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Abstract

In this paper, we deal with noncoherent communications over multi-input/multi-output (MIMO) wireless links
where the fading coefficients are not available to either the transmitter or the receiver. For a Rayleigh flat block-fading
channel with M transmit and N receive antennas and a channel coherence interval of length T , it is well-known that
for T À M , or, at high signal-to-noise-ratio (SNR) (ρ À 1,M ≤ min{N, bT/2c}), the random unitary space-time
modulation (USTM) is capacity-achieving, but incurs demodulation complexity that is exponential in T . On the
other hand, conventional training-based schemes that rely on known pilot symbols for channel estimation simplify
the receiver design, but they induce certain SNR loss due to channel estimation errors, which is asymptotically as
high as 2.17dB. To achieve desirable tradeoffs between performance and complexity, we propose a novel training
approach where USTM symbols with a short length Tτ (< T ) are used as pilots which can carry information to the
receiver. This new approach can reduce considerably the receiver complexity since Tτ is usually a fraction of T , and
it can also recover some of the SNR loss experienced by the conventional training-based schemes. When ρ → ∞
and T ≥ Tτ ≥ 2M = 2N →∞, but the ratios α = M/T, α1 = Tτ/T are fixed, we obtain analytical expressions of
the asymptotic SNR loss for both the conventional and new training-based approaches, which serve as a guideline
for practical designs. Numerical results are also given, to verify the usefulness of our asymptotic results.

Index Terms

Capacity, multiple antennas, coherent detection, noncoherent detection, unitary space-time modulation, channel
estimation

I. INTRODUCTION

Due to fading of the channel strength caused by constructive and destructive interference of the multiple signal
paths between the transmitter and the receiver, a major challenge in wireless communications is coping with channel
uncertainties. Pilot symbol assisted modulation (PSAM) is a standard training-based approach for communications
over time-varying channels [1], [2], [3]. In PSAM, pilot symbols known to both the transmitter and the receiver are
multiplexed with data symbols and used as training for channel acquisition. Since known pilot symbols carry no
data information, they reduce power and bandwidth resources during data transmission. Clearly, there is a tradeoff
in allocating these resources between pilot symbols and data symbols. Sending more pilots with increased power
improves the quality of channel estimation as well as the reliability of communication. However, over-increasing
the overhead for training reduces the amount of channel uses and power for information-carrying data symbols,
resulting in decreased data throughput.

An basic information-theoretic question for PSAM is how much training is necessary when using Shannon’s
capacity as the performance metric. For a given channel estimation accuracy, lower bounds on channel capacity
were found for a general setting [4], for Rayleigh flat block-fading multiple-input/multiple-output (MIMO) wireless
channels [5], [6], and for perfectly interleaved MIMO channels [7]. The optimal power allocation between the
pilot and data symbols as well as the number (equal to M ) of training symbols optimizing a lower bound on
capacity were obtained in [6]. Similar lower bounds are also available for single-antenna and multiple-antenna
frequency-selective fading channels, based on which the optimal training design has been derived [8], [9], [10].

Although training-based schemes like PSAM simplify transceiver design for noncoherent multiple-antenna sys-
tems, information-theoretic studies have revealed that in general they are not capacity-achieving. Marzetta and
Hochwald [11] investigated the capacity of a Rayleigh flat block-fading channel with M transmit, N receive
antennas and a channel coherence interval of length T , and found that the noncoherent channel capacity is achieved
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when the T ×M transmitted signal matrix is expressible as a product of two statistically independent matrices: a
T ×M isotropically distributed (i.d.) unitary matrix times a real, diagonal and nonnegative M ×M random matrix.
The asymptotic capacity for such a channel at high SNR can be achieved using only M∗ antennas, and increases
linearly with M∗(1−M∗/T ), where M∗ = min{M,N, bT/2c} [12]. In comparison, for the same channel model
except that the receiver knows the channel coefficients perfectly, it is well-known that the ergodic coherent channel
capacity increases linearly with min{M, N} [13], [14].

