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Abstract— This paper studies the symmetric capacity of the
MIMO downlink channel, which is defined to be the maximum
rate that can be allocated to every receiver in the system.
The symmetric capacity represents absolute fairness and is an
important metric for slowly fading channels in which users have
symmetric rate demands. An efficient and provably convergent
algorithm for computing the symmetric capacity is proposed,
and it is shown that a simple modification of the algorithm
can be used to compute the minimum power required to meet
given downlink rate demands. In addition, the difference between
the symmetric and sum capacity, termed the fairness penalty, is
studied. Exact analytical results for the fairness penalty at high
SNR are provided for the 2 user downlink channel, and numerical
results are given for channels with more users.

I. INTRODUCTION

The multiple antenna downlink (or broadcast) channel has
been the subject of much research recently, primarily because
impressive multiple antenna capacity benefits can be realized
without requiring large numbers of mobile antennas (c.f.
[1]). Most research has concentrated on the sum capacity,
or maximum total throughput, of this channel. While this is
an extremely useful metric, the resulting rate allocation to
receivers can be very non-uniform: users with strong channels
are typically allocated more rate than users with weaker
channels, and some users may not be allocated any rate at all.
This may be undesirable in certain systems, particularly those
with unequal receiver channel qualities, and a more attractive
option is to allocate rates more uniformly. Thus, the symmetric
capacity, defined to be the maximum rate that can be allocated
to every receiver [2], is an important capacity metric.

We focus on quasi-static channels, where the channel is
fixed over the time period of interest (i.e., over the period
of the delay constraints). In this scenario, the instantaneous
rates achievable during a particular channel realization are
of importance because no scheduling over different channel
realizations can be performed. The symmetric capacity repre-
sents the fairest rate allocation in such a scenario. Note that
the majority of work on scheduling and fairness for downlink
channels (e.g., research on the proportionally-fair algorithm)
concentrates on long-term average rates. We alternatively focus
on instantaneous rates, which are meaningful when mobility
is limited and delay constraints are very stringent.

In this paper we develop an algorithm that computes
the symmetric capacity of a multiple-input multiple-output
(MIMO) downlink channel. While efficient algorithms for
computing the sum capacity as well as the boundary of the
capacity region exist [3][4], these cannot be used to directly

compute the symmetric capacity, which is the point on the
boundary of the capacity region that intersects with the 45
degree line through the origin (i.e., Ry = --- = Rg). We
characterize the symmetric capacity as a convex program
and then utilize the ellipsoid method to find the symmetric
capacity.

A simple modification of the algorithm can be used to
compute the intersection of the capacity region boundary and
any arbitrary ray from the origin, e.g., find where the line
Rs = 2R, intersects the capacity boundary. This is of interest
if differentiated service is to be provided to different sets of
users: for example, a set of premium users may be guaranteed
double the rate of non-premium users. This modified algorithm
can also be used to compute the minimum power required
to achieved a desired rate vector. This is clearly of use to
operators who need to determine the power required to meet
specified rate demands. Though this paper focuses on the
MIMO downlink channel, the proposed algorithms can be
applied to essentially any convex capacity region, e.g., the
MIMO uplink channel as well as fading and/or wideband
uplink or downlink channels.

We recently found a similar work in [5] for a wireline
channel environment, referred to as balanced capacity which
corresponds to our differentiated service capacity. Their work
considers single antenna frequency selective broadcast and
multiple access channels, and the capacity is found by iter-
atively solving Karush-Kuhn-Tucker (KKT) conditions. How-
ever, this algorithm does not easily extend to the multiple
antenna channel considered here.

In addition, we study the difference between the sum capac-
ity and the symmetric capacity, which represents the penalty
for requiring absolutely fair rate allocation, and is thus termed
the fairness penalty. The fairness penalty is exactly quantified
in the limit of high signal-to-noise ratio (SNR) for a 2 user
channel, and numerical results are provided for systems with
more users. We find that this fairness penalty is quite small,
which indicates that requiring fair rate allocation induces very
little reduction in total system throughput. Note that a similar
conclusion has been drawn for downlink channels with an
asymptotically large number of users and a fixed number of
antennas [6].

