Feedback capacity of multiple access & broadcast channels

Shahrokh Farahmand

Outline

- □ Single-user capacity with feedback
- Multiple-access channel (MAC)
 - Achievable region of Cover & Leung
 - □ Pf: Block Markov Coding (Random Coding)
 - Capacity not known an outer bound
 - White Gaussian MAC
 - □ For 2 Tx capacity is found by Ozarow
 - Pf: Deterministic coding of Schalkwijk & Kailath

Outline 2

- □ Broadcast Channel (BC)
 - Physically degraded BC
 - No capacity increase with feedback
 - Stochastically degraded BC
 - White Gaussian BC
 - Achievable region of Ozarow & Leung
 - Capacity not known an outer bound

Note ...

☐ Feedback is instantaneous & noiseless

- May not be practical
- Noiseless feedback: Satellite links
- Upper bound on practical feedback

Single user results

- Discrete memoryless channel
 - Capacity not changed by feedback: Shannon
 - Same result for white Gaussian channel
- Gaussian channel with correlated noise
 - Capacity is at most doubled by feedback
 - Proof by Pinsker and Ebert
 - Capacity is at most increased by half a bit
 - Proof by Cover and Pombra

MAC without feedback

☐ Capacity region:

$$R_1 \cdot I(X_1; YjX_2)$$
 $R_2 \cdot I(X_2; YjX_1)$
 $R_1 + R_2 \cdot I(X_1; X_2; Y)$

Where
$$p(x_1; x_2; y) = p(yjx_1; x_2)p(x_1)p(x_2)$$

Any point in the convex hull can be achieved by time sharing

Achievable region of Cover & Leung

$$R_1 < I(X_1; YjX_2; U)$$

 $R_2 < I(X_2; YjX_1; U)$
 $R_1 + R_2 < I(X_1; X_2; Y)$

Where the cardinality of U is bounded as:

$$jjUjj = minfjjX_1jj £ jjX_2jj;jjYjjg$$

And: $p(u; x_1; x_2; y) = p(u)p(x_1ju)p(x_2ju)p(yjx_1; x_2)$

Proof: Block Markov Coding

Block Markov Coding

- Tx B blocks of length n each
- □ Tx:
 - At block b superimpose & send
 - New data
 - ☐ An index to help Rx decode block b-1
 - Decode other Tx message by feedback
- □ Rx:
 - Decodes block b-1 using index of block b
 - Limits the possible estimates for block b

Block Markov Coding 2

```
w_1 2 f 1 \phi \phi \phi 2^{nR_1} g w_2 2 f 1 \phi \phi \phi 2^{nR_2} g j 2 f 1 \phi \phi \phi J g
Choose u^n(j): Q_{i=1}^n p(u_i). This codebook is the same for both Tx.
Tx1: Choose x_1^n(w_1;j): Q_n = p(x_{1i}ju_i(j)). Send x_1^n(w_1;j) at block b.
Tx2: Choose x_2^n(w_2; j): Q_{i=1}^n p(x_{2i}ju_i(j)). Send x_2^n(w_2; j) at block b.
Rx: Find unique j s.t. (u^n(j); y^n) \ge A_2^n
      Find all pairs (w_1; w_2) s.t. (x_1^n(w_1; j); x_2^n(w_2; j); y^n) 2 A_2^n
 Tx1: Find unique w_2 s. t. (x_1^n(w_1;j); x_2^n(w_2;j); y^n) 2 A_2^n
 Tx2: Find unique w_1 s. t. (x_1^n(w_1;j); x_2^n(w_2;j); y^n) 2 A_2^n
```

An Outer Bound ...

$$R_1 \cdot I(X_1; YjX_2)$$
 $R_2 \cdot I(X_2; YjX_1)$
 $R_1 + R_2 \cdot I(X_1; X_2; Y)$

Let C_0 denote the convex hull over all rate pairs $(R_1; R_2)$ satisfying the above equations for a given $p(x_1; x_2)$.

$$C_{fb} \mu C_0$$

White Gaussian MAC: no feedback

For two Tx with average power constraints:

$$E[X_{1}^{2}] \cdot P_{1}; \qquad E[X_{2}^{2}] \cdot P_{2}$$

$$R_{1} \cdot \frac{1}{2} \log(1 + \frac{P_{1}}{N})$$

$$R_{2} \cdot \frac{1}{2} \log(1 + \frac{P_{2}}{N})$$

$$R_{1} + R_{2} \cdot \frac{1}{2} \log(1 + \frac{P_{1} + P_{2}}{N})$$

White Gaussian MAC with feedback

□ For 2 Tx capacity found by Ozarow:

$$R_{1} \cdot \frac{1}{2} \log(1 + \frac{P_{1}}{N}(1_{1}^{1} \frac{1}{2}))$$

$$R_{2} \cdot \frac{1}{2} \log(1 + \frac{P_{2}}{N}(1_{1}^{1} \frac{1}{2}))$$

$$R_{1} + R_{2} \cdot \frac{1}{2} \log(1 + \frac{P_{1} + P_{2} + 2\frac{1}{2}}{N} \frac{P_{1}P_{2}}{N})$$

Capacity region is the convex hull of all rate pairs $(R_1; R_2)$ Satisfying above equations for a $\frac{1}{2}$: 0 · $\frac{1}{2}$ · 1.

Deterministic Coding with feedback

- Proposed by Schalkwijk & Kailath
 - Map messages to real numbers in [-.5,.5]
 - Send that number instead of the message
 - Rx feeds back an estimate of that number
 - After receiving the feedback
 - Tx sends the error in Rx estimate
 - Rx updates its estimate at each iteration
 - □ Rx feeds back its new estimate
 - Repeat until error variance is small enough
 - Closest value to Rx final estimate is chosen

Deterministic Coding with feedback 2

Tx i has message m_i 2 f 0; $\phi\phi\phi$; M_i ; 1g to transmit for i = 1; 2.