Motivated by results in [11], a class of isotropic unitary space-time modulation (USTM) signals was proposed
in [15], [16] to encode the transmitted signals using T ×M isotropic unitary matrices. For T À M [11], and for
high SNR ρ À 1 with M ≤ min{N, bT/2c} [12], the optimal input has indeed a USTM form. The main drawback
of USTM signals is that they are typically designed based on numerical optimizations [16], [17], [18], and because
they possess no particular algebraic structure, they require relatively high complexity. More problematically, their
demodulations incurs exponential complexity since the constellation size grows exponentially with the block length
T (the number of signal points is 2RT for a given rate of R bits per symbol). For this reason, USTM is practically
applicable only for small block lengths or low rates. Differential USTMs [19], [20] and alternative training-like
constellations [21], [22] that can be explained as training codes [23] enjoy polynomial complexity in T ; however,
they are generally not capacity-achieving for the block-fading channel.

Compared with the case when USTM is optimal, a training-based scheme suffers SNR degradation due to
imperfect channel state information (CSI), but gains the benefit of simplified receiver design. If Tτ out of T
symbols in a fading block are used to send known training symbols for channel estimation, it has been shown that
at high SNR only M∗ antennas should used for transmission, and the achievable rate also increases linearly with
M∗(1 −M∗/T ) similar to the noncoherent case; however, due to channel estimation errors there is a SNR loss
compared with the optimal noncoherent scheme [12], [6]. A training-based scheme can be capacity-achieving only
when T is sufficiently large, but the rate at which it attains this optimality as T grows has not been quantified yet.

In this paper, we first analytically compute the asymptotic SNR loss for the conventional training-based methods
when ρ → ∞ and T ≥ 2M = 2N → ∞, but the ratio α = M/T is fixed. We show that as α decreases, the
asymptotic SNR loss drops monotonically but also slowly from 2.17dB (α = 0.5) to zero (α → 0). Further, we
introduce a novel scheme that combines noncoherent and coherent detection for the block fading channel, and thus
is useful in trading off performance for complexity. A channel coherence interval T is divided into two parts, the
noncoherent part with Tτ symbols and the coherent part with Td(= T − Tτ ) symbols. The noncoherent symbols
carry information unknown to the receiver and are encoded over multiple fading blocks. A key observation is that
after those Tτ noncoherent symbols are correctly decoded without CSI, they can be further used to estimate the
channel coefficients in their own block, thus enabling the coherent detection of the remaining Td coherent symbols.
There are three advantages of the proposed scheme. First, unlike conventional training where the pilots are known
sequences only for the purpose of channel estimation and are incapable of carrying data information, here those
noncoherent symbols do carry information. Second, since Tτ is only a small fraction of T , the cardinality of the
noncoherent constellation is reduced considerably, leading to low decoding complexity. Finally, one is flexible to
control the tradeoff between complexity and SNR loss by selecting a suitable Tτ .

The rest of the paper is organized as follows. In Section II, we introduce the system model and provide some
preliminary results. In Section III, we dwell on the training-based scheme and compare it with USTM. In Section
IV, we introduce and analyze the novel noncoherent/coherent scheme. Numerical examples are given in Section V,
and conclusions are drawn in Section VI.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

We consider a single-user transmission with M transmit and N receive antennas over a frequency-nonselective
(flat) Rayleigh block-fading channel, as in [11]. The channel coefficients, which are unknown to both the transmitter
and the receiver, are assumed to remain constant over a block of T symbols, but are allowed to change independently
from block to block. Within a block of T symbols, given that a signal matrix Φ ∈ CT×M is transmitted1, the received

1Here C denotes the complex field.
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signal matrix X ∈ CT×N can be written as

X =

√
ρT

M
ΦH + W , (1)

where H ∈ CM×N is the channel matrix, and W ∈ CT×N is the additive noise matrix. Both H and W are complex
Guassian matrices with independent and identically distributed (i.i.d.) CN (0, 1) entries. The power constraint on
the transmitted signal is assumed to be E{Tr (Φ†Φ)} = M , and thus ρ is the average received SNR at each receive
antenna since Φ, H and W are independent. Because the receiver does not know the channel matrix H , the model
in (1) is often referred to as a noncoherent channel; otherwise, it is called a coherent channel.