II. SYSTEM MODEL & BACKGROUND

We consider a K user Gaussian MIMO downlink channel
in which the transmitter has M antennas and each receiver has
N antennas. The received signal vector y, for user k is given



by
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where Hy(e CN*M) is the channel gain matrix for user
k, x is the transmit signal vector having a power constraint
tr(E[xxf]) < P, and n;, (k = 1,---,K) is complex
Gaussian noise with unit variance per vector component (i.e.,
Emfng] = I). We assume that the transmitter has perfect
knowledge of all channel matrices and each receiver has
perfect knowledge of its own channel matrix. Note that we
only consider static, or fixed, channels.

It is now well known that dirty paper coding achieves the
capacity region of the MIMO downlink channel [7], which we
denote as C(H, P). We include the variable H, which refers
to the aggregate channel from the transmitter to all mobiles, to
emphasize the fact that C(H, P) is the capacity for a specific
channel realization. While the rate equations describing the
capacity region are somewhat intractable, the dual MIMO
uplink channel, which has the same capacity region as the
MIMO downlink channel [8], allows for a simpler characteri-
zation of the capacity region. This dual characterization allows
the boundary of the capacity region C(H, P) to be found by
solving the following convex optimization problem:

f(p) £ max p - R subject to R € C(H, P), 2)
where p = [u1 po px )T is the rate reward vector
which will be referred to as the weight vector and R =
[R1 Ry --- Rxg]|" is the rate vector. The optimization finds
the point on the boundary of the capacity region where the
tangent to the capacity region is defined by the weight vector.
A steepest-descent algorithm is proposed in [4] to solve this
maximization for any weight vector. By solving (2) for all
possible weight vectors satisfying Zfil w; = 1, the entire
boundary of the capacity region can be traced out.

The symmetric capacity is defined as the maximum of the
minimum of all user rates:

C¥™(H,P) £

max

min(Ry, ...
REC(H,P)

,Ric). (3)
The structure of C(H, P) clearly implies that the rate vector
achieving the symmetric capacity is the point where C(H, P)
intersects the line defined by Ry = Ry = --- = Rg.

Though the capacity region C(H, P) can be found using (2),
this does not directly give the symmetric capacity because the
weight vector p corresponding to the rate vector achieving
the symmetric capacity (i.e., the slope of the boundary of
the capacity region at the symmetric capacity point) depends
on the channel realization. The sum capacity corresponds
to setting all weights to be equal (ie., up = 1/K (k =
1,2,---, K)), but does not necessarily give symmetric rates.
Fig. 1 illustrates the characterization of the capacity region
boundary in terms of the weights for a two-user case. By
varying p; and po, different points on the boundary at the
region can be found. Note that the weights specify the slope
at the tangent to the boundary.

Notations: Boldface letters denote matrix-vector quantities
and ()T and (-)¥ represent transpose and Hermitian transpose,

Fig. 1. Characterization of the boundary of the capacity region in terms of
the weight vector

respectively. For element-wise operations, the ith element of
a vector v is defined as [v]; or v; and the sub-vector from i

to j (j > i) elements of a vector v as [v]].

III. CAPACITY ALGORITHMS

In this section, algorithms computing the symmetric capac-
ity and differentiated capacity as well as a method to find the
minimum required power to achieve a given rate vector are
described.

A. Symmetric Capacity

It is theoretically feasible to directly solve for the symmet-
ric capacity using the dual multiple access channel (MAC)
characterization of C(H, P), but this would result in a convex
optimization problem with more than 2% constraints, which is
impractical for even moderate values of K. As an alternative,
we develop an iterative algorithm that finds the slope of the
boundary of the capacity region at the symmetric capacity rate
vector, and by doing so finds the symmetric capacity. We first
show that the symmetric capacity can be characterized as a
simple convex program:

Theorem 1: The symmetric capacity is equal to the mini-
mum weighted sum of rates, where the minimum is taken over
all possible weight vectors summing to one:

