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Abstract

We consider the linear coding of a memoryless Gaussian source transmitted through a discrete

memoryless fading channel with additive white Gaussian noise (AWGN). The goal is to minimize

the mean squared error (MSE) of the source reconstruction at the destination while there is

average power constraint imposed on the channel input symbols. We show that among all single-

letter codes, linear coding achieves the smallest MSE, and is thus optimal. But when block length

increases, the linear coding can not approach the Shannon’s bound, and it turns out to share the

same performance with a single-letter coding. In spite of its suboptimality, the performance loss

of linear coding compared to the optimal coding can be quantitively bounded in terms of the

variance of the fading gain and received signal to noise ratio (SNR). We also show that for linear

coding, when there is no transmitter channel state information (CSI), uniform power allocation

is optimal, and in the presence of transmitter CSI, the optimal power allocation can be analytical

solved in terms of the channel fading gains.
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1 Introduction

Shannon has shown in [1, Theorem 21] that in a point-to-point link, when a discrete memoryless

source is transmitted through a discrete memoryless channel, the optimal tradeoff between (channel

input) cost and (source reconstruction distortion) can be achieved by separate source and channel

coding. Despite its conceptual beauty, in practice, to approach the optimal pair of cost and distortion,

the separate source and channel coding leads to high complexity and long delay when block length

increases.

Although joint source-channel coding does not have pleasing separation property, but it some-

times can lead to very simple optimal coding strategy. A well-known example is when a memoryless
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Gaussian source transmitted through an AWGN channel, an amplify and forward transmission strat-

egy achieves the optimal power-distortion tradeoff [2,3]. The perfect match between the source and

channel leads to a very simple but optimal coding strategy which is both theoretically and practically

appealing. Unfortunately, when source and channel do not come up with such a natural match, the

simple but optimal coding is not easy to find. In this work, we study the case when the source is

still Gaussian but there is fading in the channel. We analyze the performance of linear coding in

such a source-channel communication system, and focus on the following questions: How optimal is

the linear coding? Can linear coding achieve the Shannon’s bound when block length increases? If

not, how can the performance loss be bounded?

Specifically, we consider a memoryless Gaussian source {S(t) : t ∈ Z
+} which has instantaneously

distribution N(0, σ2
S), and is transmitted through a discrete memoryless fading channel

Y (i) = h(i)X(i) + W (i), i = 1, 2, . . . ,

where

i. W (i) are AWGN with unitary variance,

ii. h(i) are i.i.d. fading with known distribution h.

Sn Xn Y n Ŝn

PS(s) PY |X(y|x)f g

Figure 1: A source-channel coding system where f and g are encoder and decoder respectively.

We suppose there is channel state information (CSI) at receiver only. A general source-channel

coding scheme of block length n is depicted in Fig. 1. When we limit to the class of linear coding,

the encoder is then a n × n matrix which maps the source symbols S(n) to channel input symbols

X(n). The decoder is then the mean square error estimator (MMSE) estimating S(n) based on Y (n).

In next section, we analyze the performance of linear coding in two cases: i. n = 1; ii. n ≥ 2,

where n is the coding block length.

2 Linear Coding

In this section we consider the linear coding when there is receiver CSI only. We start with the case

when block length n = 1.

S(i) −→ f(i) −→ X(i) −→ channel −→ Y (i) −→ g(i) −→ Ŝ(i)

Figure 2: A linear coding system with block length n = 1.
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2.1 Linear Coding of Block Length n = 1

When the block length n = 1, we need to design encoders f(i) for all i ∈ Z (see Fig. 2). In such a

case, f(i) simply scales S(i) to satisfy the power constraint. Define P (i)
def
= E(|X(i)|2). Then the

power constraint implies

lim
n→∞

1

n

n
∑

i=1

P (i) ≤ P. (1)

The coding scheme is given as

X(i) =

√

P (i)

σ2
s

S(i); Ŝ(i) =
P (i)h(i)2

P (i)h(i)2 + 1
y(i). (2)

It is easy to calculate that the achieved mean squared distortion

Dl(P (i))
def
= E(|S(i) − Ŝ(i)|2) = σ2

SEh(i)

{

1

1 + h(i)2P (i)

}

= σ2
SEh

{

1

1 + h2P (i)

}

. (3)

Theorem 1. Among all single-letter codes of the source-channel coding of a memoryless Gaussian

source that is transmitted through a fading channel with AWGN, the linear coding given in (2) is

optimal.

Before proving the above theorem, we need the following lemma.

Lemma 2. Let S be a Gaussian random variable with variance σ2
S, and Ŝ be any random variable

jointly distributed with S. Then

E(|S − Ŝ|2)
σ2

S

≥ exp
(

−2I(S; Ŝ)
)

.

