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A Unified Treatment of Optimum Pilot Overhead in
Multipath Fading Channels
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Abstract—The optimization of the pilot overhead in single-
user wireless fading channels is investigated, and the dependence
of this overhead on various system parameters of interest (e.g.,
fading rate, signal-to-noise ratio) is quantified. The achievable
pilot-based spectral efficiency is expanded with respect to the
fading rate about the no-fading point, which leads to an accurate
order expansion for the pilot overhead. This expansion identifies
that the pilot overhead, as well as the spectral efficiency penalty
with respect to a reference system with genie-aided CSI (channel
state information) at the receiver, depend on the square root
of the normalized Doppler frequency. It is also shown that the
widely-used block fading model is a special case of more accurate
continuous fading models in terms of the achievable pilot-
based spectral efficiency. Furthermore, it is established that the
overhead optimization for multiantenna systems is effectively the
same as for single-antenna systems with the normalized Doppler
frequency multiplied by the number of transmit antennas.

Index Terms—Spectral efficiency, mutual information, channel
estimation, doppler spectrum, MIMO, multiantenna.

I. INTRODUCTION

MOST wireless communication systems perform coher-
ent data detection with the assistance of pilot signals

(a.k.a. reference signals or training sequences) that are inserted
periodically [2], [3]. The receiver typically performs channel
estimation on the basis of the received pilot symbols, and
then applies standard coherent detection while treating the
channel estimate as if it were the true channel. When such an
approach is taken1 and Gaussian inputs are used, the channel
estimation error effectively introduces additional Gaussian
noise [5]. This leads to a non-trivial tradeoff: increasing the
fraction and/or power of pilot symbols improves the channel
estimation quality and thus decreases this additional noise,
but also decreases the fraction and/or power of data symbols.
To illustrate the importance of this tradeoff, Fig. 1 depicts the
spectral efficiency as function of the pilot overhead (cf. Section
III for details) for some standard channel conditions. Clearly,
an incorrect overhead can greatly diminish the achievable
spectral efficiency. This optimization is critical and has been
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Fig. 1. Spectral efficiency as function of the pilot overhead, 𝛼, for SNR =
10 dB. The Doppler spectrum is Clarke-Jakes with a maximum normalized
frequency 𝑓D = 0.02 corresponding, for instance, to 100 Km/h in a WiMAX
subcarrier. The pilot and data symbols have equal power.

extensively studied in the literature [5]–[14], on the basis of
both the simplified block-fading model as well as the more
accurate continuous-fading model. In most systems the pilot
symbol power is fixed due to peak-to-average and interference
considerations, and thus the optimization is only over the
fraction of pilot symbols. This version of the optimization
has been posed in prior work [7], [11]–[13], and explicit
results have been established in the low- and high-power
asymptotes. However, these asymptotes become accurate only
for very extreme power levels [14]; as a result, this version
of the optimization must generally be solved numerically.
When both the power and fraction of pilot symbols can be
varied, a closed-form solution for the optimal power and
fraction is known for the special cases of block-fading [7]
and continuous-fading with a rectangular Doppler spectrum
[12], [13].

In this paper, we study the overhead optimization (with
and without pilot power boosting) in the limiting regime
of slow fading. More precisely, by expanding the spectral
efficiency around the perfect-CSI point, i.e., for small fading
rates, both versions of the optimizations can be tackled and
useful expansions (in terms of the fading rate) for the optimum
pilot overhead are obtained. These expansions are seen to be
accurate over a wide range of relevant operating points, and
provide valuable insight on the dependence of the optimal
overhead and corresponding spectral efficiency on the various
parameters of interest (velocity, power, etc). For non-boosted
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pilots in particular, these expansions are the first explicit ex-
pressions that capture these dependencies for arbitrary power
levels. Some additional insights reached in the paper are as
follows:

∙ In terms of the spectral efficiency achievable with pilot-
based communication, block-fading is a special case of
continuous (symbol-by-symbol) fading.

∙ The optimal pilot overhead scales with the square root
of the Doppler frequency; this result holds regardless of
whether pilot power boosting is allowed.2

∙ The spectral efficiency penalty w.r.t. the perfect-CSI
capacity also scales with the square-root of the fading
rate.

∙ The pilot overhead optimization for multiantenna trans-
mission is essentially the same as the optimization for
single-antenna transmission except with the true Doppler
frequency multiplied by the number of transmit antennas.

By showing that block-fading is a special case of the richer
set of continuous fading models, the two models are unified in
the context of pilot-based communication. This is important
because, thus far, these models had been treated separately
(block fading is used in [6]–[9] while continuous-fading is
considered in [11]–[14]) and no connection had been estab-
lished between them. In this paper we show that the two need
not be separately treated; moreover, results obtained for one
model can be applied to the other. The connection established
between single-antenna and multiantenna transmission has
similar benefits.

II. PRELIMINARIES

A. Channel Model

Consider a discrete-time frequency-flat scalar fading chan-
nel 𝐻(𝑘) where 𝑘 is the time index. (The extension to
multiantenna channels is considered in Section VI.) Pilot
symbols are inserted periodically in the transmission [4] and
the fraction thereof is denoted by 𝛼, i.e., one in every 1/𝛼
symbols is a pilot while the rest are data.3 Moreover,𝛼 ≥ 𝛼min

where 𝛼min is established later in this section.
Let 𝒟 denote the set of time indices corresponding to data

symbols. For 𝑘 ∈ 𝒟,

𝑌 (𝑘) = 𝐻(𝑘)
√
𝑃𝑋(𝑘) +𝑁(𝑘) (1)

where the transmitted signal, 𝑋(𝑘), is a sequence of IID (in-
dependent identically distributed) complex Gaussian random
variables with zero mean and unit variance that we indicate
by 𝑋 ∼ 𝒩ℂ(0, 1). The additive noise is 𝑁 ∼ 𝒩ℂ(0, 𝑁0) and
we define SNR = 𝑃/𝑁0.

