
1

Fractional Power Control for
Decentralized Wireless Networks

Nihar Jindal, Steven Weber, Jeffrey G. Andrews

Abstract

We propose and analyze a new paradigm for power control in decentralized wireless networks, termed fractional
power control. Transmission power is chosen as the current channel quality raised to an exponent−s, wheres is
a constant between 0 and 1. Choosings = 1 and s = 0 correspond to the familiar cases of channel inversion and
constant power transmission, respectively. Choosings ∈ (0, 1) allows all intermediate policies between these two
extremes to be evaluated, and we see that neither extreme is ideal. We prove that using an exponent ofs∗ = 1

2
optimizes the transmission capacity of an ad hoc network, meaning that the inverse square root of the channel
strength is the optimal transmit power scaling. Intuitively, this choice achieves the optimal balance between helping
disadvantaged users while making sure they do not flood the network with interference.

I. I NTRODUCTION

Power control is one of the most fundamental adaptive mechanisms available in wireless networks. For a single
user fading channel in which the objective is to maximize expected rate, it is optimal to increase transmission
power (and rate) as a function of the instantaneous channel quality according to the well-known waterfilling policy.
On the other hand, if there is a target rate/SNR, power should be adjusted so that this target level is exactly met;
this corresponds to choosing power as a decreasing function of the instantaneous channel quality. In a multi-user
network in which users mutually interfere, power control can be used to adjust transmit power levels so that all
users simultaneously achieve their target SINR levels. The Foschini-Miljanic algorithm is an iterative, distributed
power control method that performs this task assuming that each receiver tracks its instantaneous SINR and feeds
back power adjustments to its transmitter [1].

In this paper, we considernon-iterativepower control algorithms for a multi-user wireless network with mutually
interfering users and a common target SINR. Each transmitter knows the channel quality to its intended receiver,
but has no knowledge of (potential) interference from other transmitters. On the basis of only this information,
each transmitter must determine its power level. While designing such an algorithm a reasonable objective is to
maximize the fraction of successful transmissions in the network. One possibility would be to simply have all
transmitters use the same power independent of their current channel conditions. In this case the probability that
a particular transmitter-receiver pair meets the required SINR threshold depends on the channel between the pair
as well as the locations of interfering transmissions, and clearly users with good channel conditions would have a
higher probability of success. Another possibility would be to perform channel inversion, where each transmitter
chooses its power inversely proportional to its individual channel quality. With this policy transmit-receive pairs
with poor channels are no longer disadvantaged, but the increased interference power could potentially knock out
many transmissions in the network.

Motivated by the work of [2] in which the concept offractional power controlis proposed for cellular networks,
we consider fractional power control policies that fall between channel inversion (i.e., full channel compensation)
and constant transmission power (no channel compensation). IfH is the channel power between the transmitter
and receiver, fractional power control refers to using a transmission power ofH−s where the exponents is chosen
in [0, 1]. Clearly,s = 0 implies constant transmit power, whereass = 1 is channel inversion.

We consider a spatially distributed (decentralized) network, representing either a wireless ad hoc network or
unlicensed spectrum usage by many nodes (e.g., Wi-Fi or spectrum sharing systems). We consider a network that
has the following key characteristics.
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• Each transmitter communicates with a single receiver that is a distanced meters away.
• Channel attenuation is determined by path loss (with exponentα) and a (flat) fading valueH.
• All multi-user interference is treated as noise.
• Transmitters do not schedule their transmissions based on their channel conditions or the activities of other

nodes.
• Transmitter node locations are modelled by a homogeneous spatial (2-D) Poisson process.

In many settings some of the above assumptions — particularly the fixed transmit distance — are somewhat
artificial. They are used to simplify the analysis and discussion in this paper, but each has been shown to preserve
the integrity of the conclusions in our prior work, e.g. [3], [4].

Note that in such a decentralized netwok it is quite feasible that signal power between each transmitter-receiver
pair can be measured but nothing is known about concurrent transmissions; this may particularly be true in an
unscheduled slotted system in which it is not possible to know beforehand which other transmissions will taken
place in a particular time slot. In addition, note that it is not always possible (or desirable) to use an iterative power
control algorithm such as that of [1] because, for example, a feedback channel with the required latency may not
be available or convergence times may be too long relative to a packet duration.

The contributions of the paper are the suggestion of a fractional power control for wireless networks and the
derivation of the optimum power control exponent,s∗ = 1

2 . Such an approach to power control is shown to greatly
increase the transmission capacity of an ad hoc network for small path loss exponents (asα → 2), with more modest
gains for higher attenuation channels. The results open a number of possible avenues for future work in the area
of power control, and considering the prevalence of power control in practice, carry several design implications.

