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ABSTRACT stream is received on each of thé antennas. If BD is used, the
. L . . . streams for different receivers do not interfere, but the two stseam
Block diagonalization is a linear precoding technique for the mulyyended for a single receiver are generally not aligned with its two

tiple antenna broadcast (downlink) channel that involves transmis;niennas and thus post-multiplication by a rotation matrix (to align
sion of multiple data streams to each receiver such that no multig,o streams) is generally required before decoding.

user interference is experienced at any of the receivers. This low- |, order to correctly aim the transmit beams, both schemes re-
complexity scheme operates only a few dB away from capacity buf jre perfect Channel State Information at the Transmitter (CSIT).

does require very accurate channel knowledge at the transmittgf, e itect CSIT leads to incorrect beam selection and therefore mul-
which can be very difficult to obtain in fading scenarios. We con-;,qer interference, which ultimately leads to a throughput loss. Un-
sider a limited feedback system where each receiver knows its chafgo point to point MIMO systems where imperfect CSIT causes only
nel perfectly, but the transmitter is only provided with a finite NuM- 41 SNR offset in the capacity vs. SNR curve, the level of CSIT
ber of channel feedback bits from each receiver. Using a randomjga s the slope of the curve and hence Mneltliplexing gain in
vector quantization argument, we quantify the throughput loss dugy o5 4cast MIMO systems. We consider the case when the CSI is
to imperfect channel knowledge as a function of the feedback level,q\n herfectly at the receiver and is communicated to the transmit-
The quality of channel knowledge must improve proportional to theg, through a finite rate feedback channel and quantify the maximum
SNR in order to prevent interference-limitations, and we show thafie oss due to finite rate feedback with BD. MISO systems and ZF
scaling the number of feedback bits linearly with the system SNR iy, finite rate feedback are analyzed in [5]. Similar to the results in
s_ufﬁcnent to maintain a _bounded rate Ios_s. Finally, we investigate &) \ve show that scaling the number of feedback bits approximately
S|mple scalar _quantlzatlon scher_ne Fhat is seen to achieve the saj arly with the system SNR is sufficient to maintain the slope of
scaling behavior as vector quantization. the capacity vs. SNR curve and hence a constant gap from the ca-
Index Terms— MIMO systems, Broadcast channels, Quantiza-pacity of BD with perfect CSIT. The scaling factor for BD offers an
tion, Finite Rate Feedback, Multiplexing Gain advantage over ZF in terms of the number of bits required to achieve
the same sum capacity. Finally, we investigate a simple scalar quan-
tization scheme and see that this low complexity scheme requires the

1. INTRODUCTION same feedback scaling.

In multiple antenna broadcast (downlink) channels, transmit antenna

arrays can be used to simultaneously transmit data streams to re- 2. SYSTEM MODEL

ceivers and thereby significantly increase throughput. Dirty paper . . .

coding (DPC) is capacity achieving for the MIMO broadcast chan-Vé consider a single transmitter ahd user MIMO system where
nel [1], but this technique has a very high level of complexity. Zeroach user had/ antennas and the transmitter hiesantennas. The
Forcing (ZF) and Block Diagonalization (BD) [2] [3] are alterna- Proadcast channel is described as:

tive Iovy-complexity _transmission tecr_n_wiques. AI_though no@ optimal, yvi=HIx4n;, i=1,... K 1)
these linear precoding techniques utilize all available spatial degrees

of freedom and perform measurably close to DPC in many scenariashereH; € CM*¥ is the channel matrix from the transmitter to
[4]. the:" user ( < ¢ < K) and the vectox € C*! is the trans-

If the transmitter is equipped with/ antennas and there are mitted signal.n, € CV*! are independent complex Gaussian noise
at leastM aggregate receive antennas, zero-forcing involves transsectors of unit variance ang; € CV*! is the received signal vec-
mission of M spatial beams such that independent, de-coupled datmr at the:™ user. We assume a transmit power constraint so that
channels are created from the transmit antenna arrdy t@ceive  E[||x||*] < P (P > 0). We also assume thaf > 1 andK = &I,
antennas distributed amongst a number of receivers. Block diagevhich implies that the aggregate number of receive antennas equals
nalization similarly involves transmission @ff spatial beams, but the number of transmit antennas; as a result it is not necessary to
the beams are selected such that the signals received at different select a subset of receivers for transmission.
ceivers, but not necessarily at the different antenna elements of a The entries oH, are assumed to be i.i.d. unit variance complex
particular receiver, are de-coupled. For example, if thereldye Gaussian random variables, and the channel is assumed to be block
receivers with two antennas each, then two beams are aimed at edeling with independent fading from block to block. Each of the re-
of the receivers. If ZF is used, an independent and de-coupled dat&ivers is assumed to have perfect and instantaneous knowledge of



