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Performance of Hybrid-ARQ in Block-Fading
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Abstract—This paper studies the performance of hybrid-ARQ
(automatic repeat request) in Rayleigh block-fading channels.
The long-term average transmitted rate is analyzed in a fast-
fading scenario where the transmitter only has knowledge of
channel statistics, and, consistent with contemporary wireless
systems, rate adaptation is performed such that a target outage
probability (after a maximum number of H-ARQ rounds) is
maintained. H-ARQ allows for early termination once decoding
is possible, and thus is a coarse, and implicit, mechanism for
rate adaptation to the instantaneous channel quality. Although
the rate with H-ARQ is not as large as the ergodic capacity,
which is achievable with rate adaptation to the instantaneous
channel conditions, even a few rounds of H-ARQ make the
gap to ergodic capacity reasonably small for operating points of
interest. Furthermore, the rate with H-ARQ provides a significant
advantage compared to systems that do not use H-ARQ and only
adapt rate based on the channel statistics.

Index Terms—Fading channels, automatic repeat request, in-
formation rates, channel coding.

I. INTRODUCTION

AUTOMATIC REPEAT REQUEST (ARQ) is an ex-
tremely powerful type of feedback-based communication

that is extensively used at different layers of the network
stack. The basic ARQ strategy adheres to the pattern of trans-
mission followed by feedback of an ACK/NACK to indicate
successful/unsuccessful decoding. If simple ARQ or hybrid-
ARQ (H-ARQ) with Chase combining (CC) [1] is used, a
NACK leads to retransmission of the same packet in the
second ARQ round. If H-ARQ with incremental redundancy
(IR) is used, the second transmission is not the same as the first
and instead contains some “new” information regarding the
message (e.g., additional parity bits). After the second round
the receiver again attempts to decode, based upon the second
ARQ round alone (simple ARQ) or upon both ARQ rounds
(H-ARQ, either CC or IR). The transmitter moves on to the
next message when the receiver correctly decodes and sends
back an ACK, or a maximum number of ARQ rounds (per
message) is reached.

ARQ provides an advantage by allowing for early termi-
nation once sufficient information has been received. As a
result, it is most useful when there is considerably uncertainty
in the amount/quality of information received. At the network

Paper approved by L. K. Rasmussen, the Editor for Iterative Detection De-
coding and ARQ of the IEEE Communications Society. Manuscript received
November 24, 2008; revised June 4, 2009 and August 27, 2009.

This research was supported by the DARPA IT-MANET program, grant
no. W911NF-07-1-0028.

The authors are with the Department of Electrical and Computer Engi-
neering, University of Minnesota, Minneapolis, MN 55455 USA (e-mail:
{pengwu, nihar}@umn.edu).

Digital Object Identifier 10.1109/TCOMM.2010.04.080622

layer, this might correspond to a setting where the network
congestion is unknown to the transmitter. At the physical
layer, which is the focus of this paper, this corresponds to
a fading channel whose instantaneous quality is unknown to
the transmitter.

Although H-ARQ is widely used in contemporary wireless
systems such as HSPA [2], WiMax [3] (IEEE 802.16e) and
3GPP LTE [4], the majority of research on this topic has
focused on code design, e.g., [5], [6], [7], while relatively little
research has focused on performance analysis of H-ARQ [8].
Most relevant to the present work, in [9] Caire and Tuninetti
established a relationship between H-ARQ throughput and
mutual information in the limit of infinite block length.
For multiple antenna systems, the diversity-multiplexing-delay
tradeoff of H-ARQ was studied by El Gamal et al. [10],
and the coding scheme achieving the optimal tradeoff was
introduced; Chuang et al. [11] considered the optimal SNR
exponent in the block-fading MIMO (multiple-input multiple-
output) H-ARQ channel with discrete input signal constella-
tion satisfying a short-term power constraint. H-ARQ has also
been recently studied in quasi-static channels (i.e., the channel
is fixed over all H-ARQ rounds) [12], [13] and shown to bring
benefits to secrecy [14].

In this paper we build upon the results of [9] and perform
a mutual information-based analysis of H-ARQ in block-
fading channels. We consider a scenario where the fading is
too fast to allow instantaneous channel quality feedback to
the transmitter, and thus the transmitter only has knowledge
of the channel statistics, but nonetheless each transmission
experiences only a limited degree of channel selectivity. In
this setting, rate adaptation can only be performed based
on channel statistics and achieving a reasonable error/outage
probability generally requires a conservative choice of rate if
H-ARQ is not used. On the other hand, H-ARQ allows for
implicit rate adaptation to the instantaneous channel quality
because the receiver terminates transmission once the channel
conditions experienced by a codeword are good enough to
allow for decoding.

We analyze the long-term average transmitted rate achieved
with H-ARQ, assuming that there is a maximum number of
H-ARQ rounds and that a target outage probability at H-ARQ
termination cannot be exceeded. We compare this rate to that
achieved without H-ARQ in the same setting as well as to the
ergodic capacity, which is the achievable rate in the idealized
setting where instantaneous channel information is available
to the transmitter. The main findings of the paper are that
(a) H-ARQ generally provides a significant advantage over
systems that do not use H-ARQ but have an equivalent level
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of channel selectivity, (b) the H-ARQ rate is reasonably close
to the ergodic capacity in many practical settings, and (c) the
rate with H-ARQ is much less sensitive to the desired outage
probability than an equivalent system that does not use H-
ARQ.

The present work differs from prior literature in a number
of important aspects. One key distinction is that we consider
systems in which the rate is adapted to the average SNR
such that a constant target outage probability is maintained
at all SNR’s, whereas most prior work has considered either
fixed rate (and thus decreasing outage) [11] or increasing rate
and decreasing outage as in the diversity-multiplexing tradeoff
framework [10][15]. The fixed outage paradigm is consistent
with contemporary wireless systems where an outage level
near 1% is typical (see [16] for discussion), and certain conclu-
sions depend heavily on the outage assumption. With respect
to [9], note that the focus of [9] is on multi-user issues, e.g.,
whether or not a system becomes interference-limited at high
SNR in the regime of very large delay, whereas we consider
single-user systems and generally focus on performance with
short delay constraints (i.e., maximum number of H-ARQ
rounds). In addition, we use the attempted transmission rate,
rather than the successful rate (which is used in [9]), as our
performance metric. This is motivated by applications such as
Voice-over-IP (VoIP), where a packet is dropped (and never
retransmitted) if it cannot be decoded after the maximum
number of H-ARQ rounds and quality of service is maintained
by achieving the target (post-H-ARQ) outage probability. On
the other hand, reliable data communication requires the use of
higher-layer retransmissions whenever H-ARQ outages occur;
in such a setting, the relevant metric is the successful rate,
which is the product of the attempted transmission rate and the
success probability (i.e., one minus the post-H-ARQ outage
probability). If the post-H-ARQ outage is fixed to some target
value (e.g., 1%), then studying the attempted rate is effectively
equivalent to studying the successful rate.1

II. SYSTEM MODEL

We consider a block-fading channel where the channel
remains constant over a block but varies independently from
one block to another. The 𝑡-th received symbol in the i-th
block is given by:

𝑦𝑡,𝑖 =
√

SNR ℎ𝑖𝑥𝑡,𝑖 + 𝑧𝑡,𝑖, (1)

where the index 𝑖 = 1, 2, ⋅ ⋅ ⋅ indicates the block number,
𝑡 = 1, 2, ⋅ ⋅ ⋅ , 𝑇 indexes channel uses within a block, SNR is
the average received SNR, ℎ𝑖 is the fading channel coefficient
in the 𝑖-th block, and 𝑥𝑡,𝑖, 𝑦𝑡,𝑖, and 𝑧𝑡,𝑖 are the transmitted
symbol, received symbol, and additive noise, respectively. It
is assumed that ℎ𝑘 is complex Gaussian (circularly symmetric)
with unit variance and zero mean, and that ℎ1, ℎ2, . . . are i.i.d..
The noise 𝑧𝑡,𝑖 has the same distribution as ℎ𝑘 and is indepen-
dent across channel uses and blocks. The transmitted symbol
𝑥𝑡,𝑖 is constrained to have unit average power; we consider

1If the post-H-ARQ outage probability can be optimized, then a careful
balancing between the attempted rate and higher-layer retransmissions should
be conducted in order to maximize the successful rate. Although this is beyond
the scope of the present paper, note that some results in this direction can be
found in [17] [18].

Gaussian inputs, and thus 𝑥𝑡,𝑖 has the same distribution as the
fading and the noise. Although we focus only on Rayleigh
fading and single antenna systems, our basic insights can be
extended to incorporate other fading distributions and MIMO
as discussed in Section IV (Remark 1).