Proof. We have the following chain of inequalities:

I(S; Ŝ) = h(S) − h(S|Ŝ)

= h(S) − h(S − Ŝ|Ŝ)

≥ h(S) − h(S − Ŝ)

≥ h(S) − 1

2
log
(

2πeE(|S − Ŝ|2)
)

=
1

2
log(2πeσ2

S) − 1

2
log
(

2πeE(|S − Ŝ|2)
)

=
1

2
log

σ2
S

E(|S − Ŝ|2)
.

Thus the proof is complete.

Proof of Theorem 1: For any single-letter codes {f(i), g(i)} with X(i) = f(S(i)) and Ŝ(i) =

g(Y (i)), we have the following Markov chain for any i:

S(i) −→ X(i) −→ Y (i) −→ Ŝ(i).
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By data processing inequality, we have

I(S(i); Ŝ(i)) ≤ I(X(i);Y (i)) ≤ 1

2
log(1 + h2(i)P (i)). (4)

Combing (4) and Lemma 2, we obtain that when there is power constraint P (i), and the fading

coefficient is h(i), the achieved distortion at time i:

E
(

|S(i) − Ŝ(i)|2
∣

∣

∣
h(i)

)

≥ σ2
S exp

(

−1

2
I(S(i); Ŝ(i))

)

≥ σ2
S

1 + h2(i)P (i)
.

Therefore,

E(|S(i) − Ŝ(i)|2) = Eh(i)

{

E
(

|S(i) − Ŝ(i)|2
∣

∣

∣
h(i)

)}

≥ σ2
SEh(i)

{

1

1 + h(i)2P (i)

}

.

It is easy to see that the equality is obtained by linear coding (c.f. (3)). Therefore among all

single-letter codes, linear coding is optimal.

We have shown the optimality of linear coding among all single-letter codes when the power

allocation {P (i) : i ∈ Z} is given. We further show that uniform power allocation is optimal. Suppose

P is the average power distortion, for the linear coding, the mean square distortion averaged over

time is

E(|S − Ŝ|2) def
= lim

n→∞

1

n

n
∑

i=1

E(|S(i) − Ŝ(i)|2 = lim
n→∞

1

n

n
∑

i=1

Eh(i)

{

σ2
S

1 + h2(i)P (i)

}

= lim
n→∞

1

n

n
∑

i=1

Eh

{

σ2
S

1 + h2P (i)

}

≥ σ2
SEh

{

1

1 + h2P

}

,

where the last step is due to the convexity of the function Eh

{

σ2

S

1+h2P (i)

}

in terms of P (i). Therefore

linear coding with uniform power allocation is optimal among all single-letter codes. Recalling the

definition of Dl(·) in (3), we get that the linear coding with uniform power allocation achieves MSE

Dl(P ) = σ2
SEh

{

1

1 + h2P

}

. (5)

When there is transmitter CSI, the optimal power loading is not uniform anymore. It can be

analytically solved in terms of the channel state h, and is given in the Appendix.

2.2 Linear Coding of Finite Block Length

In this section we consider the linear coding with block length n ≥ 2. The encoder is given by a

n × n matrix F , and the decoder is an MMSE decoder (see Fig. 3). Let ΩS
def
= E(S(n)S(n)T ), and

H
def
= diag(h(n)), then we have

X(n) = FS(n), Y (n) = HX(n) + W (n) = HFS(n) + W (n),

and

Ŝ(n) =
(

HFΩSF T HT + I
)

−1
HFΩSF T HT Y (n).
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The achieved MSE, in terms of the encoding matrix is F and channel matrix is H, can be expressed

as:

D(F,H)
def
=

1

n
tr
{

E
(

(S(n) − Ŝ(n))(S(n) − Ŝ(n))T
)}

=
1

n
tr
{

(

HFΩSF T HT + I
)

−1
ΩS

}

. (6)

The power constraint implies tr(FΩSF T ) ≤ nP .

S(n) −→ F −→ X(n) −→ channel −→ Y (n) −→ MMSE −→ Ŝ(n)

Figure 3: A linear coding system with block length n ≥ 2.

Thus, introducing Q = FF T , and noticing ΩS = σ2
SI, we can solve the following problem to

obtain the optimal Q∗, and get the optimal encoding matrix F ∗.

min EH

{

tr
(

HQHT + σ−2
S I

)

−1
}

(7)

s.t. tr(Q) ≤ nP

σ2
S

.

To solve (7), we quote the following two lemmas in matrix algebra without proof.