For 𝑘 /∈ 𝒟, unit-amplitude pilots are transmitted and thus

𝑌 (𝑘) = 𝐻(𝑘)
√
𝑃 +𝑁(𝑘). (2)

Notice that pilot symbols and data symbols have the same
average power. In Section V, we shall lift this constraint
allowing for power-boosted pilots.

2To the best of our knowledge, this square-root dependence was first
identified in the context of a different (and weaker) lower bound for the
multiantenna broadcast channel in [15].

3Although 𝛼 should be restricted to integer-reciprocals, our derivations
relax this constraint. Thus, our results should be rounded to an integer-
reciprocal.

1) Block Fading: In the popular block-fading model, the
channel is drawn as 𝐻 ∼ 𝒩ℂ(0, 1) at the beginning of
each block and it then remains constant for the 𝑛b symbols
composing the block. This process is repeated for every block
in an IID fashion.

In order for the receiver to estimate the channel, at least
one pilot symbol must be inserted within each block. If 𝑛p

represents the number of pilot symbols in every block, then

𝛼 =
𝑛p

𝑛b
(3)

and clearly 𝛼min = 1/𝑛b.
2) Continuous Fading: In this model, 𝐻(𝑘) is a discrete-

time complex Gaussian stationary4 random process, with an
absolutely continuous spectral distribution function whose
derivative is the Doppler spectrum 𝑆𝐻(𝜈), −1/2 ≤ 𝜈 ≤ 1/2
[16]. It follows that the channel is ergodic.

We consider bandlimited processes such that{
𝑆𝐻(𝜈) > 0, ∣𝜈∣ ≤ 𝑓D

𝑆𝐻(𝜈) = 0, ∣𝜈∣ > 𝑓D

(4)

for some Doppler frequency 𝑓D ≤ 1/2. The Doppler frequency
is typically given by 𝑓D = 𝑇𝑣/𝜆, where 𝑇 is the symbol
period, 𝑣 is the velocity, and 𝜆 is the carrier wavelength.

To ensure that the decimated channel observed through the
pilot transmissions has an unaliased spectrum, it is necessary
that

𝛼min = 2𝑓D. (5)

On account of its bandlimited nature, the channel is a non-
regular fading process [16]. We further consider 𝑆𝐻(⋅) to be
strictly positive within ±𝑓D.5 In order to remain consistent
with earlier definitions of signal and noise power, only unit-
power processes are considered.

Two important spectra are the Clarke-Jakes [17]

𝑆𝐻(𝜈) =
1

𝜋
√

𝑓2
D − 𝜈2

(6)

and the rectangular

𝑆𝐻(𝜈) =

{
1/(2𝑓D) ∣𝜈∣ ≤ 𝑓D

0 ∣𝜈∣ > 𝑓D.
(7)

We will later find it useful to express the Doppler spectrum
as

𝑆𝐻(𝜈) =
1

𝑓D

𝑆𝐻

(
𝜈

𝑓D

)
(8)

where 𝑆𝐻(⋅) is a normalized spectral shape bandlimited to
±1. For the Clarke-Jakes spectrum in (6), for instance, the
spectral shape is

𝑆𝐻(𝜈) =
1

𝜋
√
1− 𝜈2

(9)

while, for the rectangular spectrum in (7), the spectral shape
is

𝑆𝐻(𝜈) =

{
1/2 ∣𝜈∣ ≤ 1
0 ∣𝜈∣ > 1.

(10)

4The block-fading model, in contrast, is not stationary but only cyclosta-
tionary. Also, note that this discrete-time process is related to the underlying
continuous-time fading process as detailed in [14].

5This premise can be easily removed by simply restricting all the integrals
in the paper to the set of frequencies where 𝑆𝐻 (𝜈) > 0, rather than to the
entire interval ±𝑓D.
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B. Perfect CSI

With perfect CSI at the receiver (but not at the transmitter),
i.e., assuming a genie provides the receiver with 𝐻(𝑘), there
is no need for pilot symbols (𝛼 = 0). The capacity in bits/s/Hz
is then [18], [19]

𝐶(SNR) = 𝔼
[
log2

(
1 + SNR ∣𝐻 ∣2)] (11)

= log2(𝑒) 𝑒
1/SNR𝐸1

(
1

SNR

)
(12)

where 𝐸1(𝜁) =
∫ ∞
1 𝑡−1𝑒−𝜁𝑡𝑑𝑡 is the exponential integral. The

first derivative of 𝐶(⋅) can be conveniently expressed as a
function of 𝐶(⋅) via

�̇�(SNR) =
1

SNR

(
log2 𝑒−

𝐶(SNR)

SNR

)
. (13)

In turn, the second derivative can be expressed as function of
𝐶(⋅) and �̇�(⋅) as

𝐶(SNR) = − 1

SNR2

[
log2 𝑒+ �̇�(SNR)− 2

𝐶(SNR)

SNR

]
. (14)

III. PILOT-ASSISTED DETECTION

In pilot-assisted communication, decoding must be con-
ducted on the basis of the channel outputs (data and pilots)
alone, without the assistance of genie-provided channel real-
izations. In this case, the maximum spectral efficiency that
can be achieved reliably is the mutual information between
the data inputs and the outputs (data and pilots):

lim
𝐾→∞

1

𝐾
𝐼

⎛
⎜⎝{𝑋(𝑘)}𝐾−1

𝑘=0 ; {𝑌 (𝑘)}𝐾−1
𝑘=0︸ ︷︷ ︸

𝑘∈𝒟

∣ {𝑌 (𝑘)}𝐾−1
𝑘=0︸ ︷︷ ︸

𝑘/∈𝒟

⎞
⎟⎠ (15)

where 𝐾 signifies the blocklength in symbols. Achieving (15),
for which there is no known simplified expression, generally
requires joint data decoding and channel estimation.