C™(H, P) = min f(w) S

wp>0, K =1
= min h(/’(‘17'-'7/’LK—1)7 (5
M1y y MK —1
where f(p) is defined in (2) and A(uq, . ..
as:

K-1
hpa, .. k1) = f <M17~-~>UK—1,1_ Z Ni) :
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Furthermore, both f(w@) and h(pi,...,pKx—1) are convex
functions and thus can be efficiently minimized.
Proof: See [9]. |
This theorem simplifies the problem of finding the sym-
metric capacity to a K — 1 dimensional unconstrained convex
program, for which efficient techniques exist. Note that the
function f (), and thus h(-), can be computed using the algo-
rithm in [4]. Since f(p) and h(-) are defined as maximums, it
is not clear if they are differentiable. However, a subgradient to
h(-) can be found: if R € C(H, P) achieves h(fi1, ..., fix—1)s
then it is straightforward to show that s with s; = Ri — RK
fort=1,..., K — 1 is a subgradient.

i —1) is defined



In order to solve the convex minimization in (5) we utilize
the ellipsoid algorithm, which can be used if subgradients can
be computed and which provably converges to the optimum.
The ellipsoid algorithm is essentially a generalization of the
bisection method to multi-dimensional space (see [10] for
more details) and is directly applied to the minimization of
h(p1, ..., ux—1) in (5), as detailed in Algorithm 1. Note that
variables s and x are (K — 1)-dimensional vectors, E is a
(K —1) x (K — 1) matrix, and p and R are K-dimensional
vectors.

The algorithm is initiated by designating an ellipse
that covers all feasible optimum points (u; > 0 and
SE <) ie BE=(1—1/K)Ig qand @ = p; = 1/K
fori=1,...,K —1 (and ux = 1/K). In each step, the rate
vector maximizing g - R is found. The weights puq, ..., ux
are then adjusted to attempt to equalize all user rates: users
with large rates have their weights decreases, while users
with small rates have their weights increased. The algorithm
is terminated either when all rates Ry, Ro, ---, and Rg
are sufficiently identical, or when the length of the major
axis (i.e. the largest eigenvalue of E) of the ellipsoid is
sufficiently small (step 2). If K = 2, the ellipsoid method
reduces to standard one-dimensional bisection (on p7). The
MATLAB code implementing Algorithm 1 is available at
http://www.ece.umn.edu/users/nihar/symmetric_cap_code.html.

Algorithm 1 Symmetric capacity with ellipsoid algorithm
l. R = argmax - R subject to R € C(H, P) (see [4])
2. if (max(eig(E)) < tol) or (|Rr — Rk| < tol,Vk)
break
3. Compute subgradient

R]f! — Rk (6)
§ = (7)

S =

4. Update ellipse

1
xt = X—gEE (8)
+ (K71)2 2 ~~T
Et = N E-—ES'E) 9
K-—1
(W = xT, k=1 4 (10)
i=1

A standard proof for the convergence of the ellipsoid algo-
rithm is given in [10], and it is easily shown that h(-) satisfies
the required Lipschitz condition. However, the rate vectors
returned by the ellipsoid algorithm can behave unusually due
to the fact that the boundary of the capacity region has many
flat (i.e., linear) sections, which correspond to weights of some
subset of users being identical.

When there are two receivers the capacity region boundary
is flat at the sum rate plane (11 = p2), as illustrated in Fig.
2. When the symmetric rate vector lies outside of the sum
rate plane, as in Fig. 2(a), the algorithm quickly converges to
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Fig. 2. Capacity region boundary examples for two users
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Fig. 3. Capacity region example for a three user case

the weight vector characterizing the symmetric rate vector.
In Fig. 2(b), convergence is slightly complicated because
the symmetric rate vector lies along the sum rate plane.
The ellipsoid method will quickly determine that the optimal
weight vector is in the vicinity of p; = pe = 0.5, but
will eventually oscillate between points close to A and B.
This is because if pq is slightly smaller than s, the solution
to max pu - R is a vector very close to point A, while the
solution to the maximization for po slightly larger than py is
a vector very close to B. When there are more than 2 users, the
capacity region boundary has a large number of flat sections, as
illustrated in Fig. 3 for a 3 user channel. Thus, oscillations of
this sort are even more likely to occur, but note that algorithm
still converges to the symmetric capacity because the feasible
ellipse continues to decrease in each step.

