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Abstract

Wireless sensor networks are characterized by strict energy and bandwidth constraints, which motivate efficient
compression schemes. The distortion incurred due to compression is an important metric for determining performance
of reconstruction or estimation algorithms implemented at the fusion center based on observations collected at
individual sensors. For the single-sensor link with the fusion center (non-distributed case), the distortion-rate (D-
R) function when reconstructing Gaussian observations has been fully characterized. But this is not true for signal
estimation problems with either single-sensor, or, multi-sensor observations (distributed case). In this work, we derive
novel D-R results pertaining to signal estimation in a centralized point-to-point link, and we offer an interesting
extension of an iterative procedure for numerically determining strict (achievable) upper bounds on the D-R region
in a distributed estimation setup.

I. INTRODUCTION

Bandwidth and energy constraints in sensor networks call for efficient compression and encoding schemes.With a
prescribed rate, it is of paramount importance to determine bounds on the minimum achievable distortion. Through
these bounds, we can assess the loss in quality of the received data at the fusion center under pre-specified bandwidth
constraints. When it comes to compressing and reconstructing sensor observations the best analytical inner and outer
bounds for the D-R region can be found in [8]. An iterative scheme is also developed in [1] for determining an
achievable D-R region, or, at best the D-R function for the distributed reconstruction setup.

A related problem emerges when the sensor observation x entail a random signal (or parameter vector) s that
we wish to estimate in the presence of additive noise n. Most frequently in practice, the data adhere to the linear
model x = Hs + n, where H is a known deterministic matrix, while the signal s and the noise n are uncorrelated
and Gaussian. The D-R function when H corresponds to an all-one vector and s is scalar has been treated in [5],
[4], [9] and [10], and is known as the CEO problem; see also [11]. An interesting question is whether it is better
from a distortion perspective to first compress sensor observations x and then use them to estimate s, or, to first
form an estimate ŝ∞ based x and then compress this estimate. For the single-sensor case, we have obtained strict
results addressing this question. Concerning the distributed case, we follow an approach similar to [1] in order to
numerically determine an achievable D-R region, or, at best the D-R function for estimating s.

This work is organized as follows. In Section II, we provide preliminaries concerning the D-R function in the
reconstruction setup, which is pertinent to the method in [1]. In Section III-A, we consider the D-R function
for non-distributed estimation in point-to-point links (single-sensor case), where we conclude that first estimating
and then compressing is optimal. This offers an interesting extension of [6] and [7] for the estimation setup.
Continuing with the distributed case in Section III-B, we find that treating all but one encoder’s outputs as side
information establishes optimality of the estimate-first and compress-afterwards approach. We further derive an
iterative algorithm for determining an achievable D-R region for the estimation setup under rate constraints which
offers a novel extension of [1] to the estimation setup. Finally, we summarize our results in Section IV.

II. DISTORTION-RATE FOR RECONSTRUCTION

A. Single-sensor setup

Considering the mean-square error (MSE) as a distortion metric, we provide here basic definitions for the D-R
function in three cases:
i) The D-R function when encoding an N × 1 real vector x at an individual sensor and reconstruct it at the fusion
center as x̂, under a rate constraint R, is given by [3]

D(R) = min
p(x̂|x)

s.t. I(x;x̂)≤R

Ep(x̂,x)‖x− x̂‖2, x ∈ RN , x̂ ∈ RN , (1)
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Fig. 1. Left: Test channel for x Gaussian; Right: Distributed setup.

where the minimization is carried with respect to (w.r.t.) the conditional pdf p(x̂|x).
ii) If side information u2 ∈ Rk2 is available at the decoder, the D-R function is provided by [3], [2]

D∗(R) = min
p(u1|x), f

s.t. I(x;u1)−I(u2;u1)≤R

Ep(x,u1,u2)‖x− f(u1,u2)‖2, (2)

where u1 ∈ Rk1 denotes the encoder output and the minimization is w.r.t. both p(u1|x) and the reconstruction
function x̂ = f(u1,u2), where f(u1,u2) : Rk1 × Rk2 → RN .
iii) The D-R function when u2 is available both at the encoder and the decoder is [2]

Dx|u2
(R) = min

p(x̂|x,u2)
s.t. I(x;x̂|u2)≤R

Ep(x̂,x,u2)‖x− x̂‖2. (3)

Consider now that x is Gaussian, i.e., x ∼ N (0,Σxx), and let Σxx = QxΛxQT
x be the eigenvalue decomposition

of its covariance matrix Σxx, where Λx := diag(λx,1, · · · , λx,N ), is a diagonal matrix with the nonzero entries
ordered as: λx,1 ≥ · · · ≥ λx,N > 0. The D-R function in (1) can now be determined by applying the reverse-water-
filling (rwf) principle to the pre-whitened vector xw = QT

x x. Notice that since Qx is orthogonal, the D-R function
under the MSE metric for xw coincides with that of x. If the rate is constrained, i.e., I(x; x̂) ≤ R then ∃ k such
that the distortion for the ith entry of xw is expressed as

Di =
{

µ(k,R) for i = 1, · · · , k
λx,i for i = k + 1, · · · , N

, (4)

while the total distortion is D(R) = kµ(k,R)+
∑N

i=k+1 λx,i. Since the rate can be expressed, according to the rwf

principle, as R = (1/2)
∑k

1 log2 (λx,i/µ), it follows that µ(k, R) =
(∏k

i=1 λx,i

)1/k
2−2R/k, where k is the largest

integer in the interval {1, . . . , N} such that µ(k, R) ≤ λx,i for i = 1, . . . , k.
With reference to Fig. 1 (left), we can use the matrices

A = diag ((λx,1 −D1)/λx,1, · · · , (λx,N −DN )/λx,N ) = diag (Ak,0N−k)
Σzz = diag (λx,1D1/(λx,1 −D1), · · · , λx,NDN/(λx,N −DN )) . (5)

to construct a test channel, as in [3], for which the D-R function (1) is achieved. Eq. (5) implies that among the
N parallel Gaussian channels, only the first k are active. The remaining N − k channels are inactive in the sense
that rwf does not assign any rate to them. This can be seen also from the fact that for i > k, we have A(i, i) = 0
and Σzz(i, i) = ∞; thus, the last N − k channels transmit no information. The latter can be confirmed by the fact
that the last N − k elements of y = AQT

x x + Az, are always zero. To check the validity of this test channel, let
us express the reconstructed vector as x̂ = Qxy = QxAQT

x x+QxAz = Qx,kAkQT
x,kx+Qx,kAkzk, where Qx,k

(Qx,N−k) denotes the first k (last N − k) columns of Qx, and zk are the first k entries of z. It can be readily
verified that E‖x − x̂‖2 = D(R) = kµ(k, R) +

∑N
i=k+1 λx,i and that I(x; x̂) = R, which shows that indeed the

D-R function (5) is achievable for x Gaussian.

