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Abstract

In this paper, we study the achievable rates of practical ultra-wideband (UWB) systems using
pulse position modulation (PPM) and transmitted-reference (TR) transceivers. TR obviates the
need for complex channel estimation, which is particularly challenging in the context of UWB.
Based on an upper bound we derived for the error probability with random coding, we establish
that for SNR values of practical interest, PPM-UWB with TR can achieve rates on the order of
C(∞) = P/N0 (nats/second).

1 Introduction

Ideal for providing short-range high-rate wireless connectivity in a personal area network (PAN),
ultra-wideband (UWB) technology (a.k.a. impulse radio (IR)) relies on ultra-narrow pulses (at
nanosecond scale) to convey information, and has received a lot of attention recently. However,
there are still major design challenges to overcome. For instance, timing synchronization with pulse
level accuracy is difficult due to the fact that the transmitted pulse duration is very small. What
is more, the channel typically consists of hundreds of multi-path returns, which renders channel
estimation prohibitively costly. For this reason, the RAKE receiver, which is typically adopted to
collect the multi-path energy, is not as efficient in the context of UWB.

To overcome these difficulties, transmitted-reference (TR) transceivers relying on non-coherent
detection have received revived interest for UWB systems (see [4] and [8]). TR entails two pulses per
symbol period: the first is unmodulated, while the second one is information bearing and delayed
relative to the first by an amount exceeding the channel’s delay spread. This way, the first pulse
can serve as a template at the receiver side to demodulate the message carried by the second one.
Clearly, the costly channel estimation required in RAKE reception is bypassed by TR.

Motivated by the work of Souilmi and Knopp (see [9]), where the achievable rates of UWB
using pulse position modulation (PPM) and energy detection are examined, we will investigate here
the achievable rates of UWB radios using PPM and TR transceivers. The rest of this report is
organized as follows: Section II describes the system, while Section III deals with the derivation of
detection error probability and the calculation of achievable rates. In Section IV, numerical results
of the achievable rates are provided and compared against the AWGN channel capacity. Finally,
conclusions are drawn in Section V.

1



2 Modeling

2.1 Channel Model

The multi-path fading channel is modelled as:

h(t, τ) =

L−1∑

l=0

al(t)δ(τ − τl(t)), (1)

where L is the number of paths, al(t) is the gain of path l at time t, and τl(t) is the corresponding
delay. Without loss of generality, we assume τ0 = 0 < τ1 < ... < τL−1 with τL−1 denoting the channel
delay spread. In this work, we are interested in the scenario where the channel has a coherent period
Tc which is much larger than τL−1, i.e., Tc � τL−1. We consider a block fading channel, i.e.,
{al(t), τl(t)} remain constant over each Tc-period and are independent across coherence periods.

In the UWB regime, extremely large bandwidth (≥ 1GHz) enables the receiver to resolve a
large number of paths. If the channel has a high diversity order (i.e. in dense multi-path fading
environments), the aggregate channel gain

∑L−1
l=0 a2

l (t) varies slowly compared to al(t) and τl(t). We
can thus assume for all practical purposes that the total channel gain is constant and, without loss
of generality, can be normalized to 1; i.e.,

∑L−1
l=0 a2

l (t) = 1 (see [9]).

2.2 Transmitter Structure

Reference
Modulated:
position index: k

Figure 1: PPM with TR.

Flash-signaling has been shown to enjoy first order optimality (capacity achieving) in the wide-
band regime even when the receiver does not have channel knowledge [12]. As a practical means of
implementing flash-signaling, we adopt base-band PPM to transmit information bits. In particular,
the transmitted waveform per channel use is (see also Fig. 1),

x(t; k) =
√

PTs [αp(t) + βp(t − Td − k∆)] , k ∈ [0, m − 1], t ∈ [0, Ts], (2)

where P is the transmission power; p(t) is the normalized monocycle with duration Tp ≈ 1/W and
W is the UWB bandwidth; and α, β are positive scalars satisfying α2 + β2 = 1, which will be
optimized later. Delay Td is chosen such that Td ≥ τL−1 + Tp and the symbol period Ts is chosen
such that Ts = 2Td + (m − 1)∆ < Tc, which avoids inter-symbol interference (ISI).

