Lectures 9-10

- MIMO Channel Model
- Capacity: H Fixed
- Capacity: H iid Rayleigh, RX CSI
- Capacity: H Ricean, RX CSI
- Capacity: Correlated H, RX CSI

MIMO Channel Model

- N_{t} TX antennas, $\mathrm{N}_{\mathrm{r}} \mathrm{RX}$ antennas

$$
\boldsymbol{Y}=\boldsymbol{H X}+\boldsymbol{N}
$$

- X: $N_{t} \times 1, Y: N_{r} \times 1, N: N_{r} \times 1$
- N has iid complex Gaussian components, zero-mean, variance one
- H: $\mathrm{N}_{\mathrm{r}} \times \mathrm{N}_{\mathrm{t}}$ complex matrix
- Different models for distribution of entries of H

Capacity: H Fixed

- Gaussian inputs optimal, have to optimize correlation Q

$$
\begin{aligned}
C & =\max _{X: E\left\|X^{2}\right\| \leq P} I(X ; Y) \\
& =\underset{Q: Q \geq 0, \operatorname{Tr}(Q) \leq P}{ } \quad \log \left|I+H Q H^{H}\right|
\end{aligned}
$$

- Choose Q to be aligned with right eigenvectors of H , use waterfilling to determine eigenvalues

H Fading, Perfect TX/RX CSI

- Perform waterfilling over time and space
- In each fading state, choose Q to be aligned with left eigenvectors of HH^{H}
- Waterfill over time and parallel channels to determine eigenvalues in each state
- Same intuition as waterfilling for fading scalar channels, but with parallel channels in each state

Capacity: H iid Rayleigh

- Entries of H iid zero-mean complex Gaussian (Rayleigh), RX CSI, no TX CSI

$$
\begin{aligned}
C & =\max _{X: E\left\|X^{2}\right\| \leq P} I(X ; Y, H) \\
H=H(w) & =\underset{Q: Q \geq 0, \operatorname{Tr}(Q) \leq P}{ } \quad E\left[\log \left|I+H Q H^{H}\right|\right] \\
& =E\left[\log \left|I+\frac{P}{N_{t}} H H^{H}\right|\right]
\end{aligned}
$$

- Optimum Q: Scaled identity matrix
- Transmit equal power, independent Gaussian codewords from each antenna

Capacity: H Ricean

- Entries of H independent complex Gaussian, non-zero mean (line-of-sight component), RX CSI, no TX CSI

$$
\begin{gathered}
H=\bar{H}+H(w) \\
\left.C=\max _{Q: Q \geq 0, \operatorname{Tr}(Q) \leq P} \quad E_{H}\left[\log \mid I+H Q H^{H}\right]\right]
\end{gathered}
$$

- Optimum Q aligned with eigenvectors of mean matrix, compute eigenvalues numerically (not waterfilling)

Capacity: H Correlated

- Entries of H correlated (separable) complex Gaussian, non-zero mean, RX CSI, no TX CSI

$$
\begin{gathered}
H=\Sigma_{r}^{1 / 2} H(w) \Sigma_{t}^{1 / 2} \\
\max _{Q: Q \geq \mathbf{0 , T r}(Q) \leq P} \quad E_{H}\left[\log \left|I+H Q H^{H}\right|\right]
\end{gathered}
$$

- Optimum Q aligned with eigenvectors of transmit correlation matrix, compute eigenvalues numerically (not waterfilling)
- Eigenvectors of Q only depend on transmit eigenvectors, but RX eigenvectors affect capacity, eigenvalues