B. Multisensor Setup

For brevity, we will consider only two sensors/encoders communicating to a fusion center, but the results can
be easily extended to more than two sensors. Consider the setup where sensor i observes the Ni × 1 vector xi,
i = 1, 2. Each sensor encodes its observations under a total rate constraint R and sends the encoded information to
the decoder through an ideal channel. At the decoder the N × 1 vector x = [xT

1 ,xT
2 ]T is to be reconstructed as x̂;

see also Fig. 1 (right). We clearly have N = N1 + N2, and assume that x ∼ N (0,Σxx), where in block matrix
form Σxx =

[
Σxixj

]
for i, j = 1, 2.
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Determining the D-R region for such a setup is analytically intractable. A non-achievable lower bound can
be found by pretending that the entire vector x is available per sensor, based on which we can apply the rwf
solution. An upper bound can also be obtained by having each sensor independently and optimally compressing its
observations without considering the cross-correlation matrix Σx1x2 . It will turn out that a tighter upper bound is
possible numerically by the method that we will present here; see also [1].

Theorem 1 ([1]): If for a fixed total rate R the auxiliary random vectors u1 and u2 satisfy1 p(u1,u2,x) =
p(u1|x1)p(u2|x2)p(x), then the D-R function is

D(R) = min
p(ui|xi) ,i=1,2 , x̂
s.t. I(x;u1,u2)≤R

Ep(x,u1,u2)‖x− x̂(u1,u2)‖2. (6)

A closed-form solution for the minimization problem in (6) appears impossible. The approach we follow is to
consider that u2 is given, and then try to minimize (6) wrt p(u1|x1). Let as denote the given u2 as u2g. This can be
considered as the output of an optimal rate-distortion encoder applied to x2 without taking into account x1. Once
again, the encoder is defined with the aid of a test channel. Specifically, a pre-whitened version of y, denoted as
ỹ = diag(A−1

k ,0N−k)y, can be considered as the output of the encoder; see also Fig.1 (left). The scaling in the first
k components of y is not important and can be ignored; but the fact that the last N−k entries are zero, is important.
Since x2 is Gaussian, an optimal rate-distortion encoding scheme would produce a vector u2g = C2x2 +z2, where
C2 ∈ Rk2×N2 . The k2× 1 vector z2 is Gaussian distributed, z2 ∼ N (0,Σz2z2), and is independent of x2. The fact
that k2 ≤ N2, indicates the reduced dimensionality of the encoder output due to rate constraints. Given u2, we have
that I(x;u1,u2g) = I(x;u2g) + I(x1;u1|u2g) + I(x2;u1|x1;u2g) = R0 + I(x1;u1|u2g), where R0 := I(x;u2g).
In addition, we have that I(x1;u1|u2g) = I(x1;u1) − I(u2g;u1), since u1 is a function of x1. We now need to
find

D(R1) = min
p(u1|x1) and x̂

s.t. I(x1;u1)−I(u2g;u1)≤(R−R0)=R1

Ep(x,u1,u2g)‖x− x̂(u1,u2g)‖2. (7)

Since the available information is x1 and u2g, the best estimate we can have for x is the MMSE estimator

x̂∞ = E[x|x1,u2g] =
[
Σxx1Σxu2g

] ·
[

Σx1x1 Σx1u2g

Σu2gx1 Σu2u2g

]−1

︸ ︷︷ ︸
Σ̌

=
(

IN1

Γ1

)
x1

︸ ︷︷ ︸
x̂1,∞

+
(

0N1×k2

Γ2

)
u2g

︸ ︷︷ ︸
x̂2,∞

,

where the ∞ subscript signifies no compression (infinite rate), and [Γ1 Γ2] = [Σx2x1 Σx2u2g
]Σ̌ with Γ1 a N2×N1

matrix and Γ2 a N2 × k2 matrix. We can write x = x̂∞ + x̃∞, where x̃∞ is the MMSE, which is known to be
independent of x1 and u2g. Taking advantage of the latter, we have E‖x − x̂(u1,u2g)‖2 = E‖x̂∞ + x̃∞ −
x̂(u1,u2g)‖2 = E‖x̂∞ − x̂(u1,u2g)‖2 + E‖x̃∞‖2 = E‖x̂1,∞ − x̂′(u1,u2g)‖2 + E‖x̃∞‖2, where x̂′(u1,u2g) =
x̂(u1,u2g)− x̂2,∞. Based on this expression for the distortion, we can rewrite (7) as

D(R1) = min
p(u1|x̂1,∞) and x̂

s.t. I(x̂1,∞;u1)−I(u2g;u1)≤R1

Ep(x̂1,∞,u1,u2g)‖x̂1,∞ − x̂′(u1,u2g)‖2 + E‖x̃∞‖2. (8)

We can see that the D-R function is lower bounded by the MMSE. Using the fact that x1 and u2g are jointly
Gaussian, we can apply the Wyner-Ziv result [2], according to which the same D-R function results whether side
information is available only at the encoder, or, both at the encoder and decoder; thus, (8) becomes [c.f. (3)]

D(R1) = min
p(x̂′|x̂1,∞,u2g)

s.t. I(x̂1,∞;x̂′|u2g)≤R1

Ep(x̂1,∞,x̂′,u2g)‖x̂1,∞ − x̂′‖2 + E‖x̃∞‖2. (9)

The next step is to remove the side information from the constraints so that we can readily apply rwf. We have
x̂1,∞ = x̂′1,∞+x̃1,∞, where x̂′1,∞ = E[x̂1,∞|u2g] = Σx̂1,∞u2g

Σ−1
u2gu2g

u2g = Bu2g and B = Σx̂1,∞u2g
Σ−1

u2gu2g
. Recall

1Intuitively, with ui being a function of xi, we obatin a Markov chain xj → xi → ui for i 6= j.
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Fig. 2. Left: D-R region bounds for the reconstruction problem; Right: (a) Test channel with side information at the decoder;
(b) Test channels for the two estimation schemes.

that x̃∞,1 is the MMSE which is independent of x̂′1,∞. We can write E‖x1,∞− x̂′‖2 = E‖x̃1,∞− (x̂′−Bu2g)‖2 =
E‖x̃1,∞ − x̂′′‖2, where x̂′′ = x̂′ −Bu2g. Then, (8) becomes

D(R1) = min p(x̂′′|x̃1,∞,u2g)
s.t. I(x̃1,∞;x̂′′|u2g)≤R1

Ep(x̂1,∞,x̂′′,u2g)‖x̃1,∞ − x̂′′‖2 + E‖x̃∞‖2

= min p(x̂′′|x̃1,∞)
s.t. I(x̃1,∞;x̂′′)≤R1

Ep(x̂1,∞,x̂′′,u2g)‖x̃1,∞ − x̂′′‖2 + E‖x̃∞‖2,
(10)

where the last equality comes form the fact that the optimum x̂′′ can be independent of u2g, since x̃1,∞ is independent
from x̂′′. Let the eigenvalue decomposition for the MMSE covariance matrix be Σx̃1,∞ = Qx̃1,∞Λx̃1,∞QT

x̃1,∞ , with
Λx̃1,∞ = diag(λx̃1,∞,1, · · · , λx̃1,∞,N1 , 0, ..., 0), and λx̃1,∞,1 ≥ · · · ≥ λx̃1,∞,N1 > 0. According to subsection II-A, we
have that D(R1) = k1µ(k1, R1)+

∑N
i=k1+1 λx̃1,∞,i +E‖x̃∞‖2, where k1 is the largest integer in {1, · · · , N1} such

that µ(k1, R1) =
(∏k1

i=1 λx̃1,∞,i

)1/k1

2−2R/k1 ≤ λx̃1,∞,i, for i = 1, . . . , k1.