their own channel matrix. The channel matrix is quantized at eacR.3. Block Diagonalization

receiver and fed back to the transmitter (which has no other knowl- . L . .
edge of the instantaneous CSI) over a zero delay, error free, finitth® Block Diagonalization strategy when perfect CSl is available

rate channel. In order to perform BD, it is only necessary to knowAt the transmitter inv_olves precoding the signals to be transmitted
the spatial direction of each receiver's channel, i.e., the subspadB order to suppress interference at each user due to all other users

P Nx1
spanned byH;, and thus the feedback only conveys this informa-(Put not due to different antennas for the same uses, & C™*
tion. contains theV complex symbols intended for th® (1 < i < K)

user andV; € CM*V s the precoding matrix, then the transmitted
vector is given by:

2.1. Finite Rate Feedback Model p X
X = — Z ViSi (6)
The quantization codebook used at each receiver is fixed befaehan K i=1

and is known to the transmitter and each receiver. A quantlzatlogmo| the received signal at th user is given by:

codeboolC consists o2® matrices inC* >~ i.e. (W1, ..., W,5),
whereB is the feedback bits per user. The quantization of a channel 5 5 XK
matrix H;, sayH;, is chosen from the codebodkaccording to: yi = /?vaisi + /? Z HIV;s; +n, (7)
) J=1,j#i
H; = argmin d* (H;, W) 2
wec It is assumed that a uniform power allocation strategy among

users is employed (due to absence of channel magnitude informa-
whered (H;, W) is the distance metric. Here, we consider thetjon at the transmitter). Furthermore, in order to maintain the power
chordal distanc€6]: constraint it is assumed th&t” V; = I and E[||s;||?] < 1.
Following the BD strategy, eac¥; is chosen such tthfVi
N is 0, Vi # j. This amounts to determining an orthonormal basis
Zsin2 0; (©)] for the null space of the matrix formed by stacking Hl}, j #
i=1 matrices together. This reduces the interference terms in equation (7)
to zero at each user. This is different from Zero Forcing where each
where thed;’s are the principal angles between the two subspacesomplex symbol to be transmitted to the" antenna (among th&’
spanned by the columns of the matrices. As the principal angleantennas) of thé" user is precoded by a vector that is orthogonal
depend only on the subspaces spanned by the columns of the matd-all the columns ofl;; as well as orthogonal to all but the™
ces, it can be assumed that the elements ohitary matrices. No  column ofH;;.
channel magnitude information is fed back to the transmitter. However, perfect knowledge of tfid;’s at the transmitter is re-
quired for zero interference. When finite rate feedback is employed,
eachV; is chosen such th#Y V; = 0 Vi # j which is# HYV;
in general, and leads to a loss in throughput.

d(H;,W) =

2.2. Random Quantization Codebooks

Since the design of optimal quantization codebooks for the given
distance metric is a very difficult problem, we instead study perfor- 3. THROUGHPUT ANALYSIS
mance averaged oveandomgquantization codebooks. The Grass-
mannian manifold is the set of aN dimensional subspaces in an 3.1. Fixed Feedback Quality
M dimensional Euclidean space, and is denote@hy (C). Each
of the2” matrices making up the random quantization codebook idn the case of perfect CSIT and BD, the transmitter has the ability to
chosen independently and uniformly distributed ofgrn(C), and ~ suppress all interference terms giving a per user ergodic capacity of
each matrix can be assumed to be unitary (point&n(C) are
equivalence classes of orthonormal matrice€M*"). We ana- _ {
; sp(P) = Fu | log,
lyze the performance averaged over all possible random codebooks
The distortion or error associated with a given codeb8dkr the

P
In+ HHVBDngH' } (8)

quantization o € CM*" s defined as: whereVzp is the precoding matrix chosen by the BD procedure
given the channels of all the users. The expectation is carried out
5 A o over all channel$.
D=F [d (H, H)] =E LI}VHEI}: d (H,W)} (4) For finite rate feedback d® bits per user, multiuser interference

cannot be perfectly canceled and leads to additional noise power.