In order to transmit M messages, we generate a codebook at random: C = {C1, ..., CM}. Each
codeword Cw is a length-N sequence Cw = [Cw,1, ..., Cw,N ] with Cw,n specifying the transmitted
waveform during the nth channel use when message w is sent. Codewords’ entries {Cw,n}n=1,...,N ;w=1,...,M

are independently generated according to the uniform distribution over [0, m − 1]. The aggregate
transmitted waveform for message w is thus,

uw(t) =

N∑

n=1

x(t − (n − 1)Ts; Cw,n), w ∈ [1, ..., M ], t ∈ [0, NTs]. (3)
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2.3 Receiver Structure

Assuming that message w = 1 has been sent, after propagation through the channel in (1), the
received signal is then:

r(t) = h(t) ? u1(t) + z(t), (4)

where “?” stands for linear convolution and z(t) denotes AWGN with double-sided power spectrum
density N0/2. When the system has bandwidth W , the temporal resolution is approximately 1/W ≈
Tp. Let Td be chosen such that Td = KdTp; then, within each coherence period, we can have an
equivalent channel [c.f. (1)]:

h(τ) =

Kd−1
∑

q=0

ãqδ(τ − qTp), (5)

where ãq =
∑L−1

l=0 al1τl∈[qTp,(q+1)Tp) with 1{.} denoting the indicator function. With the equivalent
channel in (5), when t lies in [0, Ts], we have:

r(t + (n − 1)Ts) = x(t; C1,n) ? h(t) + z(t + (n − 1)Ts)

=
√

PTs



α

Kd−1
∑

q=0

ã(n)
q p(t − qTp) + β

Kd−1
∑

q=0

ã(n)
q p(t − Td − C1,n∆ − qTp)



+ z(t + (n − 1)Ts). (6)

Letting Ts = KsTp and ∆ = K∆Tp, we can project the received signal onto the set of bases {p(t −
iTp)}Ks−1

i=0 to obtain:

rn,i :=

∫

p(t − iTp)r(t + (n − 1)Ts)dt, i = 0, ..., Ks − 1. (7)

Upon defining ã(n) := [ã
(n)
0 , ..., ã

(n)
Kd−1]

T and rn = [rn,1, ..., rn,Ks−1]
T , we find:

rn = [
√

PTsαã(n)T ,

C1,nK∆

︷ ︸︸ ︷

0, ..., 0,
√

PTsβã(n)T , 0, ..., 0]T + zn, (8)

where zn is zero mean Gaussian with covariance matrix (N0/2)I. In order to detect the transmitted
message, the receiver formulates the following decision statistic per message w:

d(w) =
1

N

N∑

n=1

dw,n =
1

N

N∑

n=1

rn(1 : Kd)
T rn(Kd + Cw,nK∆ : 2Kd + Cw,nK∆), (9)

where u(l : q) := [u(l), ..., u(q)]T . When w = 1, we find:

d1,n = rn(1 : Kd)
T rn(Kd + C1,nK∆ : 2Kd + C1,nK∆)

=

Kd−1
∑

q=0

[√

PTsαã(n)
q + zn(q + 1)

] [√

PTsβã(n)
q + zn(Kd + C1,nK∆ + q + 1)

]

. (10)

As N grows large, d(1) converges to E[d1,n] = E[
∑Kd−1

q=0 PTsαβã
(n)2
q ] = PTsαβ, where we have used

the assumption that the total channel gain is constant and has been normalized to have unit gain.
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When w 6= 1, we have

dw,n = rn(1 : Kd)
T rn(Kd + Cw,nK∆ : 2Kd + Cw,nK∆) =

Kd−1
∑

q=0

[√

PTsαã(n)
q + zn(q + 1)

]

×
[√

PTsβã
(n)
(Cw,n−C1,n)K∆+q + zn(Kd + Cw,nK∆ + q + 1)

]

. (11)

Clearly, if Cw,n 6= C1,n, we have E[dw,n] = 0 because {ã(n)
q }Kd−1

q=0 are independent to each other and
have zero mean.

Based on the decision variables d(1), ..., d(M), we claim message ŵ is sent if d(ŵ) ≥ ρ and ∀w 6= ŵ,
d(ŵ) < ρ, where ρ := PTsαβ(1− ε) is a certain threshold, and ε > 0 can be made arbitrarily close to
zero. Now, let us analyze the decoding error probability. It is easy to verify the following expression

for P
(N)
e :

P (N)
e = Pr

(

d(1) < ρ
⋃

∪M
w=2d(w) ≥ ρ

)

. (12)

In the next section, we will upper bound P
(N)
e and find the rate that is achievable in the sense that

P
(N)
e goes to zero as N , the number of channel uses, goes to infinity.