Contemporary wireless systems take the lower complexity,
albeit suboptimal, approach of first estimating the channel for
each data symbol—based exclusively upon all received pilot
symbols—and then performing nearest-neighbor decoding us-
ing these channel estimates as if they were correct. This is
an instance of mismatched decoding [20]. If we express the
channel as 𝐻(𝑘) = �̂�(𝑘) + �̃�(𝑘) where �̂�(𝑘) denotes the
minimum mean-square error estimate of 𝐻(𝑘), the received
symbol can be re-written as

𝑌 (𝑘) = �̂�(𝑘)
√
𝑃 𝑋(𝑘) + �̃�(𝑘)

√
𝑃 𝑋(𝑘) +𝑁(𝑘). (16)

Performing nearest-neighbor decoding as described above6

has been shown to have the effect of making the term
�̃�(𝑘)

√
𝑃 𝑋(𝑘) appear as an additional source of independent

Gaussian noise [21]. With that, the spectral efficiency becomes
[5]–[7], [11], [12]

ℐ̄(SNR, 𝛼) = (1− 𝛼)𝐶(SNReff) (17)

with

SNReff =
SNR (1− MMSE)

1 + SNR ⋅ MMSE
(18)

6More specifically, the decoder finds the codeword [𝑋(1), . . . , 𝑋(𝐾)] that
minimizes the distance metric

∑𝐾
𝑘=1 ∣𝑌 (𝑘)−√

𝑃�̂�(𝑘)𝑋(𝑘)∣2.

where MMSE = 𝔼[∣�̃� ∣2]. Although not explicitly indicated,
MMSE and SNReff are functions of SNR, 𝛼 and the underlying
fading model.

In addition to representing the maximum spectral efficiency
achievable with Gaussian signals and channel-estimate-based
nearest-neighbor decoding, ℐ̄(⋅) is also a lower bound to (15).
Because of this double significance, the maximization of ℐ̄(⋅)
over 𝛼

ℐ̄★(SNR) = max
𝛼min≤𝛼≤1

ℐ̄(SNR, 𝛼) (19)

and especially the argument of such maximization, 𝛼★, are the
focal points of this paper.

The expressions in (17) and (19) apply to both block and
continuous fading, and these settings differ only in how MMSE

behaves as a function of 𝛼 and SNR.
In block fading, 𝑛p pilot symbols are used to estimate the

channel in each block and thus [7]

MMSE =
1

1 + 𝛼𝑛bSNR
. (20)

For continuous fading, on the other hand [3], [12]

MMSE = 1−
∫ +𝑓D

−𝑓D

SNR𝑆2
𝐻(𝜈)

1/𝛼+ SNR𝑆𝐻(𝜈)
𝑑𝜈 (21)

= 1−
∫ +1

−1

𝑆2
𝐻(𝜉)

𝑓D
𝛼SNR + 𝑆𝐻(𝜉)

𝑑𝜉 (22)

where (22) is based upon the spectral shape definition in (8).
For the Clarke-Jakes spectrum, MMSE can be computed in

closed-form as [14]

MMSE = 1−
arctanh

√
1−

(
𝛼 SNR

𝜋𝑓D

)2

𝜋
2

√(
𝜋𝑓D
𝛼 SNR

)2

− 1

(23)

while, for the rectangular spectrum [12]

MMSE =
1

1 + 𝛼
2𝑓D

SNR
. (24)

Proposition 1 For any pilot overhead 𝛼, the spectral ef-
ficiency achievable with pilot-based communication, i.e.,
ℐ̄(SNR, 𝛼), on a block-fading channel with blocksize 𝑛b equals
the spectral efficiency achievable on a continuous-fading chan-
nel with a rectangular spectrum where

𝑓D =
1

2𝑛b
. (25)

Proof: Comparing (20) with (24), the block-fading model
is seen to yield the same MMSE as a continuous fading model
with a rectangular spectrum if 𝑓D = 1/(2𝑛b). Because ℐ̄(⋅)
depends on the fading model only through MMSE, this further
implies equivalence in terms of spectral efficiency.

Thus, for the remainder of the paper we consider only
continuous fading while keeping in mind that block-fading
corresponds to the special case of a rectangular spectrum with
(25).

Notice by applying Jensen’s inequality to the integral in
(22), using the fact that the function 𝑥2/(𝑎+𝑥) is convex in 𝑥
for any 𝑎 > 0, that the MMSE for any spectrum (and fixed 𝑓D) is
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lower bounded by the right-hand side of (24). In other words,
the rectangular spectrum results in the worst case estimation
error; thus, block-fading analyses are also worst-case.

IV. PILOT OVERHEAD OPTIMIZATION

The optimization in (19) does not yield an explicit solution,
even for the simplest of fading models, and therefore it must
be computed numerically. In this section, we circumvent this
difficulty by appropriately expanding the objective function
ℐ̄(⋅). This leads to a simple expression that cleanly illustrates
the dependence of 𝛼∗ and ℐ̄∗ on the parameters of interest.