B. Differentiated Service Capacity

As an alternative to providing equal rate service to all users,
it may also be of interest to provide differentiated service to
users, in which ratios of the rates allocated to each user are
fixed. In a two user channel, as shown in Fig. 4, it may be
of interest to compute the largest rate vector such that R; =
2Rs (or vice versa). For arbitrary K, finding the differentiated
rate vector corresponding to Ry = ff—z = 2—: = ... = 5—;{
is equivalent to finding the point where the line defined by

a = (ay,...,ar) with o; = 1 intersects the boundary of the



Fig. 4. Differentiated service for 2 user channel

capacity region. We denote this as C4ff (o, H, P), and the
following is easily shown using the proof of Theorem 1:

Z“’R (11)

As a result, the ellipsoid algorithm can also be used to ﬁnd
CYf (o, H, P), with the only changes being that $1° | 2 LR,
should be maximized in step 1, the condition in step 2 should

CYf (o, H, P) =

min max
>0, ZL 1 =1 ReC(H,P)

check |f—: — %L and the subgradient in step 3 is given by
K—1
= T~ o
1

C. Minimum Power to Achieve a Rate Vector

Another important problem is determining the minimum
required transmit power to achieve a given rate vector R.
Previous research has provided sub-optimal solutions to this
problem [11][12], while we provide the optimal solution. The
key observation is that the differentiated capacity algorithm
can be used to determine the intersection of the capacity region
and an arbitrary line through the origin.

The algorithm can be simply described by considering a two
user example, as shown in Fig. 5. Here the minimum required
power is P, because the R lies on the boundary of C(Ps). In
addition, the line through the origin and R is also drawn. The
minimum power can be found by exploiting the fact that the
intersection of C(H, P) and this line can be determined using
the differentiated capacity algorithm (with o; = %’) described
in Section III-B. The differentiated capacity algorithm is run
for some initial guess of power such as P;. The returned
rate vector (i.e. the intersection of the line and C(Py)) is
smaller than the desired rate vector, and thus the power must
be increased. This process can be continued using the one-
dimensional bisection method, until the minimum power is
reached. The algorithm is explicitly described in Algorithm
2. Note that initial values for P, and P, can easily be
determined [9].

Algorithm 2 Minimum power to achieve a desired rate vector
1. if Phigh — Pow < tol
break
2. P = (Phigh + Plow)/2
3. Compute differentiated service capacity: C4ff (o, H, P)
4:1f CYf (o, H, P) > Ry, then Poigh = P, else Pow = P.

R<P<P,
RGOS

~ocp)
givenrate R =(R,R,)

R

Fig. 5. Boundaries of the capacity region with different powers

IV. SYMMETRIC CAPACITY VS. SUM CAPACITY

While symmetric capacity results in absolute fairness
amongst all users, it can result in sub-optimal total system
throughput. To be more specific, if the symmetric capacity vec-
tor does not lie on the sum rate plane, there is a strict reduction
in system throughput. This throughput loss is referred to as the
fairness penalty, i.e., the penalty paid for requiring absolute
rate fairness. This penalty will clearly depend on the number of
users and antennas, the system SNR, and the specific channel
realization.

First notice that the symmetric capacity vs. SNR curve has
the same slope, i.e., multiplexing gain, as the sum capacity
vs. SNR curve. This is intuitively clear because all spatial
degrees of freedom are used when achieving symmetric ca-
pacity. However, there can be an absolute rate difference, or
equivalently a rightward shift of the capacity curve, between
sum capacity and symmetric capacity which is not captured
by the multiplexing gain alone. It is often useful to study the
limiting behavior of this rate difference at asymptotically high
SNR, using the high SNR approximation developed in [13].

