a) $Y=2^{X}$
(b) $Y=\cos X$
(Cover \& Thomas 2.2)
3. Zero conditional entropy. Show that if $H(Y \mid X)=0$, then Y is a function of X, i.e., for all x with $p(x)>0$, there is only one possible value of y with $p(x, y)>0$. (Cover \& Thomas 2.6)
4. Conditional mutual information vs. unconditional mutual information. Give examples of joint random variables X, Y, and Z such that
(a) $I(X ; Y \mid Z)<I(X ; Y)$
(b) $I(X ; Y \mid Z)>I(X ; Y)$
(Cover \& Thomas 2.10)
5. Entropy of a sum. Let X and Y be random variables that take on values $x_{1}, x_{2}, \ldots, x_{r}$ and $y_{1}, y_{2}, \ldots, y_{s}$, respectively. Let $Z=X+Y$.
(a) Show that $H(Z \mid X)=H(Y \mid X)$. Argue that if X, Y are independent, then $H(Y) \leq$ $H(Z)$ and $H(X) \leq H(Z)$. Thus the addition of independent random variables adds uncertainty.
(b) Give an example of random variables for which $H(X)>H(Z)$ and $H(Y)>H(Z)$.
(c) Under what conditions does $H(Z)=H(X)+H(Y)$?
(Cover \& Thomas 2.18)
6. Mixing increases entropy. Show that the entropy of the probability distribution $\left(p_{1}, \ldots, p_{i}, \ldots, p_{j}, \ldots, p_{m}\right)$ is less than the entropy of the probability distribution $\left(p_{1}, \ldots, \frac{p_{i}+p_{j}}{2}, \ldots, \frac{p_{i}+p_{j}}{2}, \ldots, p_{m}\right)$. (Cover \& Thomas 2.28)
Hint: Use Problem 1 or the concavity of $H(p)$.
7. Inequalities Let X, Y, and Z be joint random variables. Prove the following inequalities and find conditions for equality. (Cover \& Thomas 2.29)
(a) $H(X, Y \mid Z) \geq H(X \mid Z)$
(b) $I(X, Y ; Z) \geq I(X ; Z)$
(c) $H(X, Y, Z)-H(X, Y) \leq H(X, Z)-H(X)$
(d) $I(X ; Z \mid Y) \geq I(Z ; Y \mid X)-I(Z ; Y)+I(X ; Z)$
8. Cards. An ordinary deck of cards containing 26 red cards and 26 black cards is shuffled and dealt out one card at a time without replacement. Let X_{i} be the color of the ith card dealt. (Cover \& Thomas 6.3)
(a) Determine $H\left(X_{1}\right)$.
(b) Determine $H\left(X_{2}\right)$.
(c) Determine $H\left(X_{1}, X_{2}, \ldots, X_{5} 2\right)$.
(d) Does $H\left(X_{k} \mid X_{1}, \ldots, X_{k-1}\right)$ increase or decrease as a function of k ?