Fig. 2 (Right (a)) depicts the test channel where we can see how x̂ is created by using both x1 and the available
side information u2g at the decoder. The output of the encoder u1 is u1 = QT

x̃1,∞,k1
[IN1Γ

T
1 ]Tx1 +z1 = C1x1 +z1,

where C1 = QT
x̃1,∞,k1

[IN1Γ
T
1 ]T . Let Qx̃1,∞,k1 denote the first k1 columns of Qx̃1,∞ . Notice that the k1 × 1 vector

z1 is independent of x1, and z1 ∼ N (0,Σz1z1), offers the distribution p(u1|x1) that minimizes (7). Specifically,
we have that [c.f. (5)]

Ak1 = diag
(
(λx̃1,∞,1 −D1)/λx̃1,∞,1, · · · , (λx̃1,∞,k1 −Dk1)/λx̃1,∞,k1

)
, (11)

Σz1z1 = diag
(
(λx̃1,∞,1D1)/(λx̃1,∞,1 −D1), · · · , (λx̃1,∞,k1Dk1)/(λx̃1,∞,k1 −Dk1)

)
, (12)

where Di’s are defined as in (4) using this time λx̃1,∞,i and k = k1.

The approach in this subsection can be applied iteratively on a per sensor basis in order to determine appropriate
p(ui|xi) for i = 1, 2 and a function, which is specified by the test channel, x̂(u1,u2) that at best globally minimizes
(7). Generally, the following iterative procedure is guaranteed to converge only to a local minimum, thus determining
an achievable D-R region and at best the D-R function.
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Algorithm 1: Initialization: Determine2 C(0)
1 ,C(0)

2 ,Σ(0)
z1z1 ,Σ

(0)
z2z2 using the test channels that are produced by applying

optimal distortion-rate encoding to each sensor independently. For a total rate constraint R, generate M random increments
r(i) i = 0, · · · ,M , such that 0 ≤ r(i) ≤ R and

∑M
i=0 r(i) = R. Assign to each sensor rate R1(0) = R2(0) = 0.

for j = 1, · · · ,M

Set R(j) =
∑j

l=0 r(l)
for i = 1, 2
ī = mod (i, 2) + 1 %The complementary index
R0(j) = I(x;u(j)

ī
)

We use C(j−1)

ī
,Σ(j−1)

zīzī
, R(j), R0(j) to determine C(j)

i and Σ(j)
zizi using the previously described procedure.

Determine the distortion D
(j)
i = k

(j)
i D

(j)
i +

∑N1

l=k
(j)
i +1

λ
(j)
x̃1,∞,l + E‖x̃(j)

∞ ‖2
end

Find the sensor that results minimum distortion D
(j)
l with l = 1, 2 and update corresponding matrices C(j)

l ,Σ(j)
zlzl

Set Rl(j) = R(j)− I(x;u(j)

l̄
) and Rl̄(j) = I(x;u(j)

l̄
)

end
In Fig. 2 (left), we plot the lower bound which is determined by assuming that joint encoding of x is possible. We
plot also the upper bound which is obtained by having each sensor apply optimal rate-distortion encoding to its
observation vector xi independently from the other, and the achievable D-R region which is numerically determined
by the algorithm. For a certain rate, we keep the smallest distortion returned after 500 executions of the algorithm.
We have used Σxx = Toeplitz([1, ..., ρN ]), with ρ = 0.7 and N1 = N2 = 20. We observe that the algorithm
provides a strict upper bound for the achievable D-R region which is very close to the lower bound of the joint
encoding scheme.

III. DISTORTION-RATE FOR ESTIMATION

In the previous section, we determined the D-R function for reconstructing a vector x either jointly or in a
distributed manner. In this section, we suppose x = Hs+n, where for the p× 1 vector s we have s ∼ N(0,Σss).
The N × p matrix H is assumed full column rank and fixed. The N × 1 vector n denotes additive white Gaussian
noise (AWGN) independent of s, and n ∼ N (0, σ2IN ). Clearly, it holds that Σxx = HΣssHT + σ2IN . We are
interested in determining the distortion incurred when estimating s based on x, under a rate constraint R. We will
first compare the distortion of two different scenarios in the single-sensor case, where we: i) either encode-compress
x using rwf and use the reconstructed vector x̂ to form the MMSE estimate ŝ1 = E[s|x̂]; or, ii) form the MMSE
estimate ŝ∞ = E[s|x], encode-compress ŝ using rwf, and after decoding, obtain the reconstructed estimate ŝ2.
We will henceforth refer to the first scheme as C(ompress)− E(stimate), scheme and to the second scheme as
E(stimate)− C(ompress).

A. Single-sensor case

First we analyze the case where the entire vector x is available to one sensor. We will denote the estimation error
for the first and second scheme as s̃1 = s− ŝ1 and s̃2 = s− ŝ2, respectively. For the C-E scheme we depict in Fig.
2(right (b)) the test channel for encoding x, followed by MMSE estimation. We have x̂ = Qx,k1A1,k1Q

T
x,k1

x +

Qx,k1A1,k1z1. We consider the vector ˆ̂x = QT
x x̂ =

[
ˆ̂xT

1 ,01×(N−k)

]T
, where ˆ̂x1 = A1,k1Q

T
x,k1

x + A1,k1z, and

ŝ1 = E[s|x̂] = E[s|QT
x x̂] = E[s|ˆ̂x1]. The covariance matrix of s̃1 is given by

Σs̃1s̃1 = E[(s− ŝ1)(s− ŝ1)T ] = Σss −Σsˆ̂x1
Σ−1

ˆ̂x1
ˆ̂x1

Σˆ̂x1s
=

Σss −ΣsxΣ−1
xx Σxs + ΣsxQx∆1QT

x Σxs,
(13)

where ∆1 = diag
(
D1

1λ
−2
x,1 · · ·D1

Nλ−2
x,N

)
, and D1

i for i = 1, . . . , N is the distortion for the i-th element of
xw,N = QT

x x, [c.f. (4)]. The integer k1 ∈ {1, · · · , N} determines the number of elements of xw,N that are
going to be assigned with rate (c.f. Section II-A). The test channel for the E-C scheme is depicted in Fig. 2(Right
(b)). Let us consider the eigenvalue decomposition Σŝ∞ŝ∞ = Qŝ∞Λŝ∞QT