Tx i:
$$\mu_i = \frac{m_i}{M_{i,i}, 1}$$
 i $\frac{1}{2}$ μ_i : U[i 0:5; 0:5]

At time k = 1: Tx 1 sends $\frac{P}{12P_1}\mu_1$ while Tx 2 is quiet

At time k = 2: Tx 2 sends $p = 12P_2 \mu_2$ while Tx 1 is quiet

Rx: At time k = 1 receives
$$Y_1 = \frac{p}{12P_1}\mu_1 + Z_1$$

And forms the estimate
$$\hat{\mu}_1^1 = \hat{\mu}_1^2 = \frac{Y_1}{12P_1}$$

At time k = 2 receives
$$Y_2 = p \overline{12P_2}\mu_2 + Z_2$$
 and forms $\hat{\mu}_2^2 = \frac{Y_2}{12P_2}$

Deterministic Coding with feedback 3

Rx feeds back the its estimates to the transmitters

At time k + 1 where k 2:

Tx 1:
$$X_{1;k+1} = \frac{q_{\frac{P_1}{\mathbb{R}_{1;k}}^2}}{\frac{P_1}{\mathbb{R}_{1;k}}^2} 1;k$$
 $2_{1;k} = \hat{\mu}_1^k i \mu_1$

Tx 2:
$$X_{2;k+1} = \frac{q}{\frac{P_2}{\Re_{2;k}}} a_{2;k} sign(\frac{1}{R})$$
 $a_{2;k} = \frac{h}{2} i \mu_2$

Rx: Forms the LMMSE $\hat{\mu}_i^{k+1} = \hat{\mu}_i^k$; $\frac{Y_{k+1}^2_{i;k}}{Y_{k+1}^2} Y_{k+1}$

MAC: Feedback Vs. No feedback

$$2Tx + 1Rx$$

$$P_1 = P_2 = 10$$

$$N=1$$

Broadcast Channel

□ Degraded BC without feedback

```
R_1 \cdot I(X;YjU)
```

 $R_2 \cdot I(U;Z)$

```
Where jjUjj · minf jjX jj; jjYjj; jjZjjg
```

Capacity is the convex hull over all achievable rate pairs for a distribution p(u; x; y; z) = p(u)p(xju)p(y; zjx)

Degraded BC with feedback

- □ Physically degraded BC
 - Capacity does not increase with feedback
 - □ Converse similar to BC without feedback
 - Proved by El Gamal
 - □ Physically degraded white Gaussian BC
 - Converse proved by El Gamal
 - Uses the modified entropy power inequality

$$e^{\frac{2H(Y)}{n}}$$
, $e^{\left[\frac{2}{n}\right]^{P}}$, $e^{\left[\frac{2}{n}\right]^{H(X_{i}jY^{i}i^{-1})}]}$ + $e^{\frac{2H(Z)}{n}}$

Degraded BC with feedback 2

- Degraded white Gaussian BC
 - Feedback strictly enlarges capacity
 - Achievable region of Ozarow & Leung
 - □ Proof: Deterministic coding similar to MAC
 - Capacity not known
 - An outer bound by Ozarow & Leung

White Gaussian BC: Model

White Gaussian BC: no feedback

$$R_1 \cdot \frac{1}{2} \log 1 + \frac{\mathbb{R}P}{N + N_1}$$
 $R_2 \cdot \frac{1}{2} \log 1 + \frac{(1 \mid \mathbb{R})P}{N + N_2 + \mathbb{R}P}$

® 2 [0; 1] allocates total power between R₁ and R₂

Ozarow & Leung Region

$$R_{1} \cdot \frac{1}{2} \log \frac{N + N_{1} + P}{N + N_{2} + \frac{P}{D^{\pi}} g^{2} (1_{1} \frac{1}{2})^{2}}^{3}$$

$$R_{2} \cdot \frac{1}{2} \log \frac{N + N_{2} + P}{N + N_{2} + \frac{P}{D^{\pi}} (1_{1} \frac{1}{2})^{2}}^{3}$$

Where $D^{\pi} = 1 + g^2 + 2g\frac{1}{2}$ and $\frac{1}{2}$ is given as a function of $N; N_1; N_2; P; g$

Ex.
$$P = 10$$
; $N = 0$; $N_1 = N_2 = 1$

No feedback: $R_1 = R_2 = 0.59947$ nats

Feedback: $R_1 = R_2 = 0.70468$ nats

Outer bound: $R_1 = R_2 = 0.71956$ nats

Outer bound for BC with feedback

- Let Rx1 know the output of Rx2
 - □ Results in a physically degraded BC
 - Capacity with feedback is known

$$R_{1} \cdot \frac{1}{2} \log 1 + \frac{\mathbb{R}P}{N + \frac{N_{1}N_{2}}{N_{1} + N_{2}}}$$

$$R_{2} \cdot \frac{1}{2} \log 1 + \frac{(1 | \mathbb{R})P}{N + N_{2} + \mathbb{R}P}$$

Reverse the order of R_1 ; R_2 to get another outer bound Capacity region is included in the intersection of these two regions

Inner-Outer bounds for BC

$$N=0$$

$$N_1 = N_2 = 1$$

Conclusions

- MAC
 - Feedback strictly enlarges the capacity
 - Only case where capacity is known:
 - White Gaussian MAC with 2 Tx
- □ BC
 - Physically degraded channels:
 - No increase in capacity
 - White Gaussian BC
 - Feedback strictly enlarges capacity

Thank You!