We consider the setting where the receiver has perfect
channel state information (CSI), while the transmitter is aware
of the channel distribution but does not know the instantaneous
channel quality. This models a system in which the fading is
too fast to allow for feedback of the instantaneous channel
conditions from the receiver back to the transmitter, i.e., the
channel coherence time is not much larger than the delay in
the feedback loop. In cellular systems this is the case for
moderate-to-high velocity users. This setting is often referred
to as open-loop because of the lack of instantaneous channel
tracking at the transmitter, although other forms of feedback,
such as H-ARQ, are permitted. The relevant performance
metrics, notably what we refer to as outage probability and
fixed outage transmitted rate, are specified at the beginning of
the relevant sections.

If H-ARQ is not used, we assume each codeword spans 𝐿
fading blocks; 𝐿 is therefore the channel selectivity experi-
enced by each codeword. When H-ARQ is used, we make the
following assumptions:

∙ The channel is constant within each H-ARQ round (𝑇
symbols), but is independent across H-ARQ rounds.2

∙ A maximum of 𝑀 H-ARQ rounds are allowed. An
outage is declared if decoding is not possible after 𝑀
rounds, and this outage probability can be no larger than
the constraint 𝜖.

Because the channel is assumed to be independent across H-
ARQ rounds, 𝑀 is the maximum amount of channel selectivity
experienced by a codeword. When comparing H-ARQ and no
H-ARQ, we set 𝐿 = 𝑀 such that maximum selectivity is
equalized.

It is worth noting that these assumptions on the channel
variation are quite reasonable for the fast-fading/open-loop
scenarios. Transmission slots in modern systems are typically
around one millisecond, during which the channel is roughly
constant even for fast fading. 3 An H-ARQ round generally
corresponds to a single transmission slot, but subsequent ARQ
rounds are separated in time by at least a few slots to allow
for decoding and ACK/NACK feedback; thus the assumption
of independent channels across H-ARQ rounds is reasonable.
Moreover, a constraint on the number of H-ARQ rounds limits
complexity (the decoder must retain information received in
prior H-ARQ rounds in memory) and delay.

Throughout the paper we use the notation 𝐹−1
𝜖 (𝑋) to

denote the solution 𝑦 to the equation ℙ[𝑋 ≤ 𝑦] = 𝜖, where 𝑋

2An intuitive but somewhat misleading extension of the quasi-static fading
model to the H-ARQ setting is to assume that the channel is constant
for the duration of the H-ARQ rounds corresponding to a particular mes-
sage/codeword, but is drawn independently across different messages. Because
more H-ARQ rounds are needed to decode when the channel quality is poor,
such a model actually changes the underlying fading distribution by increasing
the probability of poor states and reducing the probability of good channel
states. In this light, it is more accurate to model the channel across H-ARQ
rounds according to a stationary and ergodic random process with a high
degree of correlation.

3Frequency-domain channel variation within each H-ARQ round is briefly
discussed in Section IV-B.
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is a random variable; this quantity is well defined wherever it
is used.

III. PERFORMANCE WITHOUT H-ARQ: FIXED-LENGTH

CODING

We begin by studying the baseline scenario where H-ARQ
is not used and every codeword spans 𝐿 fading blocks. In this
setting the outage probability is the probability that mutual
information received over the 𝐿 fading blocks is smaller than
the transmitted rate 𝑅 [19, eq (5.83)]:

𝑃out(𝑅, SNR) = ℙ

[
1

𝐿

𝐿∑
𝑖=1

log2(1 + SNR∣ℎ𝑖∣2) ≤ 𝑅

]
. (2)

where ℎ𝑖 is the channel in the 𝑖-th fading block. The out-
age probability reasonably approximates the decoding error
probability for a system with strong coding [20] [21], and
the achievability of this error probability has been rigorously
shown in the limit of infinite block length (𝑇 → ∞) [22] [23].

Because the outage probability is a non-decreasing function
of 𝑅, by setting the outage probability to 𝜖 and solving for
𝑅 we get the following straightforward definition of 𝜖-outage
capacity [24]:

Definition 1: The 𝜖-outage capacity with outage constraint
𝜖 and diversity order 𝐿, denoted by 𝐶𝐿

𝜖 (SNR), is the largest
rate such that the outage probability in (2) is no larger than 𝜖:

𝐶𝐿
𝜖 (SNR) ≜ max

𝑃out(𝑅,SNR)≤𝜖
𝑅 (3)

Using notation introduced earlier, the 𝜖-outage capacity can
be rewritten as

𝐶𝐿
𝜖 (SNR)

= 𝐹−1
𝜖

(
1

𝐿

𝐿∑
𝑖=1

log2(1 + SNR∣ℎ𝑖∣2)
)

(4)

= log2 SNR + 𝐹−1
𝜖

(
1

𝐿

𝐿∑
𝑖=1

log2

(
1

SNR
+ ∣ℎ𝑖∣2

))
. (5)

For 𝐿 = 1, 𝑃out(𝑅, SNR) can be written in closed form and

inverted to yield 𝐶1
𝜖 (SNR) = log2

(
1 + log𝑒

(
1

1−𝜖
)

SNR

)
[19].

For 𝐿 > 1 the outage probability cannot be written in closed
form nor inverted, and therefore 𝐶𝐿

𝜖 (SNR) must be numerically
computed. There are, however, two useful approximations
to 𝜖-outage capacity. The first one is the high-SNR affine
approximation [25], which adds a constant rate offset term
to the standard multiplexing gain characterization.

Theorem 1: The high-SNR affine approximation to 𝜖-
outage capacity is given by

𝐶𝐿
𝜖 (SNR) = log2 SNR + 𝐹−1

𝜖

(
1

𝐿

𝐿∑
𝑖=1

log2
(∣ℎ𝑖∣2)

)
+ 𝑜(1),(6)

where the notation implies that the 𝑜(1) term vanishes as
SNR → ∞.

Proof: The proof is identical to that of the high-SNR
offset characterization of MIMO channels in [26, Theorem
1], noting that single antenna block fading is equivalent to a
MIMO channel with a diagonal channel matrix.
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Fig. 1. High SNR rate offset ℒ∞ (bps/Hz) versus diversity order 𝐿 for
𝜖 = 0.01.

In terms of standard high SNR notation where 𝐶(SNR) =
𝒮∞(log2 SNR − ℒ∞) + 𝑜(1) [25][27], the multiplex-
ing gain 𝒮∞ = 1 and the rate offset ℒ∞ =

−𝐹−1
𝜖

(
1
𝐿

∑𝐿
𝑖=1 log2

(∣ℎ𝑖∣2)). The rate offset is the difference
between the 𝜖-outage capacity and the capacity of an AWGN
channel with signal-to-noise ratio SNR. Although a closed form
expression for ℒ∞ cannot be found for 𝐿 > 1, from [28],

ℙ

[
1

𝐿

𝐿∑
𝑖=1

log2
(∣ℎ𝑖∣2

) ≤ 𝑦

]
= 2𝑦𝐿𝐺𝐿,1

1,𝐿+1

(
2𝑦𝐿∣00,0,...,0,−1

)
, (7)

where 𝐺𝑚,𝑛
𝑝,𝑞

(
𝑥∣𝑎1,...,𝑎𝑝

𝑏1,...,𝑏𝑞

)
is the Meijer G-function [29, eq.

(9.301)]. Based on (6), ℒ∞ therefore is the solution to
2−ℒ∞𝐿𝐺𝐿,1

1,𝐿+1

(
2−ℒ∞𝐿∣00,0,...,0,−1

)
= 𝜖. The rate offset ℒ∞

is plotted versus 𝐿 in Fig. 1 for 𝜖 = 0.01. As 𝐿 → ∞ the
offset converges to −𝔼[log2

(∣ℎ∣2)] ≈ 0.83, the offset of the
ergodic Rayleigh channel [27].

While the affine approximation is accurate at high SNR’s,
motivated by the Central Limit Theorem (CLT), an approxi-
mation that is more accurate for moderate and low SNR’s is
reached by approximating random variable 1

𝐿

∑𝐿
𝑖=1 log2(1 +

SNR∣ℎ𝑖∣2) by a Gaussian random variable with the same
mean and variance [30][31]. The mean 𝜇 and variance 𝜎2

of log2(1 + SNR∣ℎ∣2) are given by [32][33]:

𝜇(SNR) = 𝔼[log2(1 + SNR∣ℎ∣2)]
= log2(𝑒)𝑒

1/SNR𝐸1(1/SNR), (8)

𝜎2(SNR) =
2

SNR
log22(𝑒)𝑒

1/SNR ×
𝐺4,0

3,4

(
1/SNR∣0,0,00,−1,−1,−1

)
− 𝜇2(SNR), (9)

where 𝐸1(𝑥) =
∫∞
1

𝑡−1𝑒−𝑥𝑡𝑑𝑡, and at high SNR the standard
deviation 𝜎(SNR) converges to 𝜋 log2 𝑒√

6
[33]. The mutual infor-

mation is thus approximated by a 𝒩 (𝜇(SNR), 𝜎
2(SNR)
𝐿 ), and

therefore

𝑃out(𝑅, SNR) ≈ 𝑄

( √
𝐿

𝜎(SNR)
(𝜇(SNR)−𝑅)

)
, (10)

Authorized licensed use limited to: University of Minnesota. Downloaded on April 01,2010 at 15:13:39 EDT from IEEE Xplore.  Restrictions apply. 