ŝ∞
,

2Those matrices determine also u
(0)
1 and u

(0)
2 .
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where Λŝ∞ = diag(λŝ∞,1 · · ·λŝ∞,N ) and λŝ∞,1 ≥ · · · ≥ λŝ∞,N > 0. The estimate of s is given by ŝ2 =
Qŝ∞,k2A2,k2Q

T
ŝ∞,k2

ŝ∞ + Qŝ∞,k2A2,k2z2, and the covariance matrix of s̃2 is

Σs̃2s̃2 = Σss −ΣsxΣ−1
xx Σxs + Qŝ∞∆2Qŝ∞ , (14)

where ∆2 = diag
(
D2

1, · · · , D2
p

)
and D2

i for i = 1, · · · , p is the distortion for the i-th element for the vector
sp∞,w = QT

ŝ∞
ŝ∞ [c.f. (4)]. The integer k2 ∈ {1, · · · , p} determines the number of elements of sp∞,w that are going

to be assigned with rate (c.f. Section II-A). The first k2 components of sp∞,w are denoted as s∞,w. Consider the
matrices E1 = ΣsxQx∆1QT

x Σxs , E2 = Qŝ∞∆2QT
ŝ∞

, and let D0 = trace(Σss −ΣsxΣ−1
xx Σxs). Furthermore, for

i = 1, 2 we have di(R) = trace(Σs̃is̃i
) = D0 + εi(R) with εi(R) = trace(Ei). Notice that the distortion of both

schemes contains a common term which is due to the MMSE incurred when estimating s based on x, and it is
achieved when R →∞. Our first result3 compares the distortion terms εi(R).

Theorem 2: If R > max
{
(1/2) log2

(
(
∏p

i=1 λx,i) /(σ2)p
)
, (1/2) log2 ((

∏p
i=1 λŝ∞,i)) /(λŝ∞,p

)p)
}

, then ε1(R) =
γ12−2R/N and ε2(R) = γ22−2R/p, where γ1 and γ2 are constants independent of R.

An immediate consequence of Theorem 2 is that the distortion for the E-C scheme converges asymptotically
to D0 as R →∞ with rate O(2−2R/p). The C-E scheme converges likewise, but with rate O(2−2R/N ). If N À p,
then the E-C scheme is approaching the lower bound D0 much faster than C-E, implying correspondingly a more
efficient usage of the available rate R. Let us examine now some special cases for which we have obtained stronger
results.

Scalar case (p = 1, N = 1): Here we have the model x = hs + n, where h is fixed, while s, n are independent
with s ∼ N (0, σ2

s), n ∼ N (0, σ2
n), and σ2

x = h2σ2
s + σ2

n. With σ2
s̃1

and σ2
s̃2

denoting the variances of s̃1 = s− ŝ1

and s̃2 = s− ŝ2, respectively, we have shown that:

Proposition 1: For the scalar case, we have that σ2
s̃1

= σ2
s̃2

and hence the two schemes have identical D-R functions.

Vector case (p = 1, N > 1): In this case, we have the model x = hs+n. With Rt = (1/2) log2

(
1 + (σ2

s‖h‖2)/σ2
)
,

we have established that

Proposition 2: For R ≤ Rt it holds that ε1(R) = ε2(R) and the two schemes have identical D-R. For R > Rt, we
have that ε1(R) > ε2(R) and thus the E − C scheme uses more efficiently the available rate.

Matrix case I (N ≥ p > 1 and Σss = σ2
sIp): For this setup, we have Σsx = σ2

sH
T and Σxx = σ2

sHHT + σ2I.
Let H = UhΣhVT

h be the SVD of H, where Uh : N × N , Vh : p × p, and Σh is an N × p diagonal matrix
Σh = diag(σh,1 · · ·σh,p) with σh,1 ≥, · · · ,≥ σh,p > 0. Then we have

Proposition 3: If

R > max

{
(1/2) log2

(
p∏

i=1

(1 + (σ2
sσ2

h,i)/σ2)

)
, (1/2) log2

((
p∏

i=1

(σ2
h,i/(σ2

h,iσ
2
s + σ2))

)
/

(
(σ2

h,p)
p/(σ2

h,pσ
2
s + σ2)p

)
)}

,

(15)
and either N > p with σh,1 ≥, . . . ,≥ σh,p > 0, or, N = p with σh,1 >, · · · , > σh,p > 0, it holds that ε1(R) > ε2(R),
implying that the E-C is more rate efficient than C-E. If N = p and σh,1 =, . . . ,= σh,p > 0, then ε1(R) = ε2(R)
and the two schemes have identical distortions.

Matrix case II (N ≥ p > 1, Σss = diag
(
σ2

s,1, · · · , σ2
s,p

)
and HTH = diag(‖h1‖2, · · · , ‖hp‖2)) : With the

notation H = H̄Dh, where H̄T H̄ = Ip and Dh = diag(‖h1‖, · · · , ‖hp‖), we have proved that:

Proposition 4: If

R > max

(
(1/2) log2

 
pY

i=1

(1 + (σ2
s,i‖hi‖2)/σ2)

!
, (1/2) log2

  
pY

i=1

(σ4
s,i‖hi‖2/(‖hi‖2σ2

s,i + σ2))

!
/
�
(σ4

s,p‖hp‖2)p/(‖hp‖2σ2
s,p + σ2)p�

!)

(16)

3Proof of this and subsequent results are provided in the Appendix.
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and either N > p, or, N = p and ∃ k such that ‖hk‖ 6= ‖hi‖ for i = 1, . . . , p and i 6= k, it holds that
ε1(R) > ε2(R), implying that the E-C is more rate efficient than C-E. If N = p and σh,1 =, . . . , = σh,p > 0, then
ε1(R) > ε2(R), and hence the E-C scheme is more rate-efficient than the C-E one. If N = p and ‖hi‖ = ‖h‖ for
i = 1, . . . , p then ε1(R) = ε2(R), and the two schemes have the same distortion.

In Fig. 3, we compare the distortion when estimating s using the C-E and E-C schemes. With Σss = σ2
sIp,

p = 4 and N = 40, we define the signal-to-noise ratio (SNR) as SNR = trace(HΣssHT )/(Nσ2). Observe that
after a certain rate, the E-C scheme incurs a strictly smaller distortion than the C-E scheme. As R → ∞, the
distortion of E-C approaches De0 with a rate faster than C-E and this corroborates Theorem 2. The rate after which
the distortion of the E-C scheme falls down in a much faster rate than the one for C-E increases, as the SNR
increases. This is intuitively justified since as the SNR increases, σ2 becomes smaller and thus a larger rate is
required for having k1 = N . This can be verified also from (15), where the threshold increases as σ2 decreases.