. L ) ) . Taking this interference into account, the per user throughput is:
whereH is the quantization aH. It is shown in [7]D satisfies:

K
P
INE _ P) = Fu, ¢ |log, |1 72 HIv,vig,|| -
D < (JT)(CJWN)_%2_% + Nexp [—(QBC'MN)I_G] =D Rra(P) H;.C | 108y [IN + 7o et K
(5)
i>aB _ . : p X

for a codebook of siz2”, wherel' = N(M — N) andaBei(gl) is Fu,c |log, |In + 2 Z HIV,VIH, )
areal number betwedhand1 chosen such thdtCxn27) 7 < 1. K Pl i

N .
Cun is given by T] 5=31. The second (exponential) term in
i=1

i where the expectation is carried out over all channels as well as ran-
(5) for the expression @b can be neglected for large. dom codebooksi(is any user betweehand K).



Theorem 3.1. The rate loss per user incurred due to finite rate feed- ~ The factor of N(M — N) suggests that the number of feed-
back with respect to perfect CSIT using Block Diagonalization carback bits per antenna reduce with increasvigThe number of bits

be bounded from above by: can grow very large for MIMO broadcast systems, and simulation
becomes a computationally complex task. However, utilizing the
AR(P) = [Rep(P)— Rrp(P)] statistics of random codebooks, systems with a small number of an-
< N log,(1+ PD) tennas can be simulated in a reasonable amount of time. We present

simulation results foM = 8 and N = 2 in Figure 1(a) while

Proof. AR(P) = [Rep(P) — Rrp(P)] scaling the bits as per (11). As Theorem 3.2 only provides the suf-

@ Py . ficient number of bits, this is a conservative strategy and the actual
< Enu {logg In+—-H VBDVBDH‘ ] - SNR gap is found to b2.3dB instead of3dB. The simulations also
K . g ; :
) suggest that keeping the number of bits fixed will result in rate loss
P oH H which increases with SNR. Similar results are presented in Figure
Eu,c |1 I — H;V,;V,’H; '
Hoc | 082 |IN + 7 Hi : } + 1(b) for anN = 3 system.

K
Bwu,.c | log, [In + % > HIV,V[H, 4. ZERO FORCING VS. BLOCK DIAGONALIZATION

- 7 Zero forcing is an even simpler strategy than BD, and it is important

to compare the performance of these two schemes under the presence
of limited feedback. Zero forcing for a MIMO broadcast system with

K users andV antennas per user is equivalent t&av = M user

system with a single antenna per user. The feedback scaling law for

K
P
£ Bu,c | log, Int g >, HIV,VIH
J=1,j#1

9 Eu,c |log, |In + ;ﬁf Z VvV, VI | HA, such a system is derived in [5] to be:
L I (M —1)
Bzr =~ ~——PyB (12)
G P(K -1 - -
< log, |In + %EHVC [H,H (V]-V;H ) H] M' 3

to maintain an SNR gap of no more thardB with respect to ZF

under perfect CSIT conditions. In general, BD achieves a higher
Here, bound (a) follows by neglecting the positive semi definiteSum rate than ZF with perfect CSIT where the rate galgisg: ()

interference terms. BotWzp andV; are uniformly distributed Z;V:l N—i 18] at high SNR. In order to compare the number of bits

and independent dfl; which results in (b). We writd, HY = reduiredjfor BD and ZF under imperfect CSIT and finite rate feed-
H;A;HF whereH; forms an orthonormal basis for the subspaceback, it is necessary to fix a common target rate. The bits required
spanned be the columns Bf; andA; = diag\1, ..., An] are the  per user for ZF must also be multiplied By for fair comparison.

N non-zero unordered eigen valuesifH!” (assumingH;; is of By settingb = 2% in (10) whereR, is the per user rate gap

rank N and diagonalizable) whet® [A;] is M1y, and (c) follows.  between BD and ZF with perfect CSIT arftithe target per user rate

The bound (d) follows from Jensen’s inequality due to the concavityoss for the ZF system, we can compareshéicientnumber of bits

of log| - |. It can also be shown thas c [ﬁfl (V,VH) I;L] _  required to achieve the same sum rate for both strategies. For exam-
' ' ple, R = 1 for a3 dB target and this suggests a bit savings of 20%

—M?N, which provides a bound on the rate loss per usécan be  for an a7 = 6,N = 2 system, and 25% for aMl = 9, N = 3

upper bounded by from (5) for large enouglB. O system with BD. The scaling law in Theorem 3.2 is however highly
conservative for largé, and though it is possible to see that BD has
3.2. Increasing Feedback Quality a clear advantage in terms of the sufficient number of bits required,

it is somewhat underestimated. If a ZF system is scaled to maintain
Theorem 3.2. In order to maintain a rate los& R(P) of no larger  33dB SNR gap relative to perfect CSIT and the number of feedback
thanlog,(b) > 0 per user, it is sufficient for the number of feedback pjts for BD is numerically determined to achieve the same sum rate,
bits per user to be scaled with SNR as: bit savings are about 40-50% for &fi = 6, N = 2 system.