B. Known Results on Coherent Capacity, Noncoherent Capacity and Mutual Information of USTM

When perfect knowledge of the channel coefficients is available at the receiver (but not at the transmitter), the
channel capacity, often called coherent capacity, is computed in [24], [14] and is summarized in the following
lemma.
Lemma 1: If H is known to the receiver, the coherent capacity in bits per symbol is given by

Ccoherent(ρ) = E{log2 det(IM +
ρ

M
HH†)} = E{log2 det(IN +

ρ

M
H†H)}. (2)

When M = N , the normalized asymptotic capacity for high SNR and large M satisfies

lim
M→∞

lim
ρ→∞

[
Ccoherent(ρ)

M
− log2(

ρ

e
)
]

= 0. (3)

For the noncoherent channel model described by (1), it has been shown that at high SNR the degrees of freedom
per symbol for each noncoherent block is M∗(1 − M∗/T ), where M∗ = min{M, N, bT/2c} [12]. This result
indicates that at high SNR, the optimal strategy is to use only M∗ out of M available antennas. The capacity-
achieving input matrix can be written as Φ = ΘD, where Θ is a T ×M isotropically distributed (i.d.) unitary
matrix, i.e., Θ†Θ = IM , and D is an M × M random real nonnegative diagonal matrix with E{Tr (D)} = 1
[11]. The distribution of D is generally unknown, except for the asymptotic case T À M [11] and for high SNR
with M ≤ min{N,T/2} [12], where D becomes a deterministic identity matrix D =

√
1/TIM , suggesting the

so-called USTM inputs for noncoherent channels [15]. The result is summarized in the following lemma for the
case T ≥ 2M = 2N [12, Theorem 9, Corollary 11].
Lemma 2: Assume T ≥ 2M = 2N . If T À M and/or ρ À 1, the unitary space-time modulation with Φ†Φ = IM

achieves the noncoherent channel capacity of (1). In particular, for ρ À 1 the capacity is given by

CM,M (ρ) = (1− M

T
)Ccoherent(ρ) + c(T, M) + o(1), (4)

where c(T,M) is a constant that depends only on M and T , and goes to zero as T →∞; and o(1) is a term that
goes to zero as ρ →∞. If we let both T and M go to infinity but keep the ratio α = M/T fixed, then we have 2

lim
M→∞

lim
ρ→∞

[
CM,M (ρ)

M
−

(
k(α)
ln 2

+ (1− α) log2(
ρ

e
)
)]

= 0, (5)

where

lim
M→∞

lim
ρ→∞

[
c(T,M)

M
− k(α)

ln 2

]
= 0, and k(α) =

(1− α)2

2α
ln(1− α) +

α

2
ln α +

1− α

2
< 0 (6)

for all 0 < α ≤ 1/2.

III. TRAINING WITH KNOWN PILOT SYMBOLS VERSUS USTM

In this section, we introduce the conventional training-based scheme with known pilot symbols and compare it
with USTM. Based on a lower bound CL

known of the training-based schemes, we compare the asymptotic behavior
of the two options when both M and T go to infinity, but their ratio α = M/T remains fixed.

2We believe that in eq. (22) of [12] the term log2 e should be ln 2.
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A. Training-Based Schemes

In a typical training-based system, the transmitted signal matrix Φ is partitioned into a training submatrix Φτ

and a data submatrix Φd as follows

Φ =
(

√
ρτTτ

M Φτ√
ρdTd

M Φd

)
, (7)

where Φτ ∈ CTτ×M with Tτ ≥ M, Tr (Φ†
τΦτ ) = M is the training matrix known to both the transmitter and the

receiver, and Φd ∈ CTd×M with E{Tr (Φ†
dΦd)} = M is the data matrix carrying information from the transmitter

to the receiver. The parameters ρτ and ρd are the SNR values during the training phase and the data transmission
phase, respectively. In addition, we have the equations of time and energy conservation: Tτ + Td = T, and ρT =
ρτTτ + ρdTd.