Our analysis so far raises the question whether the E-C scheme is optimal w.r.t. the distortion achieved for a given
rate. We will show that this is the case for estimating s under a rate constraint R. A related claim has been reported
in [6] and [7] for N = p, without restricting consideration to a Gaussian linear model. When N > p, extension
of [6] and [7] is not obvious and we are going to examine this under the linearity and Gaussianity assumptions.
Considering the model x = Hs + n and assuming N ≥ p, we have:

Theorem 3: The D-R function for estimating s under the constraint I(x; ŝ) ≤ R can be expressed as

De(R) = min
p(ŝ|x)

s.t. I(x;ŝ)≤R

E‖s− ŝ‖2 = min
p(ŝ|ŝ∞)

s.t. I(ŝ∞;ŝ)≤R

E‖ŝ∞ − ŝ‖2 + E‖s̃∞‖2, (17)

where ŝ∞ = ΣsxΣ−1
xx x is the MMSE estimator, and s̃∞ is the corresponding MMSE.

Theorem 3 shows that the optimal setup for estimating the parameter vector s is first to form the optimal MMSE
estimate ŝ∞ and then apply optimal rate-distortion encoding to this estimate. The lower bound on this distortion
when R →∞, is De0 = E‖s̃∞‖2, which is intuitively appealing.

B. Distributed Case

In this subsection we will consider the problem of determining the D-R function when estimating s at the fusion
center based on distributed observations from two sensors. Consider that the i-th sensor observes the Ni× 1 vector
xi = His + ni, i = 1, 2, where Ni ≥ p and N1 + N2 = N . Furthermore, assume that [nT

1 ,nT
2 ]T ∼ N (0, σ2IN ),

and s ∼ N (0,Σss) with s independent of [n1
T ,n2

T ]T . We wish to determine the D-R function

D(R) = min
p(ui|xi) for i=1,2 and ŝ

s.t. I(x;u1,u2)≤R

Ep(s,u1,u2)‖s− ŝ(u1,u2)‖2. (18)

Following the same procedure as in Section II-B, we will treat u2 as side information given at the decoder. Let
us assume u2 = u2g = C2x2 + z2, as in Section II-B. Likewise, we find that I(x;u1,u2g) = R0 + I(x1;u1|u2g)
and I(x1;u1|u2g) = I(x1;u1) − I(u2g;u1), since u1 is a function of x1. Letting ψ = [xT

1 ,uT
2g]

T , we have
ŝ∞ = E[s|x1,u2g] = ΣsψΣ−1

ψψψ = L1x1 + L2u2g, where ΣsψΣ−1
ψψ = [L1,L2] and L1 : p ×N1 and L2 : p × k2.

We can write s = ŝ∞ + s̃∞ and after that E‖s − ŝ(u1,u2g)‖2 = E‖ŝ∞ − ŝ(u1,u2g)‖2 + E‖s̃∞‖2, since s̃∞ is
independent of ŝ∞ and ŝ can be independent of s̃∞ without affecting the distortion.

Lemma 1: It holds that I(Lx1;u1) = I(x1;u1).

Using our results so far, we can perform the minimization required in

D(R1) = min
p(u1|L1x1) and ŝ

s.t. I(L1x1;u1)−I(u1;u2g)≤R1

Ep(L1x1,u1,u2g)‖L1x1 − (ŝ(u1,u2g)− L2u2g)‖2 + E‖s̃∞‖2, (19)
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with R1 = R−R0. As in Section II-B, we can apply the Wyner-Ziv result to re-write (19) as

D(R1) = min
p(ŝ|L1x1,u2g)

s.t. I(L1x1;ŝ|u2g)≤R1

Ep(L1x1,ŝ,u2g)‖L1x1 − (ŝ− L2u2g)‖2 + E‖s̃∞‖2. (20)

Again, we want to somehow remove the side information from the rate constraints in order to arrive at a minimization
problem where the rwf solution is applicable. To this end, notice that L1x1 = ŝ∞,1 + s̃∞,1 where ŝ∞,1 =
E[L1x1|u2g] = L1Σx1u2g

Σ−1
u2gu2g

u2g, and s̃∞,1 is independent of u2g. Clearly, we then have that E‖L1x1 −
(ŝ−L2u2g)‖2 = E‖s̃∞,1− ŝ′‖2 and ŝ′ = ŝ−L2u2g− ŝ∞,1. It also follows that I(L1x1; ŝ|u2g) = I(s̃∞,1; ŝ′|u2g) =
I(s̃∞,1; ŝ′), where the last equality holds because ŝ′ can be independent from u2g since we want to minimize
E‖s̃∞,1 − ŝ′‖2. As a result, (20) can be written as

D(R1) = min
p(ŝ′|s̃∞,1)

s.t. I(s̃∞,1;ŝ′)≤R1

Ep(s̃∞,1,ŝ′)‖s̃∞,1 − ŝ′‖2 + E‖s̃∞‖2, (21)

and since s̃∞,1 is Gaussian, we can apply rwf. Consider the covariance matrix Σs̃∞,1s̃∞,1 = Qs̃∞,1Λs̃∞,1Q
T
s̃∞,1

with Λs̃∞,1 = diag
(
λ̃s,1, · · · , λ̃s,p

)
. Using again the notion of a test channel, the optimal choice for u1 and ŝ

in (19) is u1 = QT
s̃∞,1,k

L1x1 + z1 = C1x1 + z1, where Qs̃∞,1,k
is formed using the first k columns of Qs̃∞,1 ,

and C1 = QT
s̃∞,1,k

L1. In this way, we are able to determine also p(u1|x1). Additionally, we have that ŝ =
Qs̃∞,1,k

A1,ku1−Qs̃∞,1,k
A1,kQT

s̃∞,1,k
L1Σx1u2g

Σ−1
u2gu2g

u2g +L1Σx1u2g
Σ−1

u2gu2g
u2g +L2u2g, where the matrices A1,k

and Σz1z1 are specified in (5) using λ̃s,i for i = 1, · · · , k. It follows from Section II-A that D(R1) = kµ(k, R) +∑p
l=k+1 λ̃s,l + E‖s̃∞‖2 and µ(k, R) is the threshold of the rwf solution. The form of u1 reveals that an optimal

scheme for estimating s under a rate constraint R and available side information u2g is to use the L1x1 part of
E[s|x1,u2]; subsequently, we can apply the prewhitening matrix QT

s̃∞,1,k
, and finally compress the resulting vector

QT
s̃∞,1,k

L1x1.
The approach we outlined here can also be applied alternately in each sensor in order to determine appropriate

p(ui|xi) for i = 1, 2 and a function ŝ(u1,u2) which at best minimizes (18). The resultant iterative procedure is
guaranteed again to converge only to a local minimum, thus determining an achievable D-R region and at best
the D-R function.We can use for our purposes Algorithm 1 in order to obtain a tighter upper bound for the D-R
region or at best determine the D-R function in the our estimation problem. Concerning rate allocation, we certainly
follow an identical approach, but the matrices C(j)