1132 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 4, APRIL 2010

0 1 2 3 4 5 6 7 8

10
−2

10
−1

10
0

Mutual Information (bps/Hz)

C
D

F

 

 

Exact,L=2
Gaussian,L=2
Exact,L=10
Gaussian,L=10

SNR = 0 dB SNR = 10 dB
SNR = 20 dB

Fig. 2. CDF’s of mutual information ( 1
2

∑2
𝑖=1 log2(1 + SNR∣ℎ𝑖∣2) and

1
10

∑10
𝑖=1 log2(1 + SNR∣ℎ𝑖∣2) respectively) for 𝐿 = 2 and 𝐿 = 10 at

SNR = 0, 10, and 20 dB.

0 10 20 30 40
0

2

4

6

8

10

12

SNR (dB)

C
L ε

(b
ps

/H
z)

 

 

Exact
Gaussian Approximation
High SNR Affine Approximation

L=3

L=10

Fig. 3. 𝜖-outage capacity 𝐶𝐿
𝜖 (bps/Hz) versus SNR (dB) for 𝜖 = 0.01.

where 𝑄(⋅) is the tail probability of a unit variance normal.
Setting this quantity to 𝜖 and then solving for 𝑅 yields an
𝜖-outage capacity approximation [30, eq. (26)]:

𝐶𝐿
𝜖 (SNR) ≈ 𝜇(SNR)− 𝜎(SNR)√

𝐿
𝑄−1(𝜖). (11)

The accuracy of this approximation depends on how accu-
rately the CDF of a Gaussian matches the CDF (i.e., outage
probability) of random variable 1

𝐿

∑𝐿
𝑖=1 log2(1 + SNR∣ℎ𝑖∣2).

In Fig. 2 both CDF’s are plotted for 𝐿 = 2 and 𝐿 = 10,
and SNR = 0, 10, and 20 dB. As expected by the CLT,
as 𝐿 increases the approximation becomes more accurate.
Furthermore, the match is less accurate for very small values
of 𝜖 because the tails of the Gaussian and the actual random
variable do not precisely match. Finally, note that the match is
not as accurate at low SNR’s: this is because the mutual infor-
mation random variable has a density close to a chi-square in
this regime, and is thus not well approximated by a Gaussian.
Although not accurate in all regimes, numerical results confirm
that the Gaussian approximation is reasonably accurate for the
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Fig. 4. Ergodic capacity - 𝜖-outage capacity difference ΔEC - FD (bps/Hz)
versus diversity order L, at SNR = 20 dB.

range of interest for parameters (e.g., 0.01 ≤ 𝜖 ≤ 0.2 and
0 ≤ SNR ≤ 20 dB). More importantly, this approximation
yields important insights.

In Fig. 3 the true 𝜖-outage capacity 𝐶𝐿
𝜖 (SNR) and the affine

and Gaussian approximations are plotted versus SNR for 𝜖 =
0.01 and 𝐿 = 3, 10. The Gaussian approximation is reasonably
accurate at moderate SNR’s, and is more accurate for larger
values of 𝐿. On the other hand, the affine approximation,
which provides a correct high SNR offset, is asymptotically
tight at high SNR.

A. Ergodic Capacity Gap

When evaluating the effect of the diversity order 𝐿, it is
useful to compare the ergodic capacity 𝜇(SNR) and 𝐶𝐿

𝜖 (SNR).
By Chebyshev’s inequality, for any 0 < 𝑤 < 𝜇,

ℙ

[∣∣∣∣∣𝜇(SNR)− 1

𝐿

𝐿∑
𝑖=1

log2(1 + SNR∣ℎ𝑖∣2)
∣∣∣∣∣ ≥ 𝑤

]
≤ 𝜎2(SNR)

𝐿𝑤2
(12)

By replacing 𝑤 with 𝜇(SNR) − 𝑅 and equating the right hand side
(RHS) with 𝜖, we get

𝜇(SNR)− 𝜎(SNR)√
𝐿𝜖

≤ 𝐶𝐿
𝜖 (SNR) ≤ 𝜇(SNR) +

𝜎(SNR)√
𝐿𝜖

. (13)

This implies 𝐶𝐿
𝜖 (SNR) → 𝜇(SNR) as 𝐿 → ∞, as intuitively

expected; reasonable values of 𝜖 are smaller than 0.5, and
thus we expect convergence to occur from below.

In order to capture the speed at which this convergence
occurs, we define the quantity ΔEC−FD as the difference
between the ergodic and 𝜖-outage capacities. Based on (13)
we can upper bound ΔEC−FD as:

ΔEC−FD(SNR) = 𝜇(SNR)− 𝐶𝐿
𝜖 (SNR) ≤ 𝜎(SNR)√

𝐿𝜖
. (14)

This bound shows that the rate gap goes to zero at least as
fast as 𝑂

(
1/

√
𝐿
)
. Although we cannot rigorously claim that

ΔEC−FD is of order 1/
√
𝐿, by (11) the Gaussian approxima-

tion to this quantity is:

ΔEC−FD(SNR) ≈ 𝜎(SNR)√
𝐿

𝑄−1(𝜖), (15)
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which is also 𝑂
(
1/

√
𝐿
)
. This approximation becomes more

accurate as 𝐿 → ∞, by the CLT, and thus is expected to
correctly capture the scaling with 𝐿. Note that (15) has the
interpretation that the rate must be 𝑄−1(𝜖)√

𝐿
deviations below

the ergodic capacity 𝜇(SNR) in order to ensure 1−𝜖 reliability.
In Fig. 4 the actual capacity gap and the approximation in (15)
are plotted for 𝜖 = 0.01 and 𝜖 = 0.05 with SNR = 20 dB, and
a reasonable match between the approximation and the exact
gap is seen.

IV. PERFORMANCE WITH HYBRID-ARQ

We now move on to the analysis of hybrid-ARQ, which
will be shown to provide a significant performance advantage
relative to the baseline of non-H-ARQ performance. H-ARQ
is clearly a variable-length code, in which case the average
transmission rate must be suitably defined. If each message
contains 𝑏 information bits and each ARQ round corresponds
to 𝑇 channel symbols, then the initial transmission rate is
𝑅init ≜ 𝑏

𝑇 bits/symbol. If random variable 𝑋𝑖 denotes the
number of H-ARQ rounds used for the 𝑖-th message, then a
total of

∑𝑁
𝑖=1 𝑋𝑖 H-ARQ rounds are used and the average

transmission rate (in bits/symbol or bps/Hz) across those 𝑁
messages is:

𝑁𝑏

𝑇
∑𝑁

𝑖=1 𝑋𝑖

=
𝑅init

1
𝑁

∑𝑁
𝑖=1 𝑋𝑖

. (16)

We are interested in the long-term average transmission rate,
i.e., the case where 𝑁 → ∞. By the law of large numbers
(note that the 𝑋𝑖’s are i.i.d. in our model), 1

𝑁

∑𝑁
𝑖=1 𝑋𝑖 →

𝔼[𝑋 ] and thus the rate converges to

𝑅init

𝔼[𝑋 ]
bits/symbol (17)

Here 𝑋 is the random variable representing the number of H-
ARQ rounds per message; this random variable is determined
by the specifics of the H-ARQ protocol.

In the remainder of the paper we focus on incremental
redundancy (IR) H-ARQ because it is the most powerful type
of H-ARQ, although we compare IR to Chase combining in
Section IV-E. In [9] it is shown that mutual information is
accumulated over H-ARQ rounds when IR is used, and that
decoding is possible once the accumulated mutual information
is larger than the number of information bits in the message.
Therefore, the number of H-ARQ rounds 𝑋 is the smallest
number 𝑚 such that:

𝑚∑
𝑖=1

log2(1 + SNR∣ℎ𝑖∣2) > 𝑅init. (18)

The number of rounds is upper bounded by 𝑀 , and an outage
occurs whenever the mutual information after 𝑀 rounds is
smaller than 𝑅init:

𝑃 IR,𝑀
out (𝑅init) = ℙ

[
𝑀∑
𝑖=1

log2(1 + SNR∣ℎ𝑖∣2) ≤ 𝑅init

]
. (19)

This is the same as the expression for outage probability of
𝑀 -order diversity without H-ARQ in (2), except that mutual
information is summed rather than averaged over the 𝑀
rounds. This difference is a consequence of the fact that 𝑅init

is defined for transmission over one round rather than all
𝑀 rounds; dividing by 𝔼[𝑋 ] in (17) to obtain the average
transmitted rate makes the expressions consistent. Due to this
relationship, if the initial rate is set as 𝑅init = 𝑀 ⋅𝐶𝑀

𝜖 , where
𝐶𝑀
𝜖 is the 𝜖-outage capacity for 𝑀 -order diversity without

H-ARQ, then the outage at H-ARQ termination is 𝜖.
In order to simplify expressions, it is useful to define