Similarly, the received signal matrix X and the noise matrix W are also partitioned into two submatrices

X =
(

Xτ

Xd

)
, and W =

(
W τ

W d

)
, (8)

where Xτ ∈ CTτ×N , Xd ∈ CTd×N (W τ ∈ CTτ×N ,W d ∈ CTd×N ) are the received signal (noise) matrices during
the training phase and the data transmission phase, respectively. We can thus write the signal model for the training
phase as

Xτ =

√
ρτTτ

M
ΦτH + W τ , (9)

and for the data phase as

Xd =

√
ρdTd

M
ΦdH + W d. (10)

The capacity in bits per symbol for the training-based scheme is given by [6]

Cknown = sup
Φτ ,p(Φd)

1
T

I(Φτ ,Φd;Xτ ,Φd) = sup
Φτ ,p(Φd)

1
T

I(Φd;Xd|Φτ , Xτ ), (11)

since Φτ is known to both the transmitter and the receiver and Φd is independent of Φτ and Xτ . The optimization
in (11) is performed over all choices of the deterministic training matrix Φτ and the input distributions p(Φd)
of the data matrix Φτ under the constraints that Tr (Φ†

τΦτ ) = M and E{Tr (Φ†
dΦd)} = M . However, such an

optimization problem is very difficult to solve.
One option is to form an explicit channel estimate Ĥ first and use it as if it were correct. In this process,

information may be thrown away, which results in a suboptimal scheme. Nevertheless, this method enables us to
compute a tight lower bound on channel capacity Cknown. We first compute a minimum mean square error (MMSE)
estimate of the channel matrix, and then absorb the estimation error to the additive noise to obtain an equivalent noise
term. Further, this new noise term is replaced by a worst case noise, yielding a lower bound on mutual information.
It has been shown in [6] that the training matrix with orthonormal columns Φ†

τΦτ = IM simultaneously maximizes
this lower bound and minimizes MMSE. If optimal power allocation between the training phase and the data phase
can be afforded, the optimal training interval length should be T opt

τ = M , and the corresponding lower bound is
given by

CL
known(ρ) = (1− M

T
)Ccoherent(ρeff ) (12)

where

ρeff =





ρT
T−2M (

√
γ −√γ − 1)2, for T > 2M ;

ρ2

1+2ρ , for T = 2M ;
ρT

2M−T (
√−γ −√−γ + 1)2, for T < 2M .

γ =
(M + ρT )(T −M)

ρT (T − 2M)
.

(13)
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Fig. 1: Asymptotic SNR loss ρloss(α)
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Fig. 2: SNR loss for finite ρ,M and T

Compared with the noncoherent capacity in (4) at high SNR for the case T ≥ 2M = 2N , the traing-based scheme
can achieve the same degrees of freedom M(1−M/T ); however, it incurs an SNR degradation which depends on
ρ,M and T . In Section III-B.1, an asymptotic expression for SNR loss will be found.

If equal training and data power ρ = ρτ = ρd is mandatory, then

CL
known(ρ) = (1− Tτ

T
)Ccoherent(ρeff ), (14)

where

ρeff =
ρ2Tτ/M

1 + (1 + Tτ/M)ρ
. (15)

In this case, the optimal training interval can be found numerically.

B. Comparison between Conventional Training-Based Schemes and USTM

In this section, we compare the asymptotic behavior of the mutual information of USTM and training-based
schemes with optimal power allocation, which motivates our training-based scheme with unknown symbols in
Section IV.

1) High SNR: Consider for simplicity that T ≥ 2M = 2N . From Lemma 2, we know that at high SNR, USTM
inputs are capacity-achieving. Compared with the first term in (4), the SNR loss in CL

known can be expressed as

β : =
ρ

ρeff
=

T − 2M

T
(
√

γ −
√

γ − 1)−2 =
T − 2M

T
(
√

γ +
√

γ − 1)2, for T > 2M. (16)

Since limρ→∞ γ = (T −M)/(T − 2M), substitution of the latter into β and simplification leads to

β∞ := lim
ρ→∞β = 1 + 2

√
M

T
(1− M

T
) (17)

for T ≥ 2M , since this expression also applies when T = 2M .
Note that β is not the real SNR loss at high SNR, since there is another term c(T, M) in (4) that does not depend

on ρ. To account for that, let us consider the case when both T and M go to infinity, but the ratio γ = M/T is
fixed. From Lemma 2, incorporating the term k(α) into log2(·) yields

lim
M→∞

lim
ρ→∞

[
CM,M (ρ)

M
− (1− α) log2

(
(
ρ

e
) · 2

k(α)
(1−α) ln 2

)]
= 0. (18)
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Also from Lemma 1, we have a similar asymptotic result for CL
known:

lim
M→∞

lim
ρ→∞

[
CL

known(ρ)
M

− (1− α) log2

(
(
ρ

e
) · β−1

∞
)]

= 0. (19)

Upon comparing (18) with (19), we obtain the following result.
Proposition 1: When ρ → ∞,M → ∞ and T → ∞, but the ratio α = M/T ≤ 1/2 is fixed, compared with the
noncoherent capacity, CL

known suffers an asymptotic SNR loss

ρloss(α) : = β∞ · 2
k(α)

(1−α) ln 2 =
[
1 + 2

√
α(1− α)

]
· 2

k(α)
(1−α) ln 2 , (20)

where k(·) is given in (6).
Corollary 1: It holds that ρloss(0.5) = 2.1715dB, and ρloss(0) = limα→0 ρ(α) = 0dB.

