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Abstract 
In systems with a large number of transmit antennas M and a large number of users N, it is not 
always reasonable to assume that perfect channel knowledge can be made available to the 
transmitter. Since lack of channel knowledge does not lead to multi-user gains, it is therefore of 
interest to investigate transmission schemes that employ only partial channel state information 
(CSI). In this project, in order to exploit having multiple antennas in the transmitter without 
having full CSI in the transmitter, we propose a scheme that constructs M random beams and 
transmits to the users with the highest signal to interference plus noise ratio (SINR). We show 
that how the ricean factor K and SINR affect on the sum rate capacity. We also show that, when 
M is large enough, the system becomes interference-dominated. 
 

I. INTRODUCTION 
There has been line of work studying the sum rate capacity, and in fact the capacity region, 

of MIMO broadcast channels. In many applications, however, it is not reasonable to assume that 
all the channel coefficient to every user can be made available to the transmitter. This is 
especially true if the number of transmit antennas M and/or the number of users N is large. 
Since perfect channel state information may be impractical, it is very important to devise and 
study transmission schemes that require only partial channel state information at the transmitter. 
In [1], D. Tse assumed only the base station has multiple antennas, and thought that it is 
optimum for sum rate capacity to concentrate whole resources to one best user according to 
information theory. However, in non-degraded channel (MIMO BC), concentrating whole 
power to one user is not generally optimal. 
The scheme we propose is one that constructs M random orthonormal beams and transmits to 
users with the highest SINR. For , this is a vector Gaussian broadcast channel, and unlike 

the scalar Gaussian broadcast channel (M = 1), it is in general not degraded and the capacity 
region is unknown. The main result of this project is the following characterization of the sum 
rate capacity of this channel.  

M >1

 

II. CHANNEL MODEL AND NOTATIONS 
We consider a memoryless vector Gaussian broadcast channel to model the downlink of a 



wireless system with M antennas at the base station and N users with a single antenna at each 
receiver. Focusing on one particular time instant, denote the received symbol at receiver  by j

jy  and  They are related by  
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Fig. 1. Downlink with linear transmit beamforming 

 

Denoting by K the Ricean factor of the channel, we rewrite the channel matrix as H
 

K 1 ( )
K+1 K+1

w= +H H H                              (1) 

 
so as to separate the random component of the channel and the deterministic part: 

• H  represent the line of sight component of the channel  
• is the random component of the channel with Gaussian, independent and identically 

distributed entries. The complex element is circularly symmetric with zero mean and unit 
variance. 

( )wH

Here  is a  matrix withH M N× ij
∗H  entry denoting the channel gain from the th antenna 

to the th user.  is the vector input to the antenna array with an average total 

power constraint of P. The additive noise is zero mean, unit variance, complex circular 

symmetric Gaussian.   
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Note that the model is general enough to take into account line of sight (LOS) and non line of 
sight (NLOS) cases. Indeed, as , (1) models a deterministic fading channel, whereas 

for = 0 it describes a Rayleigh fading channel.  
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III. MAIN RESULT 
Transmitter beamforming is a sub-optimal technique that supports simultaneous 

transmission to multiple users on a broadcast channel. Each active user is assigned a 
beamforming direction by the transmitter and multi-user interference is treated as noise. Let 

 be the  vector of the transmit symbols at time slot t, and let  be the ( )S t M 1× ( )i tY N 1×  

vector of the received signal at the th receiver. We choose M normalized random vectors 
, where ’s are generated according to an isotropic distribution. 

Then at time slot t, the m

i
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th vector is multiplied by the mth transmit symbol , so that the 

transmitted signal is, 
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From now on for simplicity, we drop the time index, and therefore, the received signal at the 

 receiver is, ' thi
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We further assume that the  receiver knows  for ' thi i mH v 1, , Mm = K . Therefore, the 
 receiver can compute the following M SINRs by assuming that  is the desired signal 

and the other  are interference as follows, 
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where % 2
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Note that on average the ,
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. Thus if we randomly assign beams to users,  
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(a) follows from the Jensen’s inequality.  
Thus, even though we are sending M different signals, we do not get M fold increase in the 
capacity. For instance, we construct N = 2 orthonormal beams. Fig.1 and Fig.2 show that sum 
rate capacity never exceed 2 for the different M and SINR, respectively.  
 



 
Fig. 1 Sum rate capacity versus the Ricean factor K for different Ms 

 

Fig.2 Sum rate capacity versus the Ricean factor K for different SINRs 



Suppose now each receiver feeds back its maximum SINR, i. e. , along with the 

index  in which the SINR is maximized. Therefore, in the transmitter, instead of randomly 
assigning the beam to the users, the transmitter assigns  to the users with the highest 

corresponding SINR, i.e. . So if we do the above the sum rate capacity  
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Fig. 3 and Fig. 4 show the sum rate capacity when the random beamforming has the maximum 
SINR for the different M and SINR, respectively. Remarkably, the capacity depends only on a 
few meaningful parameters, namely, the number of antennas (M), the signal to interference plus 
noise ratio(SINR), and the Ricean factor K. In order to evaluate the lower and upper bounds, we 

have to obtain the distribution of . Since ,SINR i m 1( )= Mv v vK  is a unitary matrix, and so 

 is a vector with i.i.d.  entries. This implies that iH v (0,1)CN 2
i mH v  are i.i.d. over 

(and also over ) with  distribution. Therefore , are i.i.d. 

but not independent over . Thus, 
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Conditioning on y , the probability distribution function(PDF) of , , can be  ,SINR i m ( )f x

written as,  
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We can also calculate the cumulative distribution function (CDF) of  as, ,SINR , ( ),i m F x

M M 10
( ) ( M) 1 , 0

(1 ) (1 )

x xx e eF x x dx x
x x

− −

−= + = −
+ +∫ ≥          (9) 



 
Fig 3. Sum rate capacity versus the Ricean factor K for different M  

when random beamforming has maximum SINR 

 
Fig. 4 Sum rate capacity versus the Ricean factor K for different Power 

When random beamforming has maximum SINR 



Since ,SINR for 1, , Ni m i = K , are i.i.d. random variables, the CDF of  for 

 is 

,1 i N
max SINR i m≤ ≤

1, , Mm = K F ( )n x . Using the obtained CDF we can now evaluate the sum rate capacity of 
our proposed randomly chosen beam-forming technique: 
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where  and  are as defined in (8) and (9), respectively. ( )f x ( )F x
From (8) through (10) are derived from [4] 

 
IV. CONCLUSION 

This project deals with multiple antenna broadcast channels where due to rapid time 
variations of the channel, limited resources, imperfect feedback, full channel state information 
for all the users cannot be provided at the transmitter. Since having no channel state information 
does not lead to gains, it is important to study MIMO broadcast channels with partial CSI. In 
this project, the influence of line of sight components on the overall performance of MIMO 
broadcast channels has been considered. We propose using random beams and choosing the 
users with the highest signal to interference plus noise ratio. The transmitter is sending M 
random beamforms to different users instead of sending them to only one user with best SINR 
to attain linear growth in the channel capacity to the number of transmit antennas. The method 
proposed is optimal in that it uses M beamforms efficiently than the method where all the M 
beamforms are concentrated to one user with the best overall channel. 
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