In particular, we shall expand (17) with respect to 𝑓D

while keeping the shape of the Doppler spectrum fixed (but
arbitrary). Besides being analytically convenient, this approach
correctly models different velocities within a given propaga-
tion environment.7 We shall henceforth explicitly indicate the
dependence of ℐ̄(⋅) and ℐ̄★(⋅) on 𝑓D.

Proposition 2 The optimum pilot overhead for a Rayleigh-
faded channel with an arbitrary bandlimited Doppler spectrum
expands as

𝛼★ =

√
(1 + SNR)

�̇�(SNR)

𝐶(SNR)
2𝑓D

−
(
(1 + SNR)

𝐶(SNR)

�̇�(SNR)
+ 2 +

1

2 SNR

∫ +1

−1

𝑑𝜉

𝑆𝐻(𝜉)

)
𝑓D

+𝒪(𝑓
3/2
D ) (26)

where 𝑆𝐻(𝜈) is the spectral shape defined in (8). The corre-
sponding spectral efficiency expands as

ℐ̄★(SNR, 𝑓D) = 𝐶 (SNR)−
√

8𝑓D (1 + SNR)𝐶 (SNR) �̇� (SNR)

+𝒪(𝑓D) (27)

Proof: See Appendix IX-A.

The expression for 𝛼★ in Proposition 2 is a simple function
involving the perfect-CSI capacity and its derivatives (cf.
Section II). Furthermore, the leading term in the expansion
does not depend on the particular spectral shape. Only the
subsequent term begins to exhibit such dependence, through∫ +1

−1
𝑑𝜈/𝑆𝐻(𝜈). For a Clarke-Jakes spectrum, for instance, this

integral equals 𝜋2/2. For a rectangular spectrum, it equals 4.
Comparisons between the optimum pilot overhead expan-

sion in Proposition 2 and the corresponding exact value ob-
tained numerically are presented in Figs. 2–3. The agreement
is excellent for a broad range of Doppler and SNR values. As
with the optimum overhead, good agreement is shown in Figs.
4–5 between the spectral efficiency in (27) and its numerical
counterpart as rendered by (19).

A direct insight of Proposition 2 is that the optimum pilot
overhead, 𝛼∗, and the spectral efficiency penalty w.r.t. the
perfect-CSI capacity, 𝐶(SNR) − ℐ̄★(SNR, 𝑓D), both depend on
the Doppler as

√
𝑓D. To gain an intuitive understanding of this

7The propagation environment determines the spectral shape while the
velocity determines 𝑓D.

Fig. 2. Optimum pilot overhead, 𝛼★ , as function of 𝑓D for SNR = 0 dB
and SNR = 10 dB with a Clarke-Jakes spectrum. Relevant Doppler levels for
LTE and WiMAX subcarriers are highlighted.

Fig. 3. Optimum pilot overhead, 𝛼★ , as function of SNR for 𝑓D = 0.001
and 𝑓D = 0.02 with a Clarke-Jakes spectrum.

scaling, we can express such penalty for an arbitrary 𝛼 as (cf.
Appendix IX-A, Eq. 62)

𝐶(SNR)− ℐ̄(SNR, 𝛼, 𝑓D) = 𝛼𝐶(SNR) (28)

+
(1 + SNR)�̇�(SNR) 2𝑓D

𝛼
+𝒪(𝑓D).

The first term in (28) represents the spectral efficiency loss
because only a fraction (1 − 𝛼) of the symbols contain data,
while the second term is the loss on those transmitted data
symbols due to the inaccurate CSI. If 𝛼 is chosen to be 𝒪(𝑓 𝑠

D)
for 0 ≤ 𝑠 ≤ 1, the first and second terms in (28) are 𝒪(𝑓𝑠

D
)

and 𝒪(𝑓1−𝑠
D

), respectively, and thus the overall penalty is

𝒪
(
𝑓
min{𝑠,1−𝑠}
D

)
. (29)

Hence, the spectral efficiency penalty is minimized by balanc-
ing the two terms and selecting 𝛼★ = 𝒪(

√
𝑓D).

In parsing the dependence of 𝛼★ upon SNR, it is worth noting
that (1 + SNR) �̇�(SNR)/𝐶(SNR) is very well approximated
by 1/ log𝑒(1 + SNR). Thus, the optimal overhead decreases



JINDAL and LOZANO: A UNIFIED TREATMENT OF OPTIMUM PILOT OVERHEAD IN MULTIPATH FADING CHANNELS 2943

Fig. 4. Spectral efficiency with optimum pilot overhead as function of 𝑓D for
SNR = 10 dB with a Clarke-Jakes spectrum. Relevant normalized Doppler
levels for LTE and WiMAX subcarriers are highlighted.

Fig. 5. Spectral efficiency with optimum pilot overhead as function of SNR
for 𝑓D = 0.001 and 𝑓D = 0.02 with a Clarke-Jakes spectrum. Also shown
is the capacity with perfect CSI.

with SNR approximately as 1/
√

log𝑒(1 + SNR). However, it is
important to realize that, although the expansion in Proposition
2 is remarkably accurate for a wide range of SNR values, it
becomes less accurate for SNR → 0 or SNR → ∞. In fact, in
limiting SNR regimes it is possible to explicitly handle arbitrary
Doppler levels [6], [7], [13], [14]. Thus, it is precisely for
intermediate SNR values where the analysis here is both most
accurate and most useful, thereby complementing those in the
aforegiven references.