3 Achievable Rates

From the expression of P
(N)
e in (12), we can readily have the following union bound:

P (N)
e ≤ Pr(d(1) < ρ) +

M∑

w=2

Pr(d(w) ≥ ρ). (13)

Based on the law of large numbers, we know that limN→∞ d(1) = PTsαβ. Thus, we have

lim
N→∞

Pr(d(1) < ρ) = lim
N→∞

Pr(d(1) < PTsαβ(1 − ε)) = 0. (14)

When w 6= 1, in order to characterize Pr(d(w) ≥ ρ), we resort to the Chernoff bound, i.e.,

Pr(d(w) ≥ ρ) = Pr

(
N∑

n=1

dw,n ≥ Nρ

)

≤ e−tNρ
E

[

et
∑N

n=1
dw,n

]

= e−tNρ
N∏

n=1

E

[

etdw,n

]

, ∀t > 0, (15)

where in obtaining the last equality, we have used the fact that {dw,n}N
n=1 are independent to each

other. Now, our task is to find the moment generating function of dw,n as in (11). From [10, Chapt.
6], we can obtain the following result:

E

[

etdw,n

∣
∣
∣
∣
∣
{ã(n)

q }Kd−1
q=0

]

=
1

(

1 − N2
0

4 t2
)Kd/2

× eΞ, (16)

where Ξ is defined as follows:

Ξ := exp







N0

2 t2PTsαβ
∑Kd−1

q=0

(

ã
(n)2
q + ã

(n)2
q+(Cw,n−C1,n)K∆

)

+ 2tPTsαβ
∑Kd−1

q=0 ã
(n)
q ã

(n)
q+(Cw,n−C1,n)K∆

2
(

1 − N2
0

4 t2
)






.
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If during the nth channel use, codewords C1 and Cw dollide, i.e., |(Cw,n − C1,n)K∆| < Kd, then we
can upper bound (16) as:

E

[

etdw,n

∣
∣
∣
∣
∣
{ã(n)

q }Kd−1
q=0

]

≤ 1
(

1 − N2
0

4 t2
)Kd/2

exp







N0

2 t2PTsαβ2
∑Kd−1

q=0 ã
(n)2
q + 2tPTsαβ

∑Kd−1
q=0 ã

(n)2
q

2
(

1 − N2
0

4 t2
)






.

Using the assumption that
∑Kd−1

q=0 ã
(n)2
q = 1, we have

E

[

etdw,n

∣
∣
∣
∣
∣
{ã(n)

q }
]

≤ 1
(

1 − N2
0

4 t2
)Kd/2

exp







N0

2 t2PTs2αβ + 2tPTsαβ

2
(

1 − N2
0

4 t2
)






:= φcollision. (17)

If there is no collision over the nth channel use between codewords C1 and Cw, i.e., |(Cw,n −
C1,n)K∆| ≥ Kd, then we have

E

[

etdw,n

∣
∣
∣
∣
∣
{ã(n)

q }
]

=
1

(

1 − N2
0

4 t2
)Kd/2

exp







N0

2 t2PTsαβ
∑Kd−1

q=0 ã
(n)2
q

2
(

1 − N2
0

4 t2
)







=
1

(

1 − N2
0

4 t2
)Kd/2

exp







N0

2 t2PTsαβ

2
(

1 − N2
0

4 t2
)






:= φclear. (18)

With c denoting the number of collisions between codewords C1 and Cw, we obtain [c.f. (15 ), (17),
and (18)]:

Pr(d(w) ≥ ρ) ≤ e−tNρ
N∏

n=1

E

[

etdw,n

]

≤ e−tNρφc
collisionφN−c

clear. (19)

Now, in order to eliminate the effect of a particular codebook generation, we average the probability
Pr(d(w) ≥ ρ) over all codebook realizations and arrive at:

EC [Pr(d(w) ≥ ρ)] ≤ EC

[

e−tNρφc
collisionφN−c

clear

]

=
N∑

c=0

(
N

c

)

µc(1 − µ)N−ce−tNρφc
collisionφN−c

clear

= e−tNρ (µφcollision + (1 − µ)φclear)
N , ∀t > 0, (20)

where µ := Pr(|Cw,n − C1,n|K∆ < Kd). Substituting (17) and (18) into (20) and recalling (13), we
have:

EC

[

P (N)
e

]

≤ EC [Pr(d(1) < ρ)] +
M∑

w=2

EC [Pr(d(w) ≥ ρ)]

≤ EC [Pr(d(1) < ρ)] + MEC [Pr(d(w) ≥ ρ)]

≤ EC [Pr(d(1) < ρ)] + min
t>0

exp

{

− N

[

− ln M

N
+ tρ +

Kd

2
ln

(

1 − N2
0

4
t2
)

− ln

(

µ exp

{[
N0

2 t2 + t
]
PTs2αβ

2
(

1 − N2
0
t2

4

)

}

+ (1 − µ) exp

{
N0

2 t2PTsαβ

2
(

1 − N2
0
t2

4

)

