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Problem Formulation

• Consider a memoryless Gaussian source {s(i) : i ∈ Z+} transmitted through a discrete memoryless

fading channel

y(i) = h(i)x(i) + w(i),

– w(i) are AWGN with unitary variance

– h(i) are i.i.d. fading with known distribution h

• There is channel state information (CSI) at receiver only.

• A source-channel coding system is illustrated as

Sn Xn Y n Ŝn

PS(s) PY |X(y|x)f g

– there is average power constraint P on Xn

– the distortion measure is mean squared distortion

• Although optimal performance can be achieved by separate source and channel coding, it is worthwhile

to consider joint source/channel coding with low complexity and short delay, such as linear coding.
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Linear Coding of Block Length n = 1

• A single-letter linear coding (n = 1):

S(i) −→ f(i) −→ X(i) −→ channel −→ Y (i) −→ g(i) −→ Ŝ(i),

in which

X(i) =

√
P

σ2
s

S(i); Ŝ(i) =
Ph2

Ph2 + 1
y(i).

The achieved mean squared distortion

Du(P ) = σ
2
SEh

{
1

1 + h2P

}
.

• When h is deterministic (the channel is AWGN), the single-letter linear coding is optimal.

• How about the case if h is random? What is the performance of linear coding (of block length n = 1,

or when block length increases)?
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Linear Coding is Optimal Among All Single-letter Codes

• A single-letter coding system:

S(i) −→ f(i) −→ X(i) −→ channel −→ Y (i) −→ g(i) −→ Ŝ(i)

• Lemma: Let S be a Gaussian random variable with variance σ2
S, and Ŝ be any random variable

jointly distributed with S. Then

E(|S − Ŝ|2)
σ2

S

≥ exp
(
−2I(S; Ŝ)

)
.

• By data processing inequality, we obtain that for any single-letter coding {f(i), g(i)} when there is

power constraint P (i), and the fading coefficient is h(i), then the achieved distortion at time i:

E
(
|S(i)− Ŝ(i)|2

∣∣∣ h(i)
)
≥ σ2

S

1 + h2(i)P (i)
.
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Linear Coding is Optimal Among All Single-letter Codes

• Therefore the average distortion for letter S(i)

E(|S(i)− Ŝ(i)|2) = Eh(i)

{
E

(
|S(i)− Ŝ(i)|2

∣∣∣ h(i)
)}

≥ σ
2
SEh(i)

{
1

1 + h(i)2P (i)

}
,

where equality is obtained by linear coding.

• Finally, uniform power allocation is optimal due to the convex property of

D(P (i))
def
= σ

2
SEh

{
1

1 + h2P (i)

}

• Therefore linear coding with uniform power allocation is optimal among all single-letter codes.

• Is linear coding optimal in Shannon’s sense?
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Condition for Linear Coding Achieving Shannon’s Bound

• The rate-distortion function and channel capacity are

R(D) =
1

2
log

+ σ2
S

D
, C(P ) = Eh

{
1

2
log(1 + h

2
P )

}
.

Combining the above two formulas, we obtain the Shannon’s bound

Dc(P ) = σ
2
S exp

(
Eh

{
log

1

1 + h2P

})
.

• The linear coding with block length n = 1 has average distortion

Du(P ) = σ
2
SEh

{
1

1 + h2P

}
.

• Du(P ) ≥ Dc(P ) from concavity of the log-function. The equality holds iff
1

1 + h2P
= const.

• Linear coding (with block length n = 1) is optimal in Shannon’s sense iff |h| is deterministic.

– If h is real, h ≡ ±c.

– If h is complex, then h should be distributed on a circle.
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Linear Coding of Finite Block Length

• We consider a linear coding with block length n. The encoder is given by a n × n matrix F , and

the decoder is a MMSE decoder.

S
(n) −→ F −→ X

(n) −→ channel −→ Y
(n) −→ MMSE −→ Ŝ

(n)

• Under such a set-up, the achieved MMSE is

D(H; F ) =
1

n
tr

(
(HFΩSF

T
H

T
+ I)

−1
ΩS

)
.

The power constraint implies

P (F ) = tr(FΩSF
T
) ≤ nP.

• Thus, we can solve the following problem for optimal F

min EH

{
tr

(
(HFΩSF

T
H

T
+ I)

−1
ΩS

)}

s.t. tr(FΩSF
T
) ≤ nP.
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Linear Coding of Finite Block Length

• When channel is DMC and source is memoryless, we have

H = diag(h(1), . . . , h(n)), ΩS = σ
2
SI

• Introducing Q = FF T º 0, the problem is changed to

min EH

{
tr(HQH

T
+ σ

−2
S I)

−1
}

s.t. tr(Q) ≤ nP/σ
2
S, Q º 0.

• Lemma: For any R Â 0, tr(R−1) ≥
n∑

i=1

R
−1
ii , and equality holds iff R is diagonal.

• Optimal solution gives diagonal Q∗ = FF T . Thus, any F ∗ =
√

Q∗U where U is unitary is an

optimal solution. Specifically, if we take U = I, we can obtain a diagonal F ∗.

• Any linear coding can be achieved in a single-letter form without performance loss.
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A Lower Bound on the Performance of Linear Coding

• Introducing h2
0 = E(|h2|), then we obtain

Dc(P ) = σ
2
S exp

(
Eh

{
log

1

1 + h2P

})
≥ σ

2
S

1

1 + h2
0P

.

• The linear coding achieves distortion

Du(P ) = Eh(D(h)) = σ
2
SEh

{
1

1 + h2P

}
.

• We can verify that

0 ≤ Du(P )−Dc(P )

Dc(P )
≤ Eh

{
(h2 − h2

0)P

1 + h2P

}
≤ P

√
Var(|h|2).

• Linear coding is close to optimal in Shannon’s sense if

– Var(|h|2) is small, or

– If P is small such as applications in sensor networks.
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Simulations

−10 −5 0 5 10 15 20 25 30

10
−2

10
−1

10
0

10
1

SNR (dB)

M
S

E

Optimal coding
Linear coding

• Rayleigh fading with P = 1; source σ2
S = 10
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Linear Coding When There is TX CSI

• It still hods that

– every linear coding is equivalent to a linear coding of block length n = 1;

– linear coding is optimal among all single-letter codes.

• The optimal power loading can be solved from

min σ
2
SEh

{
1

1 + h2P (h)

}

s.t. Eh{P (h)} = P, P (h) ≥ 0.

The optimal power loading (in terms of fading state h) can be solved analytically,

P
opt

(h) =
1

|h|

(
u0 −

1

|h|

)+

, for some u0 > 0.

• Performance loss compared to the optimal coding can also be lower bounded in terms of the statistic

of |h| and power constraint P .
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Concluding Remarks

Considered a memoryless Gaussian source transmitted through a DMC fading channel with AWGN:

• Among all single-letter codes, linear coding is optimal;

• Every linear coding is equivalent to a linear coding of block length n = 1;

• Linear coding in general can not approach Shannon’s bound;

• The performance loss of linear coding compared to the optimal coding can be lower bounded in terms

of Var(|h|2) and power constraint P .
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Thanks!
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