V. PILOT POWER BOOSTING

In some systems, it is possible to allocate unequal powers
for pilot and data symbols. In our models, this can be
accommodated by defining the signal-to-noise ratios for pilot
and data symbols to be 𝜌pSNR and 𝜌dSNR, respectively, with

𝜌p𝛼 + 𝜌d(1− 𝛼) = 1 (30)

so that the average transmitted power is preserved. The spec-
tral efficiency in (17) continues to hold, only with

SNReff =
SNR (1− MMSE)

1/𝜌d + SNR ⋅ MMSE
. (31)

The expressions for MMSE in (20) and (21) hold with SNR

replaced with 𝜌pSNR. As a result, with block fading,

MMSE =
1

1 + 𝛼𝑛b 𝜌pSNR
(32)

while, with continuous fading,

MMSE = 1−
∫ +𝑓D

−𝑓D

SNR𝑆2
𝐻(𝜈)

1/(𝜌p𝛼) + SNR𝑆𝐻(𝜈)
𝑑𝜈. (33)

It is easily verified, from (32) and (33), that the identity
between block fading and continuous fading with a rectangular
Doppler spectrum continues to hold under condition (25).

Although we are generally interested in the maximization
of spectral efficiency with respect to 𝛼 and 𝜌p (since 𝜌d is
specified by these variables according to (30)), in [12, Section
V.A] and [13, Section III.B] it is shown that the spectral
efficiency is maximized by using the minimum frequency of
pilots, i.e.,

𝛼 = 𝛼min (34)

= 2𝑓D, (35)

and then optimizing only with respect to the pilot power boost
𝜌p. Because 𝛼 is fixed, the power boosting that maximizes ℐ̄(⋅)
is directly the one that maximizes SNReff , i.e.,

𝜌★p = arg max
𝜌p𝛼min+𝜌d(1−𝛼min)=1

ℐ̄(SNR, 𝛼, 𝜌p) (36)

= arg max
𝜌p𝛼min+𝜌d(1−𝛼min)=1

SNReff . (37)

Although simpler than the optimization in Section IV, this
nonetheless must be computed numerically, with the exception
of the rectangular spectrum/block-fading [7], [12], [13].

As in Section III, we circumvent this limitation by expand-
ing the problem in 𝑓D. Again, this yields expressions that are
explicit and valid for arbitrary spectral shapes.

Proposition 3 The optimum power allocation for a Rayleigh-
faded channel with an arbitrary bandlimited Doppler spectrum
is given by

𝜌★p =

√
1 + 1/SNR

2𝑓D

+𝒪(1) (38)

𝜌★d = 1−
√(

1 +
1

SNR

)
2𝑓D +𝒪(𝑓D) (39)

and the corresponding spectral efficiency is

ℐ̄★(SNR, 𝑓D) = 𝐶 (SNR)−
√

8𝑓D SNR (1 + SNR) �̇�(SNR)+𝒪(𝑓D).
(40)

Proof: See Appendix IX-B.

As expected, an order expansion of the closed-form solution
for the rectangular spectrum [7, Theorem 2] matches the above
proposition.
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Fig. 6. Optimum pilot power boost, 𝜌★p , as function of SNR for 𝑓D = 0.001
and 𝑓D = 0.02 with a Clarke-Jakes spectrum.

Fig. 7. Spectral efficiency with optimum pilot power boost as function of
𝑓D for SNR = 10 dB with a Clarke-Jakes spectrum. Relevant normalized
Doppler levels for LTE and WiMAX subcarriers are highlighted.

A comparison between the optimum pilot power boost given
by (38) and the corresponding value obtained numerically is
presented in Fig. 6. The agreement is excellent. Good agree-
ment is further shown in Figs. 7–8 between the corresponding
spectral efficiency in (40) and its exact counterpart, again
obtained numerically.

While 𝛼 is a direct measure of the pilot overhead in terms
of bandwidth, the overhead in terms of power is measured
by the product 𝜌p𝛼, which signifies the fraction of total
transmit power devoted to pilot symbols. In light of (34) and
Proposition 3, the optimum pilot power fraction when boosting
is allowed equals

𝜌★p𝛼 =

√(
1 +

1

SNR

)
2𝑓D +𝒪(𝑓D) (41)

while without boosting (i.e., with 𝜌p = 1) the pilot power

Fig. 8. Spectral efficiency with optimum pilot power boost as function of
SNR for 𝑓D = 0.001 and 𝑓D = 0.02 with a Clarke-Jakes spectrum. Also
shown is the capacity with perfect CSI.

fraction is (from Proposition 2)

𝛼★ =

√
(1 + SNR)

�̇�(SNR)

𝐶(SNR)
2𝑓D +𝒪(𝑓D). (42)

In both cases the fraction of pilot power fraction is 𝒪(
√
𝑓D).

Comparing the two, the pilot power fraction with boosting is
larger than the fraction without boosting by a factor√

𝐶(SNR)

SNR �̇�(SNR)
. (43)

This quantity is greater than unity and is increasing in SNR.
Since MMSE is a decreasing function of 𝜌p𝛼, this implies that
an optimized system with power boosting achieves a smaller
MMSE than one without boosting.

Comparing (40) and (27), pilot power boosting increases
the spectral efficiency by√

8𝑓D(1 + SNR)�̇�(SNR)

(√
𝐶(SNR)−

√
SNR �̇�(SNR)

)
+𝒪(𝑓D)

(44)
which increases monotonically with SNR and vanishes for
SNR → 0.