})]}

. (21)
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One can clearly see from (21) that in order for the error probability to vanish as N goes to infinity,
we only need the following condition:

ln M

N
< max

t>0
tρ +

Kd

2
ln

(

1 − N2
0

4
t2
)

− ln

(

µ exp

{[
N0

2 t2 + t
]
PTs2αβ

2
(

1 − N2
0
t2

4

)

}

+ (1 − µ) exp

{
N0

2 t2PTsαβ

2
(

1 − N2
0
t2

4

)

})

. (22)

Considering the fact that each channel use lasts Ts = 2Td + (m − 1)∆ seconds, we obtain the rate
that is achievable in nats/second unit as follows:

R :=
ln M

NTs
< R0 :=

1

Ts
max
t>0

tPTsαβ(1 − ε) +
Kd

2
ln

(

1 − N2
0

4
t2
)

− ln

(

µ exp

{[
N0

2 t2 + t
]
PTs2αβ

2
(

1 − N2
0
t2

4

)

}

+ (1 − µ) exp

{
N0

2 t2PTsαβ

2
(

1 − N2
0
t2

4

)

})

. (23)

Adopting practical UWB system parameters, R0 in (23) will be numerically evaluated and com-
pared to AWGN channel capacity in the next section.

4 Numerical Results

AWGN channel capacity with bandwidth W is given by C(W ) = W ln(1 + PR/(N0W )) with PR

denoting the average received power. As W → ∞, we have C(W ) → C(∞) := PR/N0. Interestingly,
provided with infinite bandwidth, frequency shift keying (FSK) has been shown to be able to achieve
C(∞) with just non-coherent reception even in the presence of multi-path fading (see [6], [3], and
[11]). In this section, we will examine the achievable rates in a practical TR-PPM based UWB
system and compare them with C(∞).

4.1 Achievable Rates of an 1GHz UWB System

In 2002, FCC released a spectral mask for UWB transmissions (see [1]), where a maximum of 7.5GHz
of bandwidth (3.1−10.6GHz) and maximal transmitted power spectral density of −41.3dbm/MHz are
specified. For an 1GHz UWB system, the maximum transmission power would be PT = −12dBm. At
room temperature, i.e., T0 = 300K, the noise spectral density is N0 = kT0·F ·L = −102.83dBm/MHz,
where k is Boltzmann’s constant k = 1.38×10−23J/K, the noise figure is F = 6dB, and a link margin
L = 5dB is assumed. According to measurements in [2], 80dB path loss is expected at a 10m Tx-Rx
separation, which corresponds to a received-power-to-noise ratio PR/N0 = 70dB. Thus, 70dB can be
thought of as a high-SNR benchmark for practical UWB systems.

The RMS delay spread of a typical UWB channel is on the order of 20ns for indoor environments
[5]. Selecting ∆ = Td = 20ns in (2), for different values of the modulation size m, rate R0 in (23) for
W = 1GHz is plotted in Fig. 2 (α = β =

√
2/2 in (23)), from which we deduce that the achievable

rates are indeed on the order C(∞) within the practical SNR range.

4.2 Bandwidth Scaling

4.2.1 Free Space Propagation

When the channel has 0 delay spread, which corresponds to free space propagation, we can choose
Td = Tp and ∆ = Tp. With bandwidths 1GHz and 10GHz, the achievable rates are plotted in Fig.
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3. It is clearly evidenced from the figure that larger bandwidth will result in larger achievable rates.

4.2.2 Multi-path Fading Channel

As in Section 4.1, we still choose Td = ∆ = 20ns. The resulting achievable rates are plotted in
Fig. 4, from where we verify that larger bandwidth suffers from rate loss. This is the case because
the non-coherent receiver collects more noise when the bandwidth increases. Interestingly, similar
behavior has been observed in [11] and [7], where the non-coherent capacity of spread-spectrum
white-noise-like signaling over a multi-path fading channel is shown to approach zero as bandwidth
increases.

5 Conclusions and Future Work

In this paper, the achievable rates of practical UWB systems with PPM and TR are studied. It is
shown that for SNR values of practical interest, PPM-UWB with TR can achieve rates on the order
of C(∞) = P/N0 (nats/second).

Future work will explore a tighter bound for the moment generating function of dw,n when
there is a collision. The bound provided in (17) turns out to be very loose when Cw,n 6= C1,n and
|Cw,n − C1,n|K∆ < Kd, which will happen if we choose ∆ < Td in (2).
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Figure 2: Achievable rates of an 1GHz practical UWB system.
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Figure 3: Effect of bandwidth on achievable rates: free space propagation.
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Figure 4: Effect of bandwidth on achievable rates: multi-path fading channel.
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