𝐴𝑘(𝑅init) as the probability that the accumulated mutual
information after 𝑘 rounds is smaller than 𝑅init:

𝐴𝑘(𝑅init) ≜ ℙ

[
𝑘∑
𝑖=1

log2(1 + SNR∣ℎ𝑖∣2) ≤ 𝑅init

]
. (20)

The expected number of H-ARQ rounds per message is
therefore given by:

𝔼[𝑋 ] = 1 +

𝑀−1∑
𝑘=1

ℙ[𝑋 > 𝑘] = 1 +

𝑀−1∑
𝑘=1

𝐴𝑘(𝑅init). (21)

The long-term average transmitted rate, which is denoted
as 𝐶IR,𝑀

𝜖 , is defined by (17). With initial rate 𝑅init = 𝑀 ⋅𝐶𝑀
𝜖

we have:4

𝐶IR,𝑀
𝜖 ≜ 𝑅init

𝔼[𝑋 ]
=

(
𝑀

𝔼[𝑋 ]

)
𝐶𝑀
𝜖 . (22)

Note that 𝐶IR,𝑀
𝜖 is the attempted long-term average transmis-

sion rate, as discussed in Section I. For the sake of brevity
this quantity is referred to as the H-ARQ rate; this is not to
be confused with the initial rate 𝑅init. Similarly, we refer to
𝜖-outage capacity 𝐶𝑀

𝜖 as the non-H-ARQ rate in the rest of
the paper.

Because 𝔼[𝑋 ] ≤ 𝑀 , the H-ARQ rate is at least as large as
the non-H-ARQ rate, i.e., 𝐶IR,𝑀

𝜖 ≥ 𝐶𝑀
𝜖 , and the advantage

with respect to the non-H-ARQ benchmark is precisely the
multiplicative factor 𝑀

𝔼[𝑋] . This difference is explained as
follows. Because 𝑅init = 𝑀 ⋅ 𝐶𝑀

𝜖 , each message/packet con-
tains 𝐶𝑀

𝜖 𝑀𝑇 information bits regardless of whether H-ARQ
is used. Without H-ARQ these bits are always transmitted
over 𝑀𝑇 symbols, whereas with H-ARQ an average of only
𝔼[𝑋 ]𝑇 symbols are required.

In Fig. 5 the average rates with (𝐶IR,𝑀
𝜖 ) and without H-

ARQ (𝐶𝑀
𝜖 ) are plotted versus SNR for 𝜖 = 0.01 and 𝑀 = 1, 2

and 6 (𝑀 = 1 does not allow for H-ARQ in our model).
Ergodic capacity is also plotted as a reference. Based on the
figure, we immediately notice:

∙ H-ARQ with 6 rounds outperforms H-ARQ with 2
rounds.

∙ H-ARQ provides a significant advantage relative to non-
H-ARQ for the same value of 𝑀 for a wide range of
SNR’s, but this advantage vanishes at high SNR.

Increasing rate with 𝑀 is to be expected, because larger 𝑀
corresponds to more time diversity and more early termination
opportunities. The behavior with respect to SNR is perhaps
less intuitive. The remainder of this section is devoted to
quantifying and explaining the behavior seen in Fig. 5. We
begin by extending the Gaussian approximation to H-ARQ,
then examine performance scaling with respect to 𝑀 , SNR,
and 𝜖, and finally compare IR to Chase Combining.

4All quantities in this expression except 𝑀 are actually functions of SNR.
For the sake of compactness, however, dependence upon SNR is suppressed in
this and subsequent expressions, except where explicit notation is necessary.
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A. Gaussian Approximation

By the definition of 𝐴𝑘(⋅) and (21)-(22), the H-ARQ rate
can be written as:

𝐶IR,𝑀
𝜖 =

𝐴−1
𝑀 (𝜖)

1 +
∑𝑀−1

𝑘=1 𝐴𝑘

(
𝐴−1
𝑀 (𝜖)

) , (23)

where 𝐴−1
𝑀 (⋅) refers to the inverse of function 𝐴𝑀 (⋅). If we

use the approach of Section III and approximate the mutual
information accumulated in 𝑘 rounds by a Gaussian with mean
𝜇𝑘 and variance 𝜎2𝑘, where 𝜇 and 𝜎2 are defined in (8) and
(9), we have:

𝐴𝑘(𝑅init) ≈ 𝑄

(
𝜇𝑘 −𝑅init

𝜎
√
𝑘

)
. (24)

Similar to (11), the initial rate 𝑅init = 𝐴−1
𝑀 (𝜖) can be approx-

imated as 𝑀
[
𝜇− 𝜎√

𝑀
𝑄−1(𝜖)

]
. Applying the approximation

of 𝐴𝑘(𝑅init) to each term in (23) and using the property
1−𝑄(𝑥) = 𝑄(−𝑥) yields:

𝐶IR,𝑀
𝜖 ≈

𝑀
[
𝜇− 𝜎√

𝑀
𝑄−1(𝜖)

]
𝑀 −∑𝑀−1

𝑘=1 𝑄
(
𝑀−𝑘√

𝑘

𝜇
𝜎 −

√
𝑀
𝑘 𝑄−1(𝜖)

) . (25)

This approximation is easier to compute than the actual H-
ARQ rate and is reasonably accurate. Furthermore, it is useful
for the insights it can provide.

B. Scaling with H-ARQ Rounds 𝑀

In this section we study the dependence of the H-ARQ rate
on 𝑀 . We first show convergence to the ergodic capacity as
𝑀 → ∞:

Theorem 2: For any SNR, the H-ARQ rate converges to the
ergodic capacity as 𝑀 → ∞:

lim
𝑀→∞

𝐶IR,𝑀
𝜖 (SNR) = 𝜇(SNR) (26)

Proof: See Appendix A.
To quantify how fast this convergence is, similar to Sec-
tion III-A we investigate the difference between the ergodic

capacity and the H-ARQ rate. Defining ΔEC−IR ≜ 𝜇(SNR)−
𝐶IR,𝑀
𝜖 (SNR) we have

ΔEC−IR

=
𝜇

𝔼[𝑋 ]

(
𝔼[𝑋 ]− 𝑀 ⋅ 𝐶𝑀

𝜖

𝜇

)

≈ 𝜇

𝔼[𝑋 ]

(
𝔼[𝑋 ]−

(
𝑀 − 𝜎

𝜇
𝑄−1(𝜖)

√
𝑀

))
(27)

where the approximation follows from 𝐶𝑀
𝜖 ≈ 𝜇− 𝜎𝑄−1(𝜖)√

𝑀
in

(11). Because 𝔼[𝑋 ] is on the order of 𝑀 (as established in
the proof of Theorem 2), the key is the behavior of the term
𝔼[𝑋 ]−

(
𝑀 − 𝜎

𝜇𝑄
−1(𝜖)

√
𝑀
)
.

To better understand 𝔼[𝑋 ] we again return to the Gaus-
sian approximation. While the CDF of 𝑋 is defined by
ℙ (𝑋 ≤ 𝑘) = 1 − 𝐴𝑘(𝑅init) (for 𝑘 = 1, . . . ,𝑀 − 1), we
use 𝑋̃ to denote the random variable using the Gaussian
approximation and thus define its CDF (for integers 𝑘) as:

ℙ

(
𝑋̃ ≤ 𝑘

)
= 𝑄

(
𝜇(𝑀 − 𝑘)−√

𝑀𝜎𝑄−1(𝜖)

𝜎
√
𝑘

)
(28)

where we have used 𝐴𝑘(𝑅init) ≈ 𝑄
(
𝜇𝑘−𝑅init

𝜎
√
𝑘

)
evaluated

with 𝑅init = 𝑀𝐶𝑀
𝜖 ≈ 𝑀𝜇 − √

𝑀𝜎𝑄−1(𝜖). From this
expression, we can immediately see that the median of
𝑋̃ is

⌈
𝑀 − 𝜎

𝜇𝑄
−1(𝜖)

√
𝑀
⌉

[34]. If this was equal to the
mean of 𝑋 , then by (27) the rate difference would be well
approximated by 𝛽𝜇

𝑀 , where 𝛽 is the difference between⌈
𝑀 − 𝜎

𝜇𝑄
−1(𝜖)

√
𝑀
⌉

and
(
𝑀 − 𝛽

𝜇𝑄
−1(𝜖)

√
𝑀
)

and thus is

no larger than one. By studying the characteristics of 𝑋̃ (and
of 𝑋) we can see that the median is in fact quite close to the
mean. A tedious calculation in Appendix B gives the following
approximation to 𝔼[𝑋 ]:

𝔼[𝑋 ] ≈ 𝑀 − 𝜎

𝜇
𝑄−1(𝜖)

√
𝑀 +

0.5(1− 𝜖)− 𝜎

𝜇

√
𝑀

∫ ∞

𝑄−1(𝜖)

𝑄(𝑥)𝑑𝑥, (29)

which is reasonably accurate for large 𝑀 . The most important
factor is the term 0.5(1− 𝜖), which is due to the fact that only
an integer number of H-ARQ rounds can be used. The factor
−𝜎
𝜇

√
𝑀
∫∞
𝑄−1(𝜖) 𝑄(𝑥)𝑑𝑥 exists because the random variable

is truncated at the point where its CDF is 1− 𝜖.
Applying this into (27), the rate difference can be approxi-

mated as:

ΔEC−IR ≈
𝜇
(
0.5(1− 𝜖)− 𝜎

𝜇

√
𝑀
∫∞
𝑄−1(𝜖) 𝑄(𝑥)𝑑𝑥

)
𝑀 − 𝜎

√
𝑀
𝜇 𝑄−1(𝜖)− 𝜎

√
𝑀
𝜇

∫∞
𝑄−1(𝜖)

𝑄(𝑥)𝑑𝑥 + 0.5(1− 𝜖)
.