1 , C(j)
2 , Σ(j)

z1z1 , Σ(j)
z2z2 are now determined as we described in this

section.
In Fig. 4, we plot the lower bound when assuming that one sensor has available the entire vector x and we

apply the optimal E-C scheme. The upper bound is determined by letting the i-th sensor form its local estimate
ŝ∞,i = E[s|xi], and then apply rate-distortion encoding regardless of the other sensor in ŝ∞,i. If ŝ1 and ŝ2 are the
compressed versions of ŝ∞,1 and ŝ∞,2, respectively, then the decoder forms the final estimate ŝ = E[s|ŝ1, ŝ2]. We
also plot the achievable D-R region determined by the algorithm. For each rate, we keep the smallest distortion
returned after 500 executions of the algorithm simulated with Σss = Ip, p = 4, and N1 = N2 = 20 at SNR = 2.
We observe that the algorithm provides a tight upper bound for the achievable D-R region in estimating s.

IV. CONCLUSIONS

In this project, we first analyzed the D-R function for estimating a vector of parameters in a non-distributed
setup. We also used an iterative scheme to determine an achievable D-R region or at best the D-R function of a
similar problem in a distributed setup. For the single-sensor case, we carried out a comparison between two different
schemes for estimating s under a rate constraint. In the first scheme, we encode-compress the observation vector
and at the decoder we apply MMSE. In the second scheme, we form an MMSE estimate before the encoder and
subsequently compress this estimate. The decoder output yields the final estimate of s. The last scheme, referred
to as estimate-compress, has been shown to be optimal in the sense that the D-R function is determined by a
constant which is the MMSE for estimating s given x and also by the distortion incurred when encoding this
MMSE estimate.

For the distributed scheme, we investigated a two sensor scenario. We considered that the output of the second
encoder (and thus the encoder itself) is given and we treated this as side information in order to determine the
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Fig. 3. Distortion-rate region for the C-E and E-C with Σss = I4, and N1 = N2 = 20.
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Fig. 4. Distortion-rate bounds for estimating s with Σss = I4, and N1 = N2 = 20.

optimal structure for the first encoder. A similar approach was utilized for the reconstruction problem in [1] which
was also examined in this project. In this setup, we also proved that again it is better to first estimate and then
compress. Finally, we applied an iterative scheme similar to [1] in order to derive upper bounds for the D-R region,
or, at best determine the D-R function. The numerically determined upper bounds were compared with clairvoyant
analytical upper bounds and found to be lower and closer to the lower bound of the single-sensor case where joint
encoding is possible.

Acknowledgements: I would like to thank Prof. Georgios B. Giannakis and Prof. Nihar Jindal for the interesting
discussions that we had on this project.
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V. APPENDIX

Proof of Theorem 2: For the C-E scheme with k1 = N , the rwf threshold is given by µ1(N,R) = (
∏p

i=1 λx,i)
1/N

(σ2)(N−p)/N2−2R/N . Since k1 = N , it must hold that µ1(N, R) < σ2 ⇔ R > (1/2) log2

(
(
∏p

i=1 λx,i) /(σ2)p
)
. For

the E-C scheme with k2 = p the rwf threshold is µ2(p,R) = (
∏p

i=1 λŝ∞,i)
1/p 2−2R/p and it must hold that

µ2(p,R) < λŝ∞,p ⇔ R > (1/2) log2

((
p∏

i=1

λŝ∞,i

))
/(λŝ∞,p

)p.

Thus, when R > max
{
(1/2) log2

(
(
∏p

i=1 λx,i) /(σ2)p
)
, (1/2) log2 ((

∏p
i=1 λŝ∞,i)) /(λŝ∞,p

)p
}

, we have that k1 =
N and k2 = p. We have ∆1 = µ1(N, R)diag

(
λ−2

x,1, · · · , λ−2
x,N

)
= 2−2R/Nα1diag(λ−2

x,1, · · · , λ−2
x,N ) and ∆2 =

µ2(p,R)Ip = (
∏p

i=1 λŝ∞,i)
1/p 2−2R/pIp, and α1 = (

∏p
i=1 λx,i)

1/N (σ2)(N−p)/N .

Because Qx,Λx,Qŝ∞ do not depend on the rate R it follows that

ε1(R) = 2−2R/N trace(ΣsxQxα1diag(λ−2
x,1, · · · , λ−2

x,N )QT
x Σxs) = 2−2R/Nγ1

and ε2(R) = 2−2R/p trace
(
(
∏p

i=1 λŝ∞,i)
1/p Ip

)
= γ22−2R/p where γ1, γ2 does not depend on the rate R. Q.E.D.

Proof of Proposition 1: Using (13), we have for the C-E scheme that ∆1 = σ2
x2−2R = (h2σ2

s + σ2
n)2−2R and

the variance of the error s̃1 = s − ŝ1 is σ2
s̃1

= σ2
s − h2σ4

s(σ
2
x)−1 + h2σ4

s(∆1/(σ2
x)2) = σ2

s − h2σ4
s(σ

2
x)−1 +

h2σ4
s(2

−2R/(h2σ2
s + σ2

n)).
Likewise, using (14) we have for the E-C scheme that ∆2 = σ2

ŝ∞
2−2R = h2σ4

s(h
2σ2

s +σ2
n)−1 2−2R and the variance

of the error s̃2 = s− ŝ2 is σ2
s̃2

= σ2
s − h2σ4

s(σ
2
x)−1 + ∆2 = σ2

s − h2σ4
s(σ

2
x)−1 + h2σ4

s(2
−2R/(h2σ2

s + σ2
n)). It then

follows immediately that σ2
s̃1

= σ2
s̃2

. Q.E.D.

Proof of Proposition 2: We can readily verify that Λx = diag
(
σ2 + σ2

s‖h‖2, σ2, · · · , σ2
)

and Qx = [qx,1, · · · ,qx,N ],
where qx,1 = (h/‖h‖) ⊥ qx,j , for j 6= 1. For the C-E scheme, k1 can be either 1 or N and this happens
because λx,i = σ2 for i = 2, . . . N ; thus, when µ1(k1, R) < σ2 all the elements of xw,N have to be assigned
nonzero rate. For k1 = 1, the threshold is µ1(1, R) = (σ2

s‖h‖2 + σ2)2−2R. Continuing, it must hold that
µ1(1, R) ≥ σ2 ⇔ R ≤ (1/2) log2

(
1 + (σ2

s‖h‖2)/σ2
)

= Rt.
If R > Rt, we have that k1 = N and the threshold is µ1(N, R) = (σ2

s‖h‖2 + σ2)(1/N)
(
σ2

)(1−1/N) 2−2R/N , while
the distortion term ε1(R) = trace

(
ΣsxQx∆1QT

x Σxs

)
is given by

ε1(R) = trace(σ4
sh

TQx∆1QT
x h) =

{
β2−2R , R ≤ Rt

β
(
σ2/(σ2

s‖h‖2 + σ2)
)(1−1/N) 2−2R/N , R > Rt

(22)

where β = σ4
s‖h‖2/(σ2

s‖h‖2 + σ2). We have for the E-C scheme that σ2
ŝ∞

= σ2
sh

TQxΛ−1
x QT

x h = β. Since
we compress the Gaussian scalar random variable ŝ∞, we have that ε2(R) = β2−2R, ∀ R. The result follows
immediately with a direct comparison between ε1(R) and ε2(R) when R ≤ Rt, and when R < Rt, respectively.
Q.E.D.