We plot ρloss(α) in Fig. 1 with α in logarithm scale. We observe that the SNR loss decreases monotonically
to zero as α → 0, which is consistent with the intuition that for large T training can be optimal; however, the
slope of decrease is very small. For example, the SNR loss is 1.5980dB at α = 10−1(T = 10M), and drops to
0.6981dB at α = 10−2(T = 100M). Even when α = 10−3(T = 1000M), there is still 0.2523dB SNR loss. For
the region T = 2 ∼ 20M , there is always an SNR loss less than 2.17dB, but more than 1.5dB. Fig. 2 compares
the asymptotic SNR loss with the case ρ = 25dB,M = 1, 4, 8 and T = 1 ∼ 100. It can be seen that ρloss(α) is
actually tight except when M = 1 and T < 10; therefore, ρloss(α) is a good approximation for practical scenarios.

Note that the interest in noncoherent channel models is often limited to the case when the channel varies quickly;
that is, when T is small. If T À M , then we can allocate minimal overhead for channel estimation and feed channel
estimates back to the transmitter, which leads to adaptive signaling designs with improved performance. When T
is not very large or comparable to M , it is not efficient to sacrifice a significant portion (M out of T ) of limited
resources to training, and it is not suitable to feed the channel estimates back to the transmitter since the channel
changes so quickly over time that it requires very fast feedback which induces considerable overhead. Under this
scenario, a training-based scheme is not capacity-optimal, although it can achieve the same degrees of freedom as
the optimal noncoherent scheme.

IV. TRAINING VIA INFORMATION-BEARING NONCOHERENT SPACE-TIME MODULATION

In this section, we present a new training-based scheme where “pilot” symbols, just like data symbols, can also
carry information and thus are unknown to the receiver. Indeed, it does not make sense to estimate the channel
when the receiver does not know the transmitted pilot symbols, unless some kind of blind channel estimation
scheme is used. However, it is definitely legitimate to do that after the receiver successfully recovers them. The
decoding of unknown pilot symbols, for sure, should not require CSI knowledge, which can be effected by using
any noncoherent communication scheme.

A. Training via Noncoherent Communication

The proposed system architecture is shown in Fig. 3. Information data are first encoded and then sent to
the coherent and noncoherent modulators, respectively. The modulator outputs Φτ and Φd are multiplexed for
transmission. The receiver first demultiplexes the received signal to obtain Xτ and Xd. Xτ carries data and
is decoded first. Since Φτ is noncoherently modulated, the receiver can decode it without knowing the fading
coefficient matrix H . Once the transmitted signal matrix is recovered as Φ̂τ after decoding, the receiver can
estimate the channel using Φ̂τ . The estimated channel Ĥ is subsequently sent to the coherent detector to decode
the information carried by Xd.

The receiver structure depicted in Fig. 3 is suboptimal in general, since information may be lost because: i) Φτ

and Φd are decoded not jointly but separately; and ii) an explicit Ĥ is formed and used as if it were correct. In
the following, we will develop a lower bound on the channel capacity that favors this suboptimal receiver.