VI. MULTIANTENNA CHANNELS

The analysis extends to multiantenna settings in a straight-
forward manner when there is no antenna correlation. Letting
𝑛T and 𝑛R denote the number of transmit and receive antennas,
respectively, the channel at time 𝑘 is now denoted by the
𝑛R ×𝑛T matrix H(𝑘). Each of the 𝑛T𝑛R entries of the matrix
varies in time according to the random processes described in
Section II, for either block or continuous fading; furthermore,
these processes are independent. Due to such independence,
the matrix entries can be separately estimated without loss
of optimality. Furthermore, the estimation error is minimized
by transmitting orthogonal pilot sequences from the various
transmit antennas [7], e.g., transmitting a pilot symbol from a
single antenna at a time.
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We denote the perfect-CSI multiantenna capacity as

𝐶𝑛T,𝑛R(SNR) = 𝔼

[
log2 det

(
I+

SNR

𝑛T

𝑯𝑯†
)]

, (45)

for which a closed-form expression in terms of the exponential
integral can be found in [22].

The spectral efficiency with pilot-assisted detection now
becomes [7]

ℐ̄(SNR, 𝛼) = (1− 𝛼)𝐶𝑛T,𝑛R(SNReff) (46)

with

SNReff =
SNR (1− MMSE)

1 + SNR ⋅ MMSE
(47)

where MMSE is the estimation error for each entry of the
channel matrix 𝑯 .

Because the definition of SNReff carries over, the mul-
tiantenna formulation mirrors its single-antenna counterpart
with 𝐶𝑛T,𝑛R(⋅) replacing 𝐶(⋅) and noting that MMSE now
indicates the per-entry estimation error. The equivalence be-
tween block and continuous fading holds for each entry in
terms of MMSE, and thus the equivalence in (25) extends to
this multiantenna setting. Therefore, we again restrict our
discussion to continuous fading.

Due to the orthogonal pilots, an overhead of 𝛼 corresponds
to a fraction 𝛼/𝑛T of symbols serving as pilots for a particular
transmit antenna (i.e., for the 𝑛R matrix entries associated with
that transmit antenna). As a result, the per-entry MMSE is the
same as the single-antenna expression in (22) only with 𝛼
replaced by 𝛼/𝑛T, i.e.,

MMSE = 1−
∫ +1

−1

𝑆2
𝐻(𝜉)

𝑛T𝑓D
𝛼SNR + 𝑆𝐻(𝜉)

𝑑𝜉. (48)

This equals the MMSE for a single-antenna channel with a
Doppler frequency of 𝑛T𝑓D. The optimization w.r.t. 𝛼 in a
multiantenna channel is thus the same as in a single-antenna
channel, only with an effective Doppler frequency of 𝑛T𝑓D

and with 𝐶(⋅) replaced by 𝐶𝑛T,𝑛R(⋅). As a result, Proposition
2 naturally extends into

𝛼★ =

√
(1 + SNR)

�̇�𝑛T,𝑛R(SNR)

𝐶𝑛T,𝑛R(SNR)
2𝑛T𝑓D

−
(
(1 + SNR)

𝐶𝑛T,𝑛R(SNR)

�̇�𝑛T,𝑛R(SNR)
+2+

1

2 SNR

∫ +1

−1

𝑑𝜉

𝑆𝐻(𝜉)

)
𝑛T𝑓D

+𝒪(𝑓
3/2
D ). (49)

Notice here the dependence on
√
𝑛T in the leading term.

When pilot power boosting is allowed, it is again advan-
tageous to reduce 𝛼 to its minimum value, now given by
𝛼min = 2𝑛T𝑓D, and to increase 𝜌p.8 In this case the achievable
spectral efficiency becomes [7]

(1− 2𝑛T𝑓D)𝐶𝑛T,𝑛R(SNReff) (50)

8The proofs of the optimality of 𝛼 = 𝛼min in [12], [13] are derived for
single-antenna channels. The extension to the multiantenna setting follows if
one notes that the function 𝐶𝑛T,𝑛R (⋅) is concave and thus 𝐶𝑛T,𝑛R (𝑥) ≥
𝑥 �̇�𝑛T,𝑛R (𝑥) for any 𝑥 ≥ 0.

with SNReff as defined in (18) and with

MMSE = 1−
∫ +1

−1

𝑆2
𝐻(𝜉)

𝑛T𝑓D
𝛼𝜌p SNR + 𝑆𝐻(𝜉)

𝑑𝜉. (51)

The optimization of the power boost again corresponds to the
maximization of SNReff with respect to 𝜌p. Since MMSE is the
same as for a single-antenna channel with effective Doppler
𝑛T𝑓D, the optimum pilot power boost for a multiantenna
channel with Doppler frequency 𝑓D is exactly the same as the
optimum pilot power boost for a single-antenna channel with
the same spectral shape and with Doppler frequency 𝑛T𝑓D. As
a result, the expressions in Section V apply verbatim if 𝑓D is
replaced by 𝑛T𝑓D.

Applying (41), the fraction of power devoted to pilots is
given by

𝜌★p𝛼 =

√(
1 +

1

SNR

)
2𝑛T𝑓D +𝒪(𝑓D) (52)

which increases with
√
𝑛T.

Based upon these results, when power-boosting is allowed
the pilot overhead optimization on a multiantenna channel
with Doppler frequency 𝑓D and a particular spectral shape
is exactly equivalent to the optimization on a single-antenna
channel with the same spectral shape and with Doppler
frequency 𝑛T𝑓D. When pilot power boosting is not allowed,
this equivalence is approximate because the perfect-CSI ca-
pacity functions 𝐶(⋅) and 𝐶𝑛T,𝑛R(⋅) differ. Roughly speaking,
multiple antennas increase the perfect-CSI capacity by a factor
of min(𝑛T, 𝑛R) and thus 𝐶𝑛T,𝑛R(SNR) ≈ min(𝑛T, 𝑛R)𝐶(SNR).
If this approximation were exact, then the aforementioned
equivalence would also be exact. Although not exact, the
perfect-CSI capacities are sufficiently similar, particularly for
symmetric (𝑛T = 𝑛R) channels, to render the equivalence very
accurate also for the case of non-boosted pilots. To illustrate
this accuracy, the optimal pilot overhead for a symmetric
channel at an SNR of 10 dB is plotted versus the number
of antennas along with the optimal overhead for the single-
antenna equivalent (with Doppler 𝑛T𝑓D) in Fig. 9. Excellent
agreement is seen between the two.