Proof of Proposition 3: It follows immediately that Qx = Uh and Λx = diag(σ2
sσ

2
h,1 + σ2, · · · , σ2

sσ
2
h,p +

σ2, σ2, · · · , σ2). With Σŝ∞ŝ∞ = σ2
sVhΣT

h (σ2
sΣhΣT

h + σ2I)−1ΣhVT
h , it can be easily verified that Qŝ∞ = Vh

and Λŝ∞ = diag
(
(σ4

sσ
2
h,1)/(σ2

sσ
2
h,1 + σ2), · · · , (σ4

sσ
2
h,p)/(σ2

sσ
2
h,p + σ2)

)
.

For the C-E scheme, we have E1 = σ4
sVhΣT

h ∆1ΣhVT
h and ε1(R) = trace(E1) = σ4

s

∑p
i=1(σ

2
h,iD

1
i )/(σ2

sσ
2
h,i+σ2)2.

If k1 = N , we have D1
i = µ1(N, R) =

(∏p
i=1(σ

2
sσ

2
h,i + σ2)

)1/N
(σ2)(N−p)/N2−2R/N for i = 1, . . . , N , and

µ1(N, R) < σ2 ⇔ R > (1/2) log2

(∏p
i=1(1 + (σ2

sσ
2
h,i)/σ2)

)
. While for the E-C scheme, E2 = Vh∆2VT

h and
ε2(R) = trace(E2) = trace(∆2) =

∑p
i=1 D2

i . For k2 = p, it follows for j = 1, · · · , p that

D2
j = µ2(p, R) =

(
p∏

i=1

(σ4
sσ

2
h,i)/(σ2

sσ
2
h,i + σ2)

)1/p

2−2R/p,
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and for this to hold, we must have

µ2(p,R) < (σ4
sσ

2
h,p)/(σ2

sσ
2
h,p + σ2) ⇔ R > (1/2) log2

(
p∏

i=1

(σ2
h,i/(σ2

h,iσ
2
s + σ2))/((σ2

h,p)
p/(σ2

h,pσ
2
s + σ2)p)

)
.

Accordingly when (15) is satisfied we have k1 = N, k2 = p,

ε1(R) = σ4
sσ

22−2R/N




p∏

j=1

((σ2
sσ

2
h,j)/σ2 + 1)




1/N
p∑

i=1

σ2
h,i/(σ2

sσ
2
h,i + σ2)2,

and ε2(R) = σ4
s2
−2R/p

(∏p
j=1 σ2

h,j/(σ2
sσ

2
h,j + σ2)

)1/p
p. When N > p, in order for ε1(R) > ε2(R) to hold we

must have

R > (1/2) log2

(
p∏

i=1

(1 + (σ2
sσ

2
h,i)/σ2)

)
+ (Np/2(N − p)) log2 γ, (23)

where

γ =

(
p∏

i=1

σ2
h,i/(σ2

h,iσ
2
s + σ2)2

)1/p

/


(1/p)

p∑

j=1

(σ2
h,j/(σ2

h,jσ
2
s + σ2)2)


 ≤ 1,

from the AM-GM4 inequality. But (23) is satisfied, since (15) holds. For the case where N = p it follows that

ε1(R) ≥ ε2(R) ⇔ γ ≤ 1.

We have already mentioned that γ ≤ 1 and strict inequality holds when the singular values of H denoted as σh,i

are not equal. If the opposite holds then ε1(R) = ε2(R). Q.E.D.

Proof of Proposition 4: It follows that Qx = [H̄,qx,p+1, · · · ,qx,N ], where qx,p+1, · · · ,qx,N ⊥ range(H̄), and
Λx = diag

(
σ2

s,1‖h1‖2 + σ2, · · · , σ2
s,p‖hp‖2 + σ2, σ2, · · · , σ2, · · · , σ2

)
. Continuing we get

Σŝ∞ŝ∞ = ΣssHTQxΛ−1
x QT

x HΣss = ΣssDhH̄TQx(D2
hΣss + σ2Ip)−1QT

x H̄DhΣss =

diag
(
(σ4

s,1‖h1‖2)/(σ2
s,1‖h1‖2 + σ2), · · · , (σ4

s,p‖hp‖2)/(σ2
s,p‖hp‖2 + σ2)

)
. As with the proof of Prop. 3, we have

ε1(R) =
∑p

i=1(σ
4
s,i‖hi‖2D1

i )/(σ2
s,i‖hi‖2 + σ2)2.

When k1 = N , we have D1
i = µ1(N,R) =

(∏p
i=1(σ

2
s,i‖hi‖2 + σ2)

)1/N
(σ2)(N−p)/N2−2R/N for i = 1, . . . , N ,

and it must hold that

µ1(N,R) < σ2 ⇔ R > (1/2) log2

(
p∏

i=1

(1 + (σ2
s,i‖hi‖2)/σ2)

)
.

For the E-C scheme, we have ε2(R) =
∑p

i=1 D2
i . If k2 = p, it follows for j = 1, · · · , p that, D2

j = µ2(p,R) =(∏p
i=1(σ

4
s,i‖hi‖2)/(σ2

s,i‖hi‖2 + σ2)
)1/p

2−2R/p, and in order this to hold we must have

µ2(p,R) < (σ4
s,p‖hp‖2)/(σ2

s,p‖hp‖2 + σ2)

or equivalently,

R > (1/2) log2

(
p∏

i=1

(σ4
s,i‖hi‖2/(‖hi‖2σ2

s,i + σ2))/((σ4
s,p‖hp‖2)p/(‖hp‖2σ2

s,p + σ2)p)

)
. (24)

When (16) is satisfied, we have k1 = N, k2 = p,

ε1(R) = σ22−2R/N




p∏

j=1

((σ2
s,j‖hj‖2)/σ2 + 1)




1/N
p∑

i=1

σ4
s,i‖hi‖2/(σ2

s,i‖hi‖2 + σ2)2

4Arithmetic Mean-Geometric Mean inequality.
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and ε2(R) = 2−2R/p
(∏p

j=1(σ
4
s,j‖hj‖2)/(σ2

s,j‖hj‖2 + σ2)
)1/p

p.