The capacity in bits per symbol for the new scheme is the maximum over the distribution of the transmit signals
of the mutual information between the transmitted signals Φτ ,Φd and the received signals Xτ , Xd; i.e.,

Cunknown = sup
p(Φτ ,Φd)

1
T

I(Φτ ,Φd; Xτ ,Φd), (21)
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Compared with the conventional training-based system, it is even harder to compute the capacity for this new one.
Similarly, we are only be able to calculate a lower bound on capacity. Using the chain rule of mutual information,
we have

I(Φτ ,Φd; Xτ , Xd) = I(Φτ ; Xτ , Xd) + I(Φd; Xτ , Xd|Φτ )

= I(Φτ ; Xτ ) + I(Φτ ; Xd|Xτ ) + I(Φd; Xτ |Φτ ) + I(Φd; Xd|Φτ , Xτ )

≥ I(Φτ ; Xτ ) + I(Φd; Xd|Φτ ,Xτ ),
(22)

where the inequality cannot be reduced to equality, since Φτ is random and may depend on Φd. Even when Φτ

and Φd are independent, the term I(Φτ ; Xd|Xτ ) can still be nonzero. Nevertheless, supposing that Φτ and Φd

are independent, we find that Cunknown satisfies

Cunknown ≥ sup
p(Φτ ),p(Φd)

1
T

[(I(Φτ ; Xτ ) + I(Φd; Xd|Φτ ,Xτ )]. (23)

The optimization in (23) is taken over all input distributions p(Φτ ), p(Φd) adhering to the power constraints that
E{Tr (Φ†

τΦτ )} = M and E{Tr (Φ†
dΦd)} = M . Note that the righthand side of (23) is consistent with the receiver

structure shown in Fig. 3, in which the data stream Φτ is decoded first and Φd is decoded later based on Xτ and
the reconstructed Φτ (with or without using an explicit estimate of the channel).

B. Training via Unitary Space-Time Modulation

We do not know what inputs maximize I(Φτ ; Xτ ) + I(Φd; Xd|Φτ ,Xτ ) in (23). Instead, we choose Φτ to be
USTM for which I(Φτ ; Xτ ) can be calculated at least by Monte Carlo simulations [25], and then compute an
analytical lower bound on I(Φd; Xd|Φτ ,Xτ ) as in [12] and [6]. The reason for choosing unitary Φτ is two-fold:
first, the USTM inputs maximize I(Φτ ;Xτ ) for large Tτ (>> M), and for large ρτ with M ≤ min{N, bTτ/2c}.
Second, used as training symbols after being successfully decoded, the unitary Φτ minimizes MMSE and maximizes
a lower bound on capacity of training-based schemes simultaneously.

Since optimizing power between the training and non-training parts is difficult, we assume that equal power is
used: ρ = ρτ = ρd, which can also ensure constant modulus transmissions. For the USTM part, we have

I(Φτ ; Xτ ) = Tτ · IUSTM (ρ), (24)

where IUSTM (ρ) is the mutual information in bits per symbol of USTM inputs with block length Tτ .
For the part with channel estimation, due to equal transmission power, we obtain from (14) that

I(Φd; Xd|Φτ ,Xτ ) ≥ (1− Tτ

T
)Ccoherent(ρeff ) · T = (T − Tτ )Ccoherent(ρeff ), (25)

where ρeff = ρ2Tτ/M
1+(1+Tτ/M)ρ . Combining (24) and (25) leads to a lower bound in bits per symbol on channel capacity

CL
unknown(ρ) : =

1
T

[TτIUSTM(ρ) + (T − Tτ )Ccoherent(ρeff )] = α1IUSTM(ρ) + (1− α1)Ccoherent(ρeff ), (26)

if we define α = M/T as before, and α1 = Tτ/T ≤ 1.
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Fig. 4: Asymptotic SNR loss ρ′(α, α1) for 2α ≤ α1 ≤ 1
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Fig. 5: Asymptotic SNR loss ρ′(α, α1) for 2α ≤ α1 ≤ 1

C. High SNR

With T ≥ Tτ ≥ 2M = 2N , we have 2α ≤ α1. We are interested in the asymptotic behavior when ρ, T, Tτ and
M go to infinity, but the ratios α, α1 are fixed. Note that M/Tτ = α/α1.

Since Tτ ≥ 2M , at high SNR, the first term in CL
unknown(ρ) satisfies [c.f. Lemma 2]

IUSTM (ρ)
M

→ k(α
α1

)
ln 2

+ (1− α

α1
) log2(

ρ

e
), as ρ,M →∞. (27)

Note that for large ρ, we have ρeff = ρ
1+α/α1

. Similar to (3), we obtain for large ρ, M

Ccoherent(ρeff )
M

→ log2

[
(
ρ

e
)(1 +

α

α1
)−1

]
, as ρ,M →∞. (28)

Therefore,

CL
unknown(ρ)

M
→ α1k(α

α1
)

ln 2
+ (α1 − α) log2(

ρ

e
) + (1− α1) log2

[
(
ρ

e
)(1 +

α

α1
)−1

]

= (1− α) log2

[
(
ρ

e
) · (1 +

α

α1
)(
−1+α1
1−α

) · 2
α1k( α

α1
)

(1−α) ln 2

]
.