(30)

The denominator increases with 𝑀 at the order of 𝑀 (more
precisely as 𝑀−√

𝑀 ), while the numerator actually decreases
with 𝑀 and can even become negative if 𝑀 is extremely large.
For reasonable values of 𝑀 , however, the negative term in
the numerator is essentially inconsequential (for example, if
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𝜖 = 0.01 and SNR = 10 dB, the negative term is much smaller
than 0.5(1 − 𝜖) for 𝑀 < 5000) and thus can be reasonably
neglected. By ignoring this negative term and replacing the
denominator with the leading order 𝑀 term, we get a further
approximation of the rate gap:

ΔEC−IR ≈ 0.5(1− 𝜖)𝜇

𝑀
(31)

Based on this approximation, we see that the rate gap
decreases roughly on the order 𝑂 (1/𝑀), rather than the

𝑂
(
1/

√
𝑀
)

decrease without H-ARQ. In Fig. 6 we plot
the exact capacity gap with and without H-ARQ, as well as
the Gaussian approximation to the H-ARQ gap (30) and its
simplified form in (31) for 𝜖 = 0.01 at SNR = 10 dB. Both
approximations are seen to be reasonably accurate especially
for large 𝑀 . In the inset plot, which is in log-log scale, we
see that the exact capacity gap goes to zero at order 1/𝑀 ,
consistent with the result obtained from our approximation.

The fast convergence with H-ARQ can be intuitively ex-
plained as follows. If transmission could be stopped precisely
when enough mutual information has been received, the
transmitted rate would be exactly matched to the instanta-
neous mutual information and thus ergodic capacity would
be achieved. When H-ARQ is used, however, transmission
can only be terminated at the end of a round as, opposed to
within a round, and thus a small amount of the transmission
can be wasted. This "rounding error", which is reflected in the
0.5(1−𝜖) term in (30) and (31), is essentially the only penalty
incurred by using H-ARQ rather than explicit rate adaptation.

Remark 1: Because the value of H-ARQ depends pri-
marily on the mean and variance of the mutual information
in each H-ARQ round, our basic insights can be extended
to multiple-antenna channels and to channels with frequency
(or time) diversity within each ARQ round if the change in
mean and variance is accounted for. For example, with order 𝐹
frequency diversity the mutual information in the 𝑖-th H-ARQ
round becomes 1

𝐹

∑𝐹
𝑙=1 log(1 + SNR∣ℎ𝑖,𝑙∣2), where ℎ𝑖,𝑙 is the

channel in the 𝑖-th round on the 𝑙-th frequency channel. The
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Fig. 7. CDF’s of accumulated mutual information over 2 and 3 rounds
(random variables

∑2
𝑖=1 log2(1+SNR∣ℎ𝑖∣2) and

∑3
𝑖=1 log2(1+SNR∣ℎ𝑖∣2),

respectively) at SNR = 10 and 40 dB.

mean mutual information is unaffected, while the variance is
decreased by a factor of 1

𝐹 . ♢

C. Scaling with SNR

In this section we quantify the behavior of H-ARQ as a
function of the average SNR.5 Fig. 5 indicated that the benefit
of H-ARQ vanishes at high SNR, and the following theorem
makes this precise:

Theorem 3: If SNR is taken to infinity while keeping 𝑀
fixed, the expected number of H-ARQ rounds converges to
𝑀 and the H-ARQ rate converges to 𝐶𝑀

𝜖 (SNR), the non-H-
ARQ rate with the same selectivity:

lim
SNR→∞

𝔼[𝑋 ] = 𝑀 (32)

lim
SNR→∞

[
𝐶IR,𝑀
𝜖 (SNR)− 𝐶𝑀

𝜖 (SNR)
]
= 0 (33)

Proof: See Appendix C.
The intuition behind this result can be gathered from Fig. 7,

where the CDF’s of the accumulated mutual information after
2 and 3 rounds are plotted for for SNR = 10 and 40 dB.
If 𝑀 = 3 the initial rate is set at the 𝜖-point of the CDF
of
∑3

𝑖=1 log(1 + SNR∣ℎ𝑖∣2). Because the CDF’s overlap for
𝑀 = 2 and 𝑀 = 3 considerably when SNR = 10 dB,
there is a large probability that sufficient mutual information is
accumulated after 2 rounds and thus early termination occurs.
However, the overlap between these CDF’s disappears as SNR

increases, because
∑𝑘

𝑖=1 log(1 + SNR∣ℎ𝑖∣2) ≈ 𝑘 log SNR +∑𝑘
𝑖=1 log(∣ℎ𝑖∣2), and thus the early termination probability

vanishes.
Although the H-ARQ advantage eventually vanishes, the

advantage persists throughout a large SNR range and the Gaus-
sian approximation (Section IV-A) can be used to quantify
this. The probability of terminating in strictly less than 𝑀

5Because constant outage corresponds to the full-multiplexing point, the
results of [10] imply that 𝐶IR,𝑀

𝜖 cannot have a multiplexing gain/pre-log
larger than one (in [10] it is shown that H-ARQ does not increase the full
multiplexing point). However, the DMT-based results of [10] do not provide
rate-offset characterization as in Theorems 3 and 4.
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rounds is approximated by:

ℙ[𝑋 ≤ 𝑀 − 1] ≈ 𝑄

(
𝜇(SNR)−√

𝑀𝜎(SNR)𝑄−1(𝜖)

𝜎
√
𝑀 − 1

)
(34)

In order for this approximation to be greater than one-half we
require the numerator inside the 𝑄-function to be less than
zero, which corresponds to

𝜇(SNR)

𝜎(SNR)
≤

√
𝑀𝑄−1(𝜖) or

√
𝑀 ≥ 𝜇(SNR)

𝜎(SNR)𝑄−1(𝜖)
(35)

As SNR increases 𝜇(SNR) increases without bound whereas
𝜎(SNR) converges to a constant. Thus 𝜇(SNR)/𝜎(SNR) increases
quickly with SNR, which makes the probability of early termi-
nation vanish. From this we see that the H-ARQ advantage
lasts longer (in terms of SNR) when 𝑀 is larger. The second
inequality in (35) captures an alternative viewpoint, which is
roughly the minimum value of 𝑀 required for H-ARQ to
provide a significant advantage.

Motivated by naive intuition that the H-ARQ rate is mono-
tonically increasing in the initial rate 𝑅init, up to this point
we have chosen 𝑅init = 𝑀𝐶𝑀

𝜖 = 𝐴−1
𝑀 (𝜖) such that outage

at H-ARQ termination is exactly 𝜖. However, it turns out that
the H-ARQ rate is not always monotonic in 𝑅init. In Fig. 8,
the H-ARQ rate 𝑅init

𝔼[𝑋] is plotted versus initial rate 𝑅init for
𝑀 = 2, 3, and 4 for SNR = 10 dB (left) and 30 dB (right).
At 10 dB, 𝑅init

𝔼[𝑋] monotonically increases with 𝑅init and thus
there is no advantage to optimizing the initial rate. At 30
dB, however, 𝑅init

𝔼[𝑋] behaves non-monotonically with 𝑅init. We

therefore define 𝐶IR,𝑀
𝜖 (SNR) as the maximized H-ARQ rate,

where the maximization is performed over all values of initial
rate 𝑅init such that the outage constraint 𝜖 is not violated:

𝐶IR,𝑀
𝜖 (SNR) ≜ max

𝑅init≤𝐴−1
𝑀 (𝜖)

𝑅init

𝔼[𝑋 ]
(36)

The local maxima seen in Fig. 8 appear to preclude a closed
form solution to this maximization. Although optimization
of the initial rate provides an advantage over a certain SNR
range, the following theorem shows that it does not provide
an improvement in the high-SNR offset:

Theorem 4: H-ARQ with an optimized initial rate, i.e.,
𝐶IR,𝑀
𝜖 (SNR), achieves the same high-SNR offset as unopti-

mized H-ARQ 𝐶IR,𝑀
𝜖 (SNR)

lim
SNR→∞

[
𝐶IR,𝑀
𝜖 (SNR)− 𝐶IR,𝑀

𝜖 (SNR)
]
= 0 (37)

Furthermore, the only initial rate (ignoring 𝑜(1) terms) that
achieves the correct offset is the unoptimized value 𝑅init =
𝑀𝐶𝑀

𝜖 .
Proof: See Appendix D.