In order for ε1(R) > ε2(R) to hold, when N > p, we must have

R > (1/2) log2

(
p∏

i=1

(1 + (σ2
s,i‖hi‖2)/σ2)

)
+ (Np/2(N − p)) log2 γ′, (25)

where

γ′ =

(
(

p∏

i=1

σ4
s,i‖hi‖2/(σ2

s,i‖hi‖2 + σ2)2)1/p

)
/


(1/p)

p∑

j=1

(σ2
s,j‖hj‖2/(‖hj‖2σ2

s,j + σ2)2)


 ≤ 1,

from the AM-GM inequality. But (25) is satisfied, since (16) holds. For the case where N = p it follows that

ε1(R) ≥ ε2(R) ⇔ γ′ ≤ 1.

We have already mentioned that γ′ ≤ 1 and strict inequality holds when the euclidean norms ‖hi‖ are not equal.
If the opposite holds then ε1(R) = ε2(R). Q.E.D.

Proof of Theorem 3: Let s = ŝ∞+ s̃∞, where s̃∞ is independent of x. We have then, E‖s− ŝ‖2 = E‖ŝ∞− ŝ‖2 +
E‖s̃∞‖2, because ŝ∞ and ŝ are independent of s̃∞ since they are functions of x. Consider now an invertible
matrix T, and recall that I(x; ŝ) = I(Tx; ŝ). The distortion in estimating s using either the data Tx or x
is the same, since the matrix T is invertible. Consider the SVD decomposition of H = UhΣhVT

h , where
Σh = [ΣT

h,p,0p×(N−p)]T and Σh,p = diag(σh,1, · · · , σh,p) is a p × p diagonal matrix with non-zero entries,
since H is full column rank. We clearly have Σxx = HΣssHT + σ2Ip = Uh

(
ΣhVT

h ΣssVhΣT
h + σ2IN

)
UT

h ,
and ΣhVT

h ΣssVhΣT
h + σ2IN = diag

(
Σh,pVT

h ΣssVhΣT
h,p + σ2Ip, σ

2I(N−p)

)
= diag

(
Bp, σ

2I(N−p)

)
, where

Bp = Σh,pVT
h ΣssVhΣT

h,p + σ2Ip. Because H is a full column rank matrix, Bp is invertible. Let us now consider
the matrix ΣsxΣ−1

xx = ΣssHTUhdiag
(
B−1

p , σ−2I(N−p)

)
UT

h = ΣssVhΣT
h,pB

−1
p UT

h,p, where Uh,p denotes the first
p columns of Uh. Since rank(ΣssVhΣT

h,pB
−1
p ) = p, we have that5 range(Σ−1

xx Σxs) = range(Uh,p) = span(Uh,p).

Now let the matrix T = [(ΣsxΣ−1
xx )T ,RT ]T . If we select R = Uh,(N−p), which are the last N − p columns of

Uh, then matrix T is guaranteed to be invertible. It follows that Rx = RHs + Rn = Rn, because range(RT ) ⊥
range(H) = range(Uh,p) = span(Uh,p). Then Tx = [(ΣsxΣ−1

xx x)T , (Rn)T ]T = [ŝT∞,RnT ]T . Another important
fact is that ŝ∞ and Rn are independent. This happens because both ŝ∞ and Rn are Gaussian and E[ŝ∞(Rn)T ] =
E[ŝ∞nTRT ] = E[ΣsxΣ−1

xx (Hs + n)nTRT ] = ΣsxΣ−1
xx E[nnT ]RT = σ2ΣssVhΣT

h,pB
−1
p UT

h,pUh,(N−p) = 0p×(N−p).
It then follows I(x; ŝ) = I(Tx; ŝ) = I(ŝ∞,Rn; ŝ) = I(Rn; ŝ)+I(ŝ∞; ŝ|Rn). Now the optimal ŝ is independent of
Rn without affecting the distortion, since the noise does not contain any information for the estimation of s. Using
the previous argument and the independence of ŝ∞ and Rn we obtain I(Rn; ŝ) = 0 and I(ŝ∞; ŝ|Rn) = I(ŝ∞; ŝ).
Using the previous arguments arrive at the desired result

De(R) = min
p(ŝ|x)

s.t. I(x;ŝ)≤R

E‖s− ŝ‖2 = min
p(ŝ|ŝ∞)

s.t. I(ŝ∞;ŝ)≤R

E‖ŝ∞ − ŝ‖2 + E‖s̃∞‖2. Q.E.D.

Proof of Lemma 1: With L1 =
(
Σsx1 −Σsu2g

Σ−1
u2gu2g

Σu2gx1

)(
Σx1x1 −Σx1u2g

Σ−1
u2gu2g

Σu2gx1

)−1
, consider the

SVD of H1 = Uh1Σh1V
T
h1

, where Σh1 = [Σh1,p
,0p×(N1−p)] , Uh1 = [Uh1,p

,Uh1,N1−p
] and Σh1,p = diag (σh,1, · · · , σh,p).

Moreover, we have that

Σsx1 −Σsu2g
Σ−1

u2gu2g
Σu2gx1 =

(
ΣssVh1 −Σsu2g

Σ−1
u2gu2g

Σu2gs

)
ΣT

h1
UT

h1
, (26)

5The range(M) denotes the vector subspace, where the columns of matrix M lie. The span(M) denotes the vector subspace which is
created by any linear combination of the columns of M .
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where Ω1 = VT
h1

ΣssVh1 , and Ω1 = VT
h1

Σsu2g
Σ−1

u2gu2g
Σu2gsVh1 . Eq. (26) can be re-written as

Σsx1 −Σsu2g
Σ−1

u2gu2g
Σu2gx1 =

(
ΣssVh1 −Σsu2g

Σ−1
u2gu2g

Σu2gs

)
ΣT

h1
UT

h1

and since L1 =
(
ΣssVh1 −Σsu2g

Σ−1
u2gu2g

Σu2gs

)
[Σh1,p

,0p×(N1−p)]Ω−1UT
h1

with

Ω = diag
(
Σh1,p

(Ω1 + Ω2)Σh1,p
+ σ2Ip, σ2I(N1−p)

)
,

it follows that range(LT
1 ) = span(Uh1,p

). With G = UT
h1,(N1−p)

, let us construct the invertible matrix T =
[LT

1 ,GT ]T . Note also that E[L1x1(Gn1)T ] = 0p×(N1−p). Using the data T x1, and the given side information
u2g will not affect the distortion, since T is invertible. As a result, we find that I(x1;u1) = I(T x1;u1) =

I(L1x1,Gn1;u1) = I(Gn1;u1) + I(L1x1;u1|Gn1) = I(L1x1;u1) since u1 is independent of Gn1, and L1x1

is independent of Gn1. Q.E.D.