Lemma 3. For any square matrix R ≻ 0, it holds that tr(R−1) ≥
n
∑

i=1

R−1
ii , and equality holds iff R

is diagonal.

Lemma 4. For any square matrices A and B, it holds that tr(I + AB)−1 = tr(I + BA)−1.

Theorem 5. Considering the source-channel coding of a memoryless Gaussian source transmitted

through an AWGN fading channel, we obtain that any linear coding with finite block length can be

performed in single-letter form without performance loss.

Proof. To solve (7), we first apply Lemma 3 and obtain tr
(

HQHT + σ−2
S I

)

−1
= tr

(

QHT H + σ−2
S I

)

−1

for any H. Then by Lemma 4, we obtain

tr
(

QHT H + σ−2
S I

)

−1 ≥
n
∑

i=1

1

Qiih(i)2 + σ−2
S

, (8)

where equality holds iff Q is diagonal. Therefore, the optimal solution gives diagonal Q∗ = FF T .

Thus, any F ∗ =
√

Q∗U where U is unitary is an optimal solution. Specifically, if we take U = I,

we can obtain a diagonal F ∗. So any linear coding can be achieved in a single-letter form without

performance loss.
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2.3 Comparison of the Performance of Linear Coding with the Shannon’s Bound

In this section we examine the performance of linear coding, and compare it with the Shannon’s bound

(which is theoretically the best achievable). According to the separation theorem, the Shannon’s

bound can be obtained by combining the rate-distortion function and channel capacity. The rate-

distortion function of a memoryless Gaussian source with variance σ2
S is

R(D) =
1

2
log+ σ2

S

D
. (9)

Combining it with the channel capacity (when there is only Receiver CSI, and power constraint is

P )

C(P ) = Eh

{

1

2
log(1 + h2P )

}

,

we obtain the best achievable distortion in terms of P is

D∗(P ) = σ2
S exp

(

Eh

{

log
1

1 + h2P

})

. (10)

Recalling (5), it is easy to see that Dl(P ) ≥ D∗(P ) from concavity of the log-function. The equality

holds iff

Eh

{

log
1

1 + h2P

}

= log

(

Eh

{

1

1 + h2P

})

⇐⇒ 1

1 + h2P
= const.

Theorem 6. Linear coding (with block length n = 1) is optimal in Shannon’s sense iff |h| is deter-

ministic.

Therefore, we see that linear coding is optimal only if h is real, h ≡ ±c, or if h is complex, h is

distributed on a circle. For all other cases, we know that linear coding is suboptimal, and can not

achieve Shannon’s bound. In what follows, we bound the performance gap in terms of P and the

statistic of h.

Theorem 7. The MSE performance of linear coding can be bounded away from the theoretically best

achievable MSE (i.e., the Shannon’s bound) as follows. Define

γ(P, h)
def
=

Dl(P ) − D∗(P )

D∗(P )
,

which is the relative gap of the MSE achieved by linear coding from the Shannon’s bound. Then we

have

0 ≤ γ(P, h) ≤ P
√

Var(|h|2).

Proof. Introducing h2
0 = E(|h2|), then from (10) we obtain

D∗(P ) = σ2
S exp

(

Eh

{

log
1

1 + h2P

})

≥ σ2
S

1

1 + h2
0P

def
= D0(P ).
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Figure 4: MSE performance as P or Var(|h|2) increases. In the left plot, we assume h is Rayleigh fading with

Var(|h|2) = 1, but the transmit power P increases. In the right plot, we assume P=15dB, and h is Rician

fading with increasing variance Var(|h|2) (by taking different Rician factors).

Notice that the right term in the above formula is the best achievable performance when channel is

AWGN with the same average path gain, thus it is a natural performance bound for the fading case.

Recalling (5), we obtain

0 ≤ γ(h, P ) =
Dl(P ) − D∗(P )

D∗(P )
≤ Dl(P ) − D0(P )

D0(P )

= Eh

{

(h2
0 − h2)P

1 + h2P

}

≤ Eh

{

|h2 − h2
0|P
}

≤ P
√

Var(|h|2).

The proof is complete.

Therefore, the performance of linear coding is close to Shannon’s bound if Var(|h|2) is small, or

if P is small, where the latter happens, for example, in the applications of sensor networks. The plot

of the MSE performance of linear coding compared to the Shannon’s bound in the case of Rayleigh

fading with increasing power (when fading is fixed), or Rician fading with increasing variance (when

power P is fixed) are plotted in Fig. 4. We can see that when either the transmit power or the

variance of fading gain is relatively small, the MSE performance gap is negligible. In Fig. 5, we

numerically examine the behavior of the gap coefficient γ(P, h) for different fading distributions.