B~ NM-N)p . N(M - N)logy(b¥ — 1
5 Las — N( ) logs( )+ 5. QUANTIZING THE CHANNEL

I Nat—wy)
N(M — N)1 —rir—— | — 1 10
( ) log, { NOT—N) 0gy(Cun)  (10) The scaling law in Section 3.2 was derived considering random code-

Thi . be found b ting th bound books, which are impractical for real world applications. Although
rate Iolsss?/v)(i?raeSgSI(b)narfsnsol?/in%u% B )ellsegufi:(]:%oneofl;?ppgglvior:;n %0ector guantization codebooks can be designed for more practical
082 : it is likel i high lexi he |
this numerically will yield the number of bits strictly sufficient for a systems itis likely to require very high complexity due to the large

. e ofoasb. W thaB is | ht number of bits at each mobile. It is thus worthwhile to investigate
maximum rate 10Ss Qlog20. Ve assume thab 1S large enougn to. complexity scalar quantization schemes. We believe that simple
neglect the exponential term in the expressionifoirom (5) which

) A o scalar quantization methods are capable of achieving the same bit
yields the above approximation. The total contribution of the terma? q e g
n

- ! T . caling rate as random codes, though they will incur a constant rate
containing the logarithm of the gamma function is less than a bit a
it can usually be neglected. To maintain a system throughput loss o

M bps/Hz, which corresponds to an SNR gap of no more The scalar quantization scheme is first presented for MISO sys-

tems (based on the idea in [9]). A complex channel vekipr=

with respect to BD with perfect CSIT, it is sufficient to scale the bits (H, Hy " € CM*1is first divided by one of its elements, say
as. _ H,, toyield M —1 complex elements. The phase of each of these el-
N(M — N) , _ . . .
B~ ————=Pip —log,(Cun) (11)  ementsis quantized separately and uniformly in the intdrval 7).

3



The inverse tangents of the magnitudes, for exarnple * ('H2‘ )

[Hq|
are quantized uniformly in the intervgd, 7]. Nonuniform quan- or , i
tization based on the distribution of these random variables is als: B%g’r‘fgﬁigziigém
possible, but (sub-optimal) uniform quantization appears to be suf o

of
ficient for the number of feedback bits to scale linearly with SNR BD with perfect CSIT

with the same slope as with random codebooks. The total number ¢~ ¥ _ | BD with 2.3dB
bits available to a user is assumed to be distributed equally amon g_ scalar quantization
the phases and magnitudes of file— 1 elements as far as possible, =) 5.5 dB
and the remaining bits are randomly assigned. g«
For MIMO systems, this is generalized to quantizing the mag- e Y Bl
nitude and phase (in the same manner) of the Iq@ér— N) x N é of LT e

entries of the matrid; ([T, | Z1]H;)~". I, is theN x & identity

; M ;
matrix andZ, the N x = zero matrix. _ _ 200 BD with fixed feedback rate
Although we do not offer an analytical proof that this scheme (70 bits)
achieves the same bit scaling rate as random codebook quantizatic . ‘ ‘ ‘
we present simulation results that certainly suggest this. The bit §s o % o

o . . SNR (dB)
for scalar quantization are scaled according to Equation (12) for al

M = 6, N = 1 MISO system (Figure 2). This maintains a constant (a) MIMO Broadcast Channel with M =8, N=2,K=4
gap with the perfect CSIT curve, although there 255@dB SNR loss

with respect to random codebook quantization. More sophisticate: 60

scalar quantization methods may be able to reduce this gap as we ) )
which indicates that simple scalar quantization schemes could pe st B%W“Q q“a”‘('jzebd CkS'T'
form quite well. Similar results for MIMO systems are presented in sl andom codebooks
Figures 1(a) and 1(b) with and2 users respectively. 5 .
= 45 BD with perfect CSIT
1]
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Fig. 2. Scalar quantization in MISO systems (M =6, N = 1)