In Fig. 9, rates with and without optimization of the initial
rate are plotted for 𝜖 = 0.01 and 𝑀 = 2, 6. For 𝑀 = 2
optimization begins to make a difference at the point where the
unoptimized curve abruptly decreases towards 𝐶𝑀

𝜖 around 25
dB, but this advantage vanishes around 55 dB. For 𝑀 = 6 the
advantage of initial rate optimization comes about at a much
higher SNR, consistent with (35). Convergence of 𝐶IR,6

𝜖 (SNR)
to 𝐶IR,6

𝜖 (SNR) does eventually occur, but is not visible in the
figure.
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Fig. 9. H-ARQ rate with/without an optimized initial rate (bps/Hz) and
non-H-ARQ rate (bps/Hz) versus SNR (dB) for 𝜖 = 0.01.

D. Scaling with Outage Constraint 𝜖

Another advantage of H-ARQ is that the H-ARQ rate is
generally less sensitive to the desired outage probability 𝜖 than
an equivalent non-H-ARQ system. This advantage is clearly
seen in Fig. 10, where the H-ARQ and non-H-ARQ rates are
plotted versus 𝜖 for 𝑀 = 5 at SNR = 0, 10 and 20 dB. When
𝜖 is large (e.g., roughly around 0.5) H-ARQ provides almost
no advantage: a large outage corresponds to a large initial
rate, which in turn means early termination rarely occurs.
However, for more reasonable values of 𝜖, the H-ARQ rate
is roughly constant with respect to 𝜖 whereas the non-H-ARQ
rate decreases sharply as 𝜖 → 0. The transmitted rate must be
decreased in order to achieve a smaller 𝜖 (with or without H-
ARQ), but with H-ARQ this decrease is partially compensated
by the accompanying decreasing in the number of rounds
𝔼[𝑋 ].

E. Chase Combining

If Chase combining is used, a packet is retransmitted
whenever a NACK is received and the receiver performs
maximal-ratio-combining (MRC) on all received packets. As
a result, SNR rather the mutual information is accumulated
over H-ARQ rounds and the outage probability is given by:

𝑃 CC,𝑀
out (𝑅init) = ℙ

[
log2

(
1 + SNR

𝑀∑
𝑖=1

∣ℎ𝑖∣2
)

≤ 𝑅init

]
. (38)

For outage 𝜖, the initial rate is expressed as 𝑅init =

log2

(
1 + 𝐹−1

𝜖

(∑𝑀
𝑖=1 ∣ℎ𝑖∣2

)
SNR

)
.

Different from IR, the expected number of H-ARQ rounds
in CC is not dependent on SNR and thus the average rate for
outage 𝜖 can be written in closed form:

𝐶CC,𝑀
𝜖 (SNR) =

𝑅init

𝔼[𝑋 ]
=

log2

(
1 + 𝐹−1

𝜖

(∑𝑀
𝑖=1 ∣ℎ𝑖∣2

)
SNR

)
𝑀 − 𝑒−𝐹

−1
𝜖 (

∑𝑀
𝑖=1 ∣ℎ𝑖∣2)∑𝑀−1

𝑘=1 (𝑀 − 𝑘)
(𝐹−1

𝜖 (
∑

𝑀
𝑖=1 ∣ℎ𝑖∣2))𝑘−1

(𝑘−1)!

,

(39)
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where the denominator is 𝔼[𝑋 ]. According to (39), we can
get the high SNR affine approximation as:

𝐶CC,𝑀
𝜖 (SNR) =

1

𝔼[𝑋 ]
log2

(
𝐹−1
𝜖

(
𝑀∑
𝑖=1

∣ℎ𝑖∣2
))

+

1

𝔼[𝑋 ]
log2 SNR + 𝑜(1). (40)

Because 𝔼[𝑋 ] > 1 for any positive outage value, the pre-log
factor (i.e., multiplexing gain) is 1

𝔼[𝑋] and thus is less than
one. This implies that CC performs poorly at high SNR. This
is to be expected because CC is essentially a repetition code,
which is spectrally inefficient at high SNR. As with IR, the
performance of CC at high SNR can be improved through rate
optimization. At high SNR, the pre-log is critical and thus the
initial rate should be selected so that 𝔼[𝑋 ] is close to one and
thereby avoiding H-ARQ altogether. Even with optimization,
CC is far inferior to IR at moderate and high SNR’s. On the
other hand, CC performs reasonably well at low SNR. This
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Fig. 11. Optimized H-ARQ rate 𝐶IR,𝑀
𝜖 (bps/Hz) and 𝐶CC,𝑀

𝜖 (bps/Hz)
versus SNR (dB) for 𝜖 = 0.01.

is because log(1 + 𝑥) ≈ 𝑥 for small values of 𝑥, and thus
SNR-accumulation is nearly equivalent to mutual information-
accumulation. In Fig. 11 rate-optimized IR and CC are plotted
for 𝑀 = 2, 4 and 𝜖 = 0.01, and the results are consistent with
the above intuitions.

V. CONCLUSION

In this paper we have studied the performance of hybrid-
ARQ in the context of an open-loop/fast-fading system in
which the transmission rate is adjusted as a function of the
average SNR such that a target outage probability is not
exceeded. The general findings are that H-ARQ provides a
significant rate advantage relative to a system not using H-
ARQ at reasonable SNR levels, and that H-ARQ provides a
rate quite close to the ergodic capacity even when the channel
selectivity is limited.

There appear to be some potentially interesting extensions
of this work. Contemporary cellular systems utilize simple
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ARQ on top of H-ARQ, and it is not fully understood how
to balance these reliability mechanisms; some results in this
direction are presented in [17]. Although we have assumed
error-free ACK/NACK feedback, such errors can be quite
important (c.f., [35]) and merit further consideration. Finally,
while we have considered only the mutual information of
Gaussian inputs, it is of interest to extend the results to discrete
constellations and possibly compare to the performance of
actual codes.
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APPENDIX A
PROOF OF THEOREM 2

Because 𝐶IR,𝑀
𝜖 = 𝑀

𝔼[𝑋]𝐶
𝑀
𝜖 and lim𝑀→∞ 𝐶𝑀

𝜖 = 𝜇 (Sec-
tion III-A), we can prove lim𝑀→∞ 𝐶IR,𝑀

𝜖 = 𝜇 by showing
lim𝑀→∞ 𝑀

𝔼[𝑋] = 1. Because 𝔼[𝑋 ] ≤ 𝑀 , we can show
this simply by showing 𝔼[𝑋 ] is of order 𝑀 . For notational
convenience we define 𝑌𝑖 ≜ log2(1+SNR∣ℎ𝑖∣2), and then have:

𝔼[𝑋 ]

≥ 1 +
𝑀−1∑
𝑘=1

ℙ

[
𝑘∑
𝑖=1

𝑌𝑖 ≤ 𝑀

(
𝜇− 𝜎√

𝑀𝜖

)]
(41)

≥ 1 +

⌈𝑀−𝑀 3
4 ⌉∑

𝑘=1

ℙ

[
𝑘∑
𝑖=1

𝑌𝑖 ≤ 𝑀𝜇− 𝜎

√
𝑀

𝜖

]
(42)

≥ 1 + ⌈𝑀 −𝑀
3
4 ⌉ ⋅ ℙ

⎡
⎢⎣⌈𝑀−𝑀 3

4 ⌉∑
𝑖=1

𝑌𝑖 ≤ 𝑀𝜇− 𝜎

√
𝑀

𝜖

⎤
⎥⎦ ,

(43)

where the first line holds because 𝔼[𝑋 ] is increasing in 𝑅init

and 𝑅init = 𝑀𝐶𝑀
𝜖 ≥ 𝑀

(
𝜇− 𝜎√

𝑀𝜖

)
from (13), the second

holds because the summands are non-negative, and the last line
because the summands are decreasing in 𝑘. A direct applica-

tion of the CLT shows ℙ

[∑⌈𝑀−𝑀 3
4 ⌉

𝑖=1 𝑌𝑖 ≤ 𝑀𝜇− 𝜎
√

𝑀
𝜖

]
→

1 as 𝑀 → ∞, and thus, with some straightforward algebra,
we have lim𝑀→∞ 𝑀

𝔼[𝑋] → 1.