The universal upper bound of γ(P, h) given in Theorem 6 is quite loose for Rician distribution, but

is better when the fading is on-off where h takes values from a two-point set {0, 1}.

3 Conclusion and Future Work

We have studied the performance linear coding of a memoryless Gaussian source transmitted through

a discrete memoryless fading channel. We show that linear coding is optimal among all single-letter
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Figure 5: Performance gap of linear coding compared to the Shannon’s bound. The red curves are the

universal bound of the gap γ(P, h) given in Theorem 6 for all possible distributions. In addition, in the left

plot, we assume P = 0dB, and h is Rician fading with increasing Var(|h|2) (by taking different Rician factors);

in the right plot, we assume P = 0dB, and h is on-off fading with increasing Var(|h|2).

codes, but the performance of linear coding can not be improved by increasing the block length.

Thus, in general, the linear coding can not achieve the Shannon’s bound unless the magnitude of the

fading coefficient is a constant. We bound the performance gap of linear coding from the optimal

coding in terms of the variance of the fading gain and transmit SNR. Simulation shows that the gap

is negligible if either transmit power is or the variance of fading gain is relatively small.

As future directions, we are still investigating simple joint source-channel coding that can obtain

or approach the Shannon’s bound for the fading channels. We have shown in this paper that linear

coding is not a valid candidate, thus, other simple coding schemes need to be proposed. Also we have

shown that linear coding is optimal among all single-letter codes when a Gaussian source is matched

with a fading channel with AWGN. In general, it is worthwhile to find the best coding when there is

constraint imposed on block length. In such a scenario, separation theorem does not hold anymore.

We are interested in characterizing necessary/sufficient conditions for such best coding schemes with

limited block length for general source-channel pairs.

Appendix: Optimal Power Loading in Presence of Transmitter CSI

If there is CSI at the transmitter, the optimal power loading (along the time i) is not uniform

anymore. Instead, the optimal power loading is according to the CSI. Suppose when the channel

state is h, the corresponding power loading is P (h). Then the achieved average distortion is

D = Eh

{

σ2
s

1 + h2P2(h)

}

.
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The optimal power loading P ∗(h) can be solved from the following problem.

min Eh

{

σ2
s

1 + h2P2(h)

}

s.t. Eh{P (h)} = P, P (h) ≥ 0.

If h has finite states, and P (h = hi) = fi, i = 1, 2, . . . , L, then we have

min

L
∑

i=1

σ2
s

1 + h2
i Pi

fi

s.t.
L
∑

i=1

Pifi = P, Pi ≥ 0.

The Lagrangian is

G(P, λ, µ) =
L
∑

i=1

σ2
s

1 + h2
i Pi

fi + µ

(

L
∑

i=1

Pifi − P

)

−
L
∑

i=1

λiPi.

It is easy to see that at the optimal point,

∂G

∂Pi

= − σ2
sh

2
i

(1 + h2
i Pi)2

fi + µfi − λi = 0.

For those Pi 6= 0, we have λi = 0, and

σ2
sh

2
i

(1 + h2
i Pi)2

= µ.

Therefore,

P
opt
i =

1

hi

(

u0 −
1

hi

)+

,

where u0 is a common threshold for all states. If h has a non-discrete pdf, then by discretizing the

pdf, we can obtain

P opt(h) =
1

h

(

u0 −
1

h

)+

, (11)

and u0 is solved from
∫

∞

0
P opt(h)f(h)dh =

∫

∞

1

u0

1

h

(

u0 −
1

h

)

f(h)dh = P.

Since the obtained power loading is not water-filling (which achieves the capacity when there is

transmitter CSI), therefore the linear coding with power loading given in (11) is not optimal either.

It can be further verified as follows. The performance of separate source and channel coding is

obtained by combining the channel capacity

C(P ) = Eh

{

1

2
log(1 + h2Pw(h))

}

.
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and rate-distortion function in (9), which gives

D∗

w(P ) = σ2
S exp

(

Eh

{

log
1

1 + h2Pw(h)

})

,

where Pw(h) is water-filling power loading that maximizes the channel capacity under average power

constraint P . The linear coding with any power loading strategy Pu(h) has performance

Du(P ) = σ2
SEh

{

1

1 + h2Pu(h)

}

.

It is easy to see that

Eh

{

1

1 + h2Pu(h)

}

≥ exp

(

Eh

{

log
1

1 + h2Pu(h)

})

≥ exp

(

Eh

{

log
1

1 + h2Pw(h)

})

,

where the last inequality holds since Pw(h) is the capacity achieving power loading. Therefore

D∗

w(P ) ≤ Du(P ), where equality holds if and only if |h| ≡ 1, or P = 0.
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