We provide exact analytical results for the high SNR
fairness penalty for 2 user broadcast channels with a single
receive antenna (/N = 1), and also discuss numerical results
for channels with more than two users. In this scenario, the
channel matrix can be reduced to vector quantities hy(€
C'*M), We define the high SNR fairness penalty A(H) as

A(H) & Plim [C*"™(H, P) —
where C"™(H, P) is sum of the rate vector R in C(H, P)
that maximizes the sum of rates. Although A(H) is defined
at asymptotically high SNR, it is generally quite accurate for
even moderate SNR values.

Theorem 2: For 2 user downlink channels with NV =1 and
M > 2, the fairness penalty is given by:

K-C¥™(H,P)], (12

[[ha | 1
[Iha||? < sin2 0

0, sin® @ <

b |2+ g 12
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A(H) =
), otherwise,

(13)
where 6 is the angle between channel vectors h; and ho,
lg;ll = [h;ll[sing|,i = argmingeqi2){[lhx}, and j =
arg maxpe (1,23 [/l }-

Proof: See [9]. |
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Fig. 6. Expected fairness penalty with respect to the number of transmit
antennas M (= number of users K).

For channels that satisfy the condition:

2
If? _ 1
~ sin?6’

sin? 6 < 5
[z

the symmetric capacity is exactly equal to the sum capacity
at sufficiently high SNR. Using the notation of Theorem 2,
this condition is equivalent to ||g;|| < |/h;||, where g; is
the projection of h;, the larger channel vector, onto the null
space of h;, the smaller vector. This condition is satisfied if the
channel norms are sufficiently close, or if the angle between
the channel vectors is sufficiently small. The first of these
reasons is intuitively clear, since one would expect there to be a
penalty associated with allocating equal rates if channel norms
are very disparate; the second reason is less intuitive and has
to do with the dependence of the shape of the capacity region
on the angle #. When the condition in (14) is not satisfied, the
fairness penalty A(H) can be shown to be a monotonically
increasing function of ||g;||. Thus, the penalty is an increasing
function of the disparity between the channel norms and of the
angle between the channel vectors.

No similar expression is known for channels with K > 2,
primarily because it is very difficult to analytically characterize
the symmetry capacity at high SNR in this scenario. However,
numerical results indicate that the gap is also small in this
scenario. In Fig. 6 the expectation (over iid Rayleigh fading
channels for each mobile) of the fairness penalty is plotted as a
function of the number of transmit antennas M for a downlink
channel with K = M and N = 1. It is clear from the figure
that the fairness penalty is very small and is also decreasing
to zero as M (or K) is increased. Notice that we adopt the
scenario that both M and K are simultaneously increasing.
We have found out that the decrease of the penalty is due to
the increase of M.

While Fig. 6 indicates that the fairness penalty is very
small for homogeneous users, i.e., users with the same average
SNR, the heterogeneous scenario is perhaps of more practical

(14)

interest. When average SNR’s are asymmetric, the fairness
penalty is expected to be larger, but preliminary numerical
results indicate that this penalty term is again surprisingly
small. For example, in a 4 user channel with M =4, N =1
and average SNR’s of 30 dB, 25 dB, 20 dB, and 15 dB, the
penalty is calculated to be 2.3 bps/Hz, which translates into a
power penalty of less than 2 dB. Our ongoing research efforts
are focused on deriving analytical expressions for the fairness
penalty for downlink channels with many users and antennas,
in both the homogeneous and heteregenous scenarios.

V. CONCLUSION

We proposed provably convergent algorithms for computing
the symmetric capacity of the MIMO downlink channel as well
as for computing the minimum required power to achieve a
desired rate vector. In fast fading scenarios where users have
very loose delay constraints (e.g., file transfer), rate fairness
is evaluated in terms of long-term average rates. When delay
constraints are more stringent and fading occurs on a slow time
scale, traffic demands must be met on a very fast time scale,
and thus fairness must be evaluated in terms of short-term, or
instantaneous, rates. In this setting, the symmetric capacity is a
crucial metric for evaluating system performance. In addition,
results comparing symmetric and sum capacity show that total
system throughput is only slightly decreased if absolute rate
fairness is required.
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