APPENDIX B
PROOF OF (29)

Firstly, we relax the constraint on 𝑋̃ (discreteness and
finiteness) to define a new continuous random variable 𝑋̂ ,
which is distributed along the whole real line. The CDF of 𝑋̂
(for all real 𝑥) is

ℙ

(
𝑋̂ ≤ 𝑥

)
= 𝑄

(
𝜇(𝑀 − 𝑥) −√

𝑀𝜎𝑄−1(𝜖)

𝜎
√
𝑥

)
(44)

Now if we consider the distribution of 𝑋̂ −(
𝑀 − 𝜎

𝜇𝑄
−1(𝜖)

√
𝑀
)
, we have

ℙ

[
𝑋̂ −

(
𝑀 − 𝜎

𝜇
𝑄−1(𝜖)

√
𝑀

)
≤ 𝑥

]

= 𝑄

⎛
⎝ −𝜇𝑥

𝜎
√

𝑀 − 𝜎
𝜇𝑄

−1(𝜖)
√
𝑀 + 𝑥

⎞
⎠ (45)

where the equality follows from (44). Notice as 𝑀 → ∞,√
𝑀 − 𝜎

𝜇𝑄
−1(𝜖)

√
𝑀 + 𝑥 → √

𝑀 , so

𝑄

⎛
⎝ −𝜇𝑥

𝜎
√

𝑀 − 𝜎
𝜇𝑄

−1(𝜖)
√
𝑀 + 𝑥

⎞
⎠

→ 𝑄

( −𝜇𝑥

𝜎
√
𝑀

)
= Φ

(
𝑥

𝜎
𝜇

√
𝑀

)
, (46)

where Φ(⋅) is the standard normal CDF with zero mean and
unit variance. So as 𝑀 → ∞, the limiting distribution of 𝑋̂ ,

denoted by Φ̂(⋅), goes to 𝒩
(
𝑀 − 𝜎

𝜇𝑄
−1(𝜖)

√
𝑀,
(
𝜎
𝜇

)2
𝑀

)
,

which is

Φ̂(𝑥) = Φ

⎛
⎝𝑥−

(
𝑀 − 𝜎

𝜇𝑄
−1(𝜖)

√
𝑀
)

𝜎
𝜇

√
𝑀

⎞
⎠ , for 𝑥 ∈ ℝ (47)

Since 𝔼[𝑋̃ ] is an approximation to 𝔼[𝑋 ], then we focus on
evaluating 𝔼[𝑋̃ ] for large 𝑀 , see (48) on next page, where
𝑠 is 𝑀 − 2𝜎𝜇𝑄

−1(𝜖)
√
𝑀 , and (a) holds since Φ̃(𝑘) = Φ̂(𝑘)

when 𝑘 = 1, 2, ⋅ ⋅ ⋅ ,𝑀−1 and (b) follows from Φ̂(𝑀) = 1−𝜖
and Φ̂(1) is negligible when 𝑀 is large enough. Actually, the
first integral in (48) can be evaluated as 𝜎

𝜇𝑄
−1(𝜖)

√
𝑀 because

the expression inside the integral is symmetric with respect to
𝑀 − 𝜎

𝜇𝑄
−1(𝜖)

√
𝑀 and Φ(𝑥) + Φ(−𝑥) = 1 for any 𝑥 ∈ ℝ.

For large 𝑀 , the second integral in (48) can be approximated
as:

𝜎

𝜇

√
𝑀

∫ √
𝑀𝜇
𝜎

𝑄−1(𝜖)

𝑄 (𝑥) 𝑑𝑥

(𝑎)≈ 𝜎

𝜇

√
𝑀

∫ ∞

𝑄−1(𝜖)

𝑄(𝑥)𝑑𝑥 − 𝜎

2.5𝜇

√
𝑀

∫ ∞
√

𝑀𝜇
𝜎

𝑒−
𝑥2

2

𝑥
𝑑𝑥

=
𝜎

𝜇

√
𝑀

∫ ∞

𝑄−1(𝜖)

𝑄(𝑥)𝑑𝑥 − 𝜎

5𝜇

√
𝑀𝐸1

(
𝑀𝜇2

2𝜎2

)

≈ 𝜎

𝜇

√
𝑀

∫ ∞

𝑄−1(𝜖)

𝑄(𝑥)𝑑𝑥 (49)

where (a) follows from [36]: when 𝑥 is positive and

large enough, 𝑄(𝑥) ≈ 𝑒−
𝑥2

2

2.5𝑥 . The last line holds because
𝜎
5𝜇

√
𝑀𝐸1

(
𝑀𝜇2

2𝜎2

)
≈ 0 when M is sufficiently large [37]. This

finally yields:

𝔼[𝑋 ] ≈ 𝔼[𝑋̃] ≈ 𝑀 − 𝜎

𝜇
𝑄−1(𝜖)

√
𝑀 −

𝜎

𝜇

√
𝑀

∫ ∞

𝑄−1(𝜖)

𝑄(𝑥)𝑑𝑥 + 0.5(1− 𝜖). (50)
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𝔼[𝑋̃ ]

=

𝑀−1∑
𝑘=0

(
1− ℙ[𝑋̃ ≤ 𝑘]

)
= 𝑀 −

𝑀−1∑
𝑘=1

Φ̃(𝑘)

(𝑎)
= 𝑀 −

𝑀−1∑
𝑘=1

Φ̂(𝑘) ≈ 𝑀 −
(∫ 𝑀

1

Φ̂(𝑥)𝑑𝑥 −
𝑀−1∑
𝑘=1

Φ̂(𝑘 + 1)− Φ̂(𝑘)

2

)

(𝑏)≈ 𝑀 −
∫ 𝑀

1

Φ

⎛
⎝𝑥−

(
𝑀 − 𝜎

𝜇𝑄
−1(𝜖)

√
𝑀
)

𝜎
𝜇

√
𝑀

⎞
⎠ 𝑑𝑥+ 0.5(1− 𝜖) = 𝑀 −

∫ 𝑀

𝑠

Φ

⎛
⎝𝑥−

(
𝑀 − 𝜎

𝜇𝑄
−1(𝜖)

√
𝑀
)

𝜎
𝜇

√
𝑀

⎞
⎠ 𝑑𝑥

−
∫ 𝑠

1

Φ

⎛
⎝𝑥−

(
𝑀 − 𝜎

𝜇𝑄
−1(𝜖)

√
𝑀
)

𝜎
𝜇

√
𝑀

⎞
⎠ 𝑑𝑥+ 0.5(1− 𝜖) (48)

APPENDIX C
PROOF OF THEOREM 3

In order to prove the theorem, we first establish the follow-
ing lemma:

Lemma 1: If the initial rate 𝑅init has a pre-log of 𝑟, i.e.,
limSNR→∞ 𝑅init

log2 SNR = 𝑟, then

lim
SNR→∞

ℙ

[
𝑘∑
𝑖=1

log2(1 + SNR∣ℎ𝑖∣2) ≤ 𝑅init

]

=

{
1, for 𝑘 < 𝑟 and 𝑘 ∈ ℤ

+ (51a)

0, for 𝑘 > 𝑟 and 𝑘 ∈ ℤ
+ (51b)

Proof: For notational convenience we use 𝛾𝑖 to denote the
quantity SNR∣ℎ𝑖∣2. We prove the first result by using the fact
that

∑𝑘
𝑖=1 log2(1 + 𝛾𝑖) ≤ 𝑘 log2(1 + max𝑖=1,...,𝑘 𝛾𝑖) which

yields:

ℙ

[
𝑘∑
𝑖=1

log2(1 + 𝛾𝑖) ≤ 𝑅init

]

≥ ℙ

[
𝑘 log2

(
1 + max

𝑖=1,...,𝑘
𝛾𝑖

)
≤ 𝑅init

]

=

(
1− 𝑒

− 2

𝑅init
𝑘 −1

SNR

)𝑘

=

(
1− 𝑒

−2
𝑅init
𝑘

−log2(SNR)+ 1

SNR

)𝑘
, (52)

where the first equality follows because the 𝛾𝑖’s are i.i.d.
exponential with mean SNR. The exponent 𝑅init

𝑘 − log2(SNR)
behaves as 𝑟−𝑘

𝑘 log2(SNR). If 𝑘 < 𝑟 this exponent goes to
infinity. Because the 1

SNR term vanishes, 𝑒 is raised to a power
converging to −∞, and thus (52) converges to 1. This yields
the result in (51b). To prove (51b) we combine the property∑𝑘

𝑖=1 log2(1+𝛾𝑖) ≥ 𝑘 log2(1+min𝑖=1,...,𝑘 𝛾𝑖) with the same
argument as above:

ℙ

[
𝑘∑
𝑖=1

log2(1 + 𝛾𝑖) ≤ 𝑅init

]

≤ ℙ

[
𝑘 log2

(
1 + min

𝑖=1,...,𝑘
𝛾𝑖

)
≤ 𝑅init

]

= 1− 𝑒
−𝑘

(
2

𝑅init
𝑘

−log2(SNR)− 1

SNR

)

If 𝑘 > 𝑟, 𝑒 is raised to a power that converges to 0 and thus
we get (51b).

We now move on to the proof of the theorem. Using the
expression for 𝔼[𝑋 ] in (21) we have:

lim
SNR→∞

𝔼[𝑋 ] = lim
SNR→∞

1 + ℙ [log2(1 + 𝛾1) ≤ 𝑅init] +

. . .+ ℙ

[
𝐿−1∑
𝑖=1

log2(1 + 𝛾𝑖) ≤ 𝑅init

]
.(53)

Because 𝑅init = 𝑀𝐶𝑀
𝜖 has a pre-log of 𝑀 , the lemma

implies that each of the terms converge to one and thus
limSNR→∞ 𝔼[𝑋 ] = 𝑀 .