(29)

Compared with (18), we can identify the asymptotic SNR loss, as summarized in the following Theorem.
Theorem 1: When ρ → ∞,M → ∞, Tτ → ∞ and T → ∞, but the ratios 2α = 2M/T ≤ α1 = Tτ/T ≤ 1 are
fixed, CL

unknown(ρ) suffers an asymptotic SNR loss relative to the noncoherent capacity

ρ′loss(α, α1) = (1 +
α

α1
)

1−α1
1−α · 2

k(α)−α1k( α
α1

)

(1−α) ln 2 , (30)

where k(·) is given in (6).
Fig. 4 depicts rate vs. α, for fixed α1(≥ 2α), while Fig. 5 depicts rate vs. α1(≥ 2α), for fixed α. For fixed

α1, a large α leads to a high SNR loss, while for fixed α, a large α1 yields a small SNR loss. An interesting
fact revealed by Fig. 4 and 5 is that for sufficiently small α and α1, we find that the conventional training-based
scheme with power control is better, since ρ′loss(α, α1) > ρloss(α). For example, ρ′loss(0.05, 0.1) = 1.425dB while
ρloss(0.05) = 1.284dB. The reason is that equal transmission power is used for both training and non-training parts
with computing ρ′loss(α, α1). For very small α and α1, the advantage of power control is greater than the benefit of
noncoherent training. If optimal power allocation is used, which is a difficult optimization problem, we conjecture
that ρ′loss(α, α1) will be always smaller than ρloss(α). Even without power optimization though, for most interesting
(α, α1) combinations (α > 0.05, α > 0.1), our noncoherent training-based approach outperforms the conventional
one.
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V. NUMERICAL RESULTS

In this section, we present numerical simulation results for the three approaches over noncoherent channels:
USTM, training with known pilot symbols, and training with USTM symbols. We obtain the mutual information
IUSTM (ρ), CL

known(ρ) and CL
unknown(ρ) through Monte Carlo simulations for finite M = N, T and ρ. The results

validate the asymptotic SNR loss ρloss(α) and ρ′loss(α, α1). For the method of numerical evaluation of the mutual
information of USTM inputs, we refer the reader to [25].

Fig. 6 shows the result for M = N = 1, T = 10 and Tτ = 4. We observe that compared with USTM, training
with known pilot symbols suffers about 1.5dB SNR loss at ρ = 25dB, while training with USTM incurs only about
0.4dB penalty. These results are very close to the asymptotic SNR loss given by Proposition 1 and Theorem 1:
ρloss(0.1) = 1.598dB, ρ′loss(0.1, 0.4) = 0.438dB.

Fig. 6 depicts the result for M = N = 2, T = 10 and Tτ = 5. Compared with USTM, training with known
pilot symbols suffers about 1.8dB SNR loss at ρ = 25dB, while training with USTM incurs only about 0.55dB
loss. Similarly, these results are very close to the asymptotic SNR loss given by Proposition 1 and Theorem 1:
ρloss(0.2) = 1.912dB, ρ′loss(0.2, 0.5) = 0.580dB.

VI. CONCLUSIONS

We developed a new training scheme that uses information-bearing USTM symbols as “pilots” instead of known
symbols as in the conventional training-based approaches. The receiver first decodes these USTM pilot symbols
without channel state information, and then uses the decoded symbols as training to estimate the channel. While this
new method decreases the complexity of the capacity-achieving approach through a short USTM block Tτ < T , it
can also recover some SNR loss that is inherent to conventional training-based strategies. When T ≥ Tτ ≥ 2M =
2N →∞ and ρ →∞, but the ratios α = M/T, α1 = Tτ/T are fixed, the asymptotic expressions of SNR loss were
obtained analytically for both conventional and the proposed schemes, and are useful as a guideline for practical
MIMO designs. While the current work is only focused on the information-theoretic analysis, in our future work
we will pursue practical coding schemes for the proposed approach.
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