The main implication of the single/multiantenna equiva-
lence is that, based upon our earlier results quantifying the
dependence of the pilot overhead on the Doppler frequency,
the optimal overhead (with or without power boosting) scales
with the number of antennas proportional to

√
𝑛T.

VII. EXTENSION TO DISCRETE SIGNAL CONSTELLATIONS

The optimization of pilot overheads with discrete constel-
lations, rather than ideal Gaussian signals, would be a natural
extension of the work in this paper. For 𝑚-PSK signals, in
particular, this extension appears feasible. As recognized in
[23] in a related content (computation of the low-SNR spec-
tral efficiency without pilot symbols), the constant-amplitude
property of 𝑚-PSK signals ensures that the additional noise
caused by imperfect channel estimation in (16) remains both
Gaussian and uncorrelated with the useful signal. Hence, the
optimization problem described by (17) and (18) remains
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Fig. 9. Optimum pilot overhead, 𝛼★, as function of number of antennas
(𝑛T = 𝑛R) for 𝑓D = 0.001 and 𝑓D = 0.01 for a rectangular spectrum
with SNR = 10 dB. Also shown is the optimal pilot overhead for the single-
antenna equivalent with a normalized Doppler of 𝑛T𝑓D.

valid, only with 𝐶(SNR) replaced by the ergodic mutual
information associated with an 𝑚-PSK signal, namely

𝐶PSK(SNR) = − log2(𝜋𝑒) (53)

− 𝔼

[∫
𝑓𝑚

(
𝑦, SNR∣𝐻 ∣2) log2 𝑓𝑚 (

𝑦, SNR∣𝐻 ∣2) 𝑑𝑦

]
where the expectation is over the exponential distribution of
∣𝐻 ∣2 and the integration is over the complex plane, with

𝑓𝑚(𝑦, 𝜌) =
1

𝑚𝜋

𝑚∑
ℓ=1

exp

{
−

∣∣∣𝑦 −√
𝜌 𝑒𝑗2𝜋ℓ/𝑚

∣∣∣2} . (54)

Note that the computation of MMSE also remains as described
in Section III because the pilots are not affected by the signal
format.

Given the modified optimization obtained when the ergodic
mutual information is given by 𝐶PSK(⋅), Propositions 2 and 3
continue to apply except with 𝐶(⋅), �̇�(⋅) and 𝐶(⋅) suitably
replaced by 𝐶PSK(⋅) and its derivatives, respectively. Clearly,
(53) cannot be integrated into a closed form, but it can
be precomputed numerically and tabulated for subsequent
use. The derivative of (53) can be expressed by virtue of
the relationship between mutual information and nonlinear
estimation [24] as in (55) at the bottom of the page, where the
expectation is again over the exponential distribution of ∣𝐻 ∣2
and the integration is over the complex plane. As with 𝐶PSK(⋅),
�̇�PSK(⋅) can be precomputed numerically and tabulated.

The functions 𝐶PSK(⋅) and �̇�PSK(⋅) suffice for Proposition 3
to be applicable to 𝑚-PSK signals. Application of Proposi-
tion 2 further requires 𝐶PSK(⋅), which could be obtained by
specializing the derivations in [25].

Discrete constellations other than 𝑚-PSK are less amenable,
chiefly because the additional noise caused by imperfect
channel estimation in (16) is no longer Gaussian if 𝑋(𝑘) has
varying amplitude and a nearest neighbor decoder will not
perform as if this noise were Gaussian. Moreover, replacing
it with Gaussian noise of the same variance need not yield
a lower bound on the spectral efficiency as the Gaussian
noise distribution is generally not the worst when the signal is
discrete. Nonetheless, an approximation would be obtained by
rendering the noise Gaussian, under which Propositions 2 and
3 would hold with suitable functions for the ergodic mutual
information of the corresponding constellation, along with its
derivatives.

VIII. SUMMARY

This paper has investigated the problem of pilot overhead
optimization in single-user wireless channels. In the context
of earlier work, our primary contributions are two-fold.

First, we were able to unify prior work on continuous- and
block-fading channels and on single- and multiantenna chan-
nels: the commonly used block-fading model was shown to be
a special case of the richer set of continuous-fading models in
terms of the achievable pilot-based spectral efficiency, and the
pilot overhead optimization for multiantenna chanels is seen to
essentially be equivalent to the same optimization for a single-
antenna channel in which the normalized Doppler frequency
is multiplied by the number of transmit antennas.