In terms of the high-SNR offset we have:

lim
SNR→∞

[𝐶IR,𝑀
𝜖 (SNR)− 𝐶𝑀

𝜖 (SNR)]

= lim
SNR→∞

[
𝑅init

𝐶𝑀
𝜖 (SNR)

− 𝔼[𝑋 ]

]
𝐶𝑀
𝜖 (SNR)

𝔼[𝑋 ]
(𝑎)

≤ lim
SNR→∞

[𝑀 − 𝔼[𝑋 ]]𝐶𝑀
𝜖 (SNR)

= lim
SNR→∞

[𝑀 − 𝔼[𝑋 ]] (log2(SNR) +𝑂(1))

(𝑏)
= lim

SNR→∞
[𝑀 − 𝔼[𝑋 ]] log2(SNR), (54)

where (a) holds because 𝔼[𝑋 ] ≥ 1 and 𝑅init = 𝑀𝐶𝑀
𝜖 (SNR),

and (b) holds because 𝔼[𝑋 ] → 𝑀 and therefore the 𝑂(1)
term does not effect the limit.

Because the additive terms defining 𝔼[𝑋 ] in (21) are
decreasing, we lower bound 𝔼[𝑋 ] as

𝔼[𝑋 ] ≥ 𝑀ℙ

[
𝑀−1∑
𝑖=1

log2(1 + 𝛾𝑖) ≤ 𝑅init

]

≥ 𝑀

(
1− 𝑒

−2
𝑅init
𝑀−1

−log2(SNR)
+ 1

SNR

)𝑀−1

, (55)

where the last inequality follows from (52). Plugging this
bound into (54) yields:

lim
SNR→∞

[𝑀 − 𝔼[𝑋 ]] log2(SNR)

≤ lim
SNR→∞

⎛
⎝1−

(
1− 𝑒

−2
𝑅init
𝑀−1

−log2 SNR
+ 1

SNR

)𝑀−1
⎞
⎠×
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𝑀 log2(SNR)

= lim
SNR→∞

−
𝑀−1∑
𝑗=1

(
𝑀 − 1

𝑗

)(
−𝑒

−2
𝑅init
𝑀−1

−log2 SNR
+ 1

SNR

)𝑗
×

𝑀 log2(SNR)

where the last line follows from the binomial expansion. Be-
cause 𝑅init has a pre-log of 𝑀 , each of the terms is of the form
𝛼 log2(SNR)𝑒−SNR𝛽

for some 𝛽 > 0 and some constant 𝛼, and
thus the RHS of the last line is zero. Because 𝐶IR,𝑀

𝜖 (SNR) ≥
𝐶𝑀
𝜖 (SNR), this shows limSNR→∞[𝐶IR,𝑀

𝜖 (SNR)−𝐶𝑀
𝜖 (SNR)] =

0.

APPENDIX D
PROOF OF THEOREM 4

In order to prove that rate optimization does not in-
crease the high-SNR offset, we need to consider all possible
choices of the initial rate 𝑅init. We begin by considering
all choices of 𝑅init with a pre-log of 𝑀 , i.e., satisfying
limSNR→∞ 𝑅init

log2 SNR = 𝑀 . Because the proof of convergence
of 𝔼[𝑋 ] in the proof of Theorem 3 only requires 𝑅init to have
a pre-log of 𝑀 , we have 𝔼[𝑋 ] → 𝑀 . To bound the offset, we
write the rate as 𝑅init = 𝑀𝐶𝑀

𝜖 (SNR)− 𝑓(SNR) where 𝑓(SNR)
is strictly positive and sub-logarithmic (because the pre-log is
𝑀 ), and thus the rate offset is:

𝑀𝐶𝑀
𝜖 (SNR)− 𝑓(SNR)

𝔼[𝑋 ]
− 𝐶𝑀

𝜖 (SNR)

= (𝑀 − 𝔼[𝑋 ])
𝐶𝑀
𝜖 (SNR)

𝔼[𝑋 ]
− 𝑓(SNR)

𝔼[𝑋 ]
. (56)

By the same argument as in Appendix C, the first term is
upper bounded by zero in the limit. Therefore:

lim
SNR→∞

𝑅init

𝔼[𝑋 ]
− 𝐶𝑀

𝜖 (SNR) ≤ lim
SNR→∞

−𝑓(SNR)

𝔼[𝑋 ]
. (57)

Relative to 𝐶𝑀
𝜖 (SNR), the offset is either strictly negative (if

𝑓(SNR) is bounded) or goes to negative infinity. In either case
a strictly worse offset is achieved.

Let us now consider pre-log factors, denoted by 𝑟, strictly
smaller than 𝑀 (i.e., 𝑟 < 𝑀 ). We first consider non-integer
values of 𝑟. By Lemma 1 the first 1 + ⌊𝑟⌋ terms in the
expression for 𝔼[𝑋 ] converge to one while the other terms
go to zero. Therefore 𝔼[𝑋 ] → 1 + ⌊𝑟⌋ = ⌈𝑟⌉. The long-term
transmitted rate, given by 𝑅init

𝔼[𝑋] , therefore has pre-log equal to
𝑟

⌈𝑟⌉ . This quantity is strictly smaller than one, and therefore
a non-integer 𝑟 yields average rate with a strictly suboptimal
pre-log factor.

We finally consider integer values of 𝑟 satisfying 𝑟 < 𝑀 .
In this case we must separately consider rates of the form
𝑅init = 𝑟 log SNR ± 𝑂(1) versus those of the form 𝑅init =
𝑟 log SNR ± 𝑜(log SNR). Here we use 𝑜(log SNR) to denote
terms that are sub-logarithmic and that go to positive infinity;
note that we also explicitly denote the sign of the 𝑂(1) or
𝑜(log SNR) terms. We first consider 𝑅init = 𝑟 log SNR ± 𝑂(1).
By Lemma 1 the terms corresponding to 𝑘 = 0, . . . , 𝑟 − 1
in the expression for 𝔼[𝑋 ] converge to one, while the terms
corresponding to 𝑘 = 𝑟+1, . . . ,𝑀−1 go to one. Furthermore,
the term corresponding to 𝑘 = 𝑟 converges to a strictly positive
constant denoted 𝛿:

𝛿

= lim
SNR→∞

ℙ

[
𝑟∑

𝑖=1

log2(1 + SNR∣ℎ𝑖∣2) ≤ 𝑟 log2 SNR ±𝑂(1)

]

= lim
SNR→∞

ℙ

[
𝑟∑

𝑖=1

log2(SNR∣ℎ𝑖∣2) ≤ 𝑟 log2 SNR ±𝑂(1)

]

= ℙ

[
𝑟∑

𝑖=1

log2(∣ℎ𝑖∣2) ≤ ±𝑂(1)

]
(58)

where the second equality follows from [26]. 𝛿 is strictly
positive because the support of log2(∣ℎ𝑖∣2), and thus of the
sum, is the entire real line. As a result, 𝔼[𝑋 ] → 𝑟+ 𝛿, which
is strictly larger than 𝑟. The pre-log of the average rate is then
𝑟

𝑟+𝛿 < 1, and so this choice of initial rate is also sub-optimal.
If 𝑅init = 𝑟 log SNR + 𝑜(log SNR) the terms in the 𝔼[𝑋 ]

expression behave largely the same as above except that the
𝑘 = 𝑟 term converges to one because the 𝑂(1) term in (58) is
replaced with a quantity tending to positive infinity. Therefore
𝔼[𝑋 ] → 𝑟 + 1, which also yields a sub-optimal pre-log of
𝑟

𝑟+1 < 1.
We are thus finally left with the choice 𝑅init = 𝑟 log SNR −

𝑜(log SNR). This is the same as the above case except that the
𝑘 = 𝑟 term converges to zero. Therefore 𝔼[𝑋 ] → 𝑟, and thus
the achieved pre-log is one. In this case we must explicitly
consider the rate offset, which is written as:

𝑅init

𝔼[𝑋 ]
− 𝐶𝑀

𝜖 =
𝑟 log SNR − 𝑜(log SNR)

𝔼[𝑋 ]
− 𝐶𝑀

𝜖

=
𝑟 log SNR

𝔼[𝑋 ]
− 𝐶𝑀

𝜖 − 𝑜(log SNR)

𝔼[𝑋 ]
. (59)

Using essentially the same proof as for Theorem 3, the
difference between the first two terms is upper bounded by
zero in the limit of SNR → ∞. Thus, the rate offset goes to
negative infinity.

Because we have shown each choice of 𝑅init (except 𝑅init =
𝑀𝐶𝑀

𝜖 ) achieves either a strictly sub-optimal pre-log or the
correct pre-log but a strictly negative offset, this proves both
parts of the theorem.
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