Diversity-Multiplexing tradeoff in the Rayleigh Fading Relay Channel

Alejandro Ribeiro

Dept. of Electrical \& Computer Engineering
University of Minnesota
http://users.ece.umn.edu/aribeiro

Relay Channel / Diversity-Mux

- Rayleigh fading relay channel

$$
\begin{aligned}
Y_{D} & =\sqrt{h_{S D}} e^{j \phi_{S D} X_{S}}+\sqrt{h_{R D}} e^{j \phi_{R D} X_{R}}+Z_{D} \\
Y_{R} & =\sqrt{h_{S R}} e^{j \phi_{S R}} X_{S}+Z_{R}
\end{aligned}
$$

\square SNR: $\gamma=\frac{P_{S}}{N_{D}}=\frac{P_{S}}{N_{R}}=\frac{P_{R}}{N_{D}}$.

Diversity gain

$$
d:=-\lim _{\gamma \rightarrow \infty} \frac{\log \left[P_{\text {out }}(\gamma)\right]}{\log \gamma}
$$

- Multiplexing gain

$$
r:=\lim _{\gamma \rightarrow \infty} \frac{R(\gamma)}{\log \gamma}
$$

Ergodic Capacity

- Capacity depends on channel realization

$$
C=C\left(h_{S D} e^{j \phi_{S D}}, h_{S R} e^{j \phi_{S R}}, h_{R D} e^{j \phi_{R D}}\right)
$$

- Ergodic - all channel realizations in one packet

$$
\bar{C}=\mathrm{E}\left[C\left(h_{S D} e^{j \phi_{S D}}, h_{S R} e^{j \phi_{S R}}, h_{R D} e^{j \phi_{R D}}\right)\right]
$$

- Max-flow min-cut

$$
C<\max _{\rho \in[0,1]} \min \left\{\begin{array}{l}
\log \left(1+\left(h_{S D}+h_{S R}+2 \rho \sqrt{h_{S D} h_{R D}}\left|e^{j\left(\phi_{S D}+\phi_{R D}\right)}\right|\right) \gamma\right) \\
\log \left(1+\left(h_{S D}+h_{R D}\right)\left(1-\rho^{2}\right) \gamma\right)
\end{array}\right\}
$$

- Average over phases

$$
\bar{C}<\mathrm{E}\left[\min \left[\log \left(1+\left(h_{S D}+h_{S R}\right) \gamma\right), \log \left(1+\left(h_{S D}+h_{R D}\right) \gamma\right)\right]\right]
$$

- Prevents coherent superposition

Outage Capacity / Markov coding

- Prob. that a rate is not achievable

$$
P_{\text {out }}\left(R_{\text {out }}\right)=\operatorname{Pr}\left\{C\left(h_{S D} e^{j \phi_{S D}}, h_{S R} e^{j \phi_{S R}}, h_{R D} e^{j \phi_{R D}}\right)<R_{\text {out }}\right\}
$$

■ Markov coding achievable rate (capacity lower bound)

$$
C>I_{M C}=\min \left[\log \left(1+h_{S R} \gamma\right), \log \left(1+\left(h_{S D}+h_{R D}\right) \gamma\right)\right]
$$

- Outage probability upper bound:

$$
\operatorname{Pout}\left(R_{\text {out }}\right)<P_{\text {out }}^{M C}\left(R_{\text {out }}\right):=\operatorname{Pr}\left\{I_{M C}<R_{\text {out }}\right\}
$$

- Channel power outage: $\quad h_{\text {out }}=\frac{2^{R_{\text {out }}}-1}{\gamma}$
- Markov coding outage: $\quad P_{\text {out }}^{M C}\left(h_{o u t}\right)=\operatorname{Pr}\left\{\min \left(h_{S R}, h_{S D}+h_{R D}\right)<h_{o u t}\right\}$
- Large SNR behavior: $\quad P_{\text {out }}^{M C}\left(h_{\text {out }}\right) \sim \frac{h_{\text {out }}}{\bar{h}_{S R}}+\frac{h_{\text {out }}^{2}}{2 \bar{h}_{S D} \bar{h}_{R D}} \sim \frac{h_{\text {out }}}{\bar{h}_{S R}}$ No diversity gain

Adaptive Markov coding (AMC)

Cooperate only if $h_{S R}$ is good

$$
C>I_{A M C}= \begin{cases}\log \left(1+h_{S D} \gamma\right), & h_{S R}<h_{\text {out }} \\ \log \left(1+\left(h_{S D}+h_{R D}\right) \gamma\right), & h_{S R}>h_{\text {out }}\end{cases}
$$

- AMC outage probability

$$
\begin{aligned}
P_{\text {out }}^{A M C}\left(h_{\text {out }}\right)= & \operatorname{Pr}\left\{h_{S D}<h_{\text {out }}\right\} \operatorname{Pr}\left\{h_{S R}<h_{\text {out }}\right\} \\
& +\operatorname{Pr}\left\{h_{S D}+h_{R D}<h_{\text {out }}\right\} \operatorname{Pr}\left\{h_{S R}>h_{\text {out }}\right\}
\end{aligned}
$$

- Large SNR behavior: $\quad P_{\text {out }}^{A M C}\left(h_{\text {out }}\right) \sim\left[\frac{1}{\overline{\bar{h}_{S D} \bar{h}_{S R}}}+\frac{1}{2 \bar{h}_{S D} \bar{h}_{R D}}\right] h_{\text {out }}^{2}$
- Capacity upper bound:

$$
C<I_{T A}=\log \left(1+\left(h_{S D}+h_{R D}\right) \gamma\right)
$$

\square Outage prob. lower bound: $P_{\text {out }}^{T A}\left(h_{\text {out }}\right) \sim\left[\frac{h_{\text {out }}^{2}}{2 \bar{h}_{S D} \bar{h}_{R D}}\right]$

Diversity-Mux tradeoff

- Upper bound diversity gain

$$
d:=-\lim _{\gamma \rightarrow \infty} \frac{\log \left[P_{\text {out }}(\gamma)\right]}{\log \gamma} \leq-\lim _{\gamma \rightarrow \infty} \frac{\log \left[P_{\text {out }}^{T A}(\gamma)\right]}{\log \gamma}
$$

- Use outage at high SNR behavior

$$
d \leq-\lim _{\gamma \rightarrow \infty} \frac{\log \left(h_{\text {out }}^{2}\right)}{\log \gamma}=-2 \lim _{\gamma \rightarrow \infty} \frac{R_{\text {out }}-\log (\gamma)}{\log \gamma}
$$

- Recall multiplexing gain definition ($r:=\lim _{\gamma \rightarrow \infty} \frac{R(\gamma)}{\log \gamma}$)

$$
d \leq 2(1-r)
$$

Divesrity gain not greater than 2

Diversity-Mux tradeoff

Diversity-rate curve for MC: $\quad d^{M C}=(1-r)$
Diversity-rate curve for AMC: $d^{A M C}=2(1-r)$

- AMC achieves tradeoff upper-bound
- Best possible tradeoff

$$
d^{*}=2(1-r)
$$

- Achieved by AMC not by MC

Conclusions

- Studied diversity multiplexing tradeoff in Rayleigh fading relay channel
- Best achievable tradeoff : $d^{*}=2(1-r)$
\square Achieved by Adaptive version of Markov coding
- Relays cooperate only if $h_{S R}$ is good enough