Second, by finding an expansion for the overhead optimiza-
tion in terms of the fading rate, the square root dependence
of both the overhead and the spectral efficiency penalty was
cleanly identified.
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APPENDIX

A. Proof of Proposition 2

We set out to expand ℐ̄(SNR, 𝛼) w.r.t. 𝑓D about the point
𝑓D = 0 while holding SNR and 𝛼 fixed. We need

∂ℐ̄(SNR, 𝛼, 𝑓D)

∂𝑓D

∣𝑓D=0 = (1− 𝛼) �̇�(SNR)
∂SNReff

∂𝑓D

∣𝑓D=0 (56)

= −(1− 𝛼) SNR (1 + SNR) �̇�(SNR)

× ∂MMSE

∂𝑓D

∣𝑓D=0 (57)

�̇�PSK(SNR) = 𝔼

⎡
⎢⎣∣𝐻 ∣2

⎛
⎜⎝1− 1

𝑚2𝜋2

∫ ∣∣∣∑𝑚
ℓ=1 𝑒

𝑗2𝜋ℓ/𝑚 exp{−∣𝑦 − √
SNR∣𝐻 ∣2 𝑒𝑗2𝜋ℓ/𝑚∣2}

∣∣∣2
𝑓𝑚(𝑦, SNR∣𝐻 ∣2) 𝑑𝑦

⎞
⎟⎠

⎤
⎥⎦ (55)
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and

∂2ℐ̄(SNR, 𝛼)

∂𝑓2
D

∣𝑓D=0 = (1 − 𝛼)

[
�̇�(SNR)

∂2SNReff

∂𝑓2
D

(58)

+ 𝐶(SNR)

(
∂SNReff

∂𝑓D

)2
]
∣𝑓D=0

= −(1− 𝛼)
[
�̇�(SNR) SNR (1 + SNR) (59)

×
(
∂2MMSE

∂𝑓2
D

− 2 SNR

(
∂MMSE

∂𝑓D

)2
)

+𝐶(SNR) SNR
2(1 + SNR)2

(
∂MMSE

∂𝑓D

)2
]
∣𝑓D=0.

Based upon (22), regardless of the shape of the Doppler
spectrum we have

∂MMSE

∂𝑓D

∣𝑓D=0 =
2

𝛼 SNR
(60)

where we have used the fact that 𝑆𝐻(⋅) is bandlimited to ±1
and strictly positive within. In turn,

∂2MMSE

∂𝑓2
D

∣𝑓D=0 = − 2

(𝛼 SNR)2

∫ +1

−1

1

𝑆𝐻(𝜈)
𝑑𝜈. (61)

Combining (57), (59), (60) and (61),

ℐ̄(SNR, 𝛼, 𝑓D) = (1− 𝛼)(1 + SNR)

[
𝐶(SNR)

1 + SNR
− �̇�(SNR)

2𝑓D

𝛼

+

(
2 (1+SNR)𝐶(SNR)+�̇�(SNR)

(
1

SNR

∫ +1

−1

𝑑𝜉

𝑆𝐻(𝜉)
+ 4

))
𝑓2
D

𝛼2

]
+𝒪(𝑓3

D). (62)

As justified below, the extreme points 𝛼 = 2𝑓D and 𝛼 = 1 can
be ruled out as optimizers of (62). Thus, (62) is maximized
by equating its derivative w.r.t. 𝛼 to zero. This yields a cubic
equation in 𝛼, whose relevant solution expands as

𝛼★ =

√
2𝑓D(1 + SNR)

�̇�(SNR)

𝐶(SNR)

−
(
(1 + SNR)

𝐶(SNR)

�̇�(SNR)
+ 2 +

1

2 SNR

∫ +1

−1

𝑑𝜉

𝑆𝐻(𝜉)

)
𝑓D

+𝒪(𝑓
3/2
D ). (63)

The spectral efficiency in (27) is obtained by substituting (63)
into (62).

We now justify ruling out the extreme points. The case 𝛼 =
1 is trivially suboptimal. In turn, if we plug 𝛼 = 2𝑓D into (62)
the spectral efficiency expands as 𝐶(SNR)−𝒪(𝑓D), which is
smaller (orderwise) than (27).

Since this is an order result, 𝛼★ in (63) may be smaller
than 𝛼min if 𝑓D is not sufficiently small for the SNR being
considered. In such a case, the value obtained should be
adjusted to 𝛼min.

B. Proof of Proposition 3

The derivation closely parallels that in Appendix IX-A. The
spectral efficiency equals

ℐ̄(SNR, 𝑓D) = (1 − 2𝑓D)𝐶 (SNReff) (64)

where the dependence on 𝜌p and 𝜌d is concentrated on SNReff .
To expand SNReff w.r.t. 𝑓D, we need

∂SNReff

∂𝑓D

∣𝑓D=0 = −𝜌dSNR (1 + 𝜌dSNR)
∂MMSE

∂𝑓D

∣𝑓D=0. (65)

In order to compute ∂MMSE/∂𝑓D, we invoke again the normal-
ized spectral shape in (8) and further use (30) to rewrite (33)
as

MMSE = 1−
∫ +1

−1

𝑆2
𝐻(𝜉)

𝑓D
SNR (1−𝜌d(1−2𝑓D)) + 𝑆𝐻(𝜉)

𝑑𝜉. (66)

Then,
∂MMSE

∂𝑓D

∣𝑓D=0 =
2

SNR (1− 𝜌d)
. (67)

Combining (65) and (67), and using the fact that, for 𝑓D → 0,
SNReff approaches 𝜌dSNR, we have

SNReff = 𝜌dSNR − 𝜌d
1 + 𝜌dSNR

1− 𝜌d
2𝑓D +𝒪(𝑓2

D). (68)

Equating the derivative of (68) w.r.t. 𝜌d to zero yields a
quadratic equation in terms of 𝜌d, which has solutions above
and below 1. A value of 𝜌d > 1 leads to worse performance
than non-boosted pilots, and thus the optimizer is the solution
below 1. Such solution expands as

𝜌★d = 1−
√

2𝑓D (1 + 1/SNR) +𝒪(𝑓D). (69)

Analogously, combining (30) and (69), and with the constraint
that 𝜌p > 1,

𝜌★p =

√
1 + 1/SNR

2𝑓D

+𝒪(1). (70)

The spectral efficiency in (40) is obtained by substituting
(69) into (68) and then into (17), and expanding w.r.t. 𝑓D.
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