II. PRELIMINARIES

A. System Model

We consider a set of transmitting nodes at an arbitrary snapshot in time with locations specified by a homogeneous
Poisson point process (PPP),Π(λ), of intensityλ on the infinite two-dimensional plane,R2. We consider a reference
transmitter — receiver pair, where the reference receiver, assigned index0, is located without loss of generality, at
the origin. LetXi denote the distance of thei-th transmitting node to the reference receiver. Each transmitter has an
associated receiver that is assumed to be located a fixed distanced meters away. LetHi = Hi0 denote the (random)
distance–independent fading coefficient for the channel separating transmitteri and the reference receiver at the
origin; let Hii denote the (random) distance–independent fading coefficient for the channel separating transmitteri
from its intended receiver. Received power is modeled by the product of the transmission power times the pathloss
(with exponentα > 2) times the corresponding fading coefficient. Therefore, the (random) SINR at the reference
receiver is:

SINR0 =
P0H0d

−α∑
i∈Π(λ) PiHiX

−α
i + η

, (1)

whereη is the noise power. Recall our assumption that transmitters may have knowledge of the channel condition,
Hii, connecting it with its intended receiver. By exploiting this knowledge, the transmission power,Pi, may depend
upon the channel,Hii. This expression can be related to information theory if Gaussian signaling is used, by noting
that the mutual information conditioned on the transmitter locations and fading realizations is:

I(X0;Y0|Π(λ),H,P) = log2(1 + SINR0), (2)

where H = (H0,H1, . . .) and P = (P0, P1, . . .). The Poisson model requires that nodes decide to transmit
independently, which corresponds in the above model to slotted ALOHA [5]. A good scheduling algorithm by
definition introduces correlation into the set of transmitting nodes, which is therefore not well modelled by a
homogeneous PPP. We discuss the implications of scheduling later in the paper.

B. Transmission Capacity

In the outage-based transmission capacity framework, an outage occurs whenever the SINR falls below a
prescribed thresholdβ, or equivalently whenever the instantaneous mutual information falls belowlog2(1 + β).
Therefore, the system-wide outage probability is

q(λ) = P(SINR0 < β) (3)
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Because (3) is computed over the distribution of transmitter positions as well as the iid fading coefficients (and
consequently transmission powers), it corresponds to fading that occurs on a time-scale that is comparable or slower
than the packet duration (if (3) is to correspond roughly to the packet error rate). The outage probability is clearly
an increasing function of the intensityλ.

Define λ(ε) as the maximum intensity ofattemptedtransmissions such that the outage probability is no larger
thanε, i.e.,λ(ε) is the unique solution ofq(λ) = ε. The transmission capacity is then defined asc(ε) = λ(ε)(1−ε)b,
which is the maximum density ofsuccessfultransmissions times the spectral efficiencyb of each transmission. In
other words, transmission capacity is like area spectral efficiency subject to an outage constraint.

Consider a path-loss only environment (Hi = 1 for all i) with constant transmission power (Pi = p for all i).
Defineδ = 2/α < 1. The main result of [3] is given in the following theorem.

Theorem 1 ([3]): Pure pathloss.Consider a network where the SINR at the reference receiver is given by (3)
with Hi = 1 and Pi = p for all i. Then the following expressions give tight bounds on the outage probability and
transmission attempt intensity forλ, ε small:

qpl(λ) ≥ qpl
l (λ) = 1− exp

{
−λπd2

(
1
β
− η

pd−α

)−δ
}

,

λpl(ε) ≤ λpl
u (ε) = − log(1− ε)

1
πd2

(
1
β
− η

pd−α

)δ

. (4)

Herepl denotes pathloss. The transmission attempt intensity upper bound,λpl
u (ε), is obtained by solvingqpl

l (λ) = ε
for λ. These bounds are shown to be tight approximations for smallλ, ε respectively, which is the usual regime of
interest. Note also that− log(1− ε) = ε + O(ε2), which implies that transmission density is approximately linear
with the desired outage level,ε, for small outages. The following corollary illustrates the simplification of the above
results when the noise may be ignored.

Corollary 1: Whenη = 0 the expressions in Theorem 1 simplify to:

qpl(λ) ≥ qpl
l (λ) = 1− exp

{
−λπd2βδ

}
,

λpl(ε) ≤ λpl
u (ε) = − log(1− ε)

1
πd2βδ

. (5)

III. F RACTIONAL POWER CONTROL

The goal of the paper is to determine the effect that fractional power control has on the transmission capacity
upper bound in (4). We first review the key prior result that we will use, then derive the maximum transmission
densitiesλ for different power control policies. We conclude the section by finding the optimal power control
exponents and discussing some implications.

A. Transmission capacity under constant power and channel inversion

In this subsection we restrict our attention to two specific power control strategies: constant power (or no
power control) and channel inversion. Under constant power we setPi = p for all i for some common power
level p. Under channel inversion we setPi = p

E[H−1]H
−1
ii for all i. This means that the received signal power

is PiHiid
−α = p

E[H−1]d
−α, which is constant for alli. That is, channel inversion compensates for the random

channel fluctuations between each transmitter and its intended receiver. Moreover, the expected transmission power
is E[Pi] = p, so that the constant power and channel inversion schemes use the same expected power. A main
result of [4] is given in the following theorem.

Theorem 2 ([4]): Constant power. Consider a network where the SINR at the reference receiver is given by
(3) with Pi = p for all i. Then the following expressions give good approximations of the outage probability and
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transmission attempt intensity forλ, ε small:

qcp(λ) ≥ qcp
l (λ) = 1− E

[
exp

{
−λπd2E[Hδ]

(
H

β
− η

pd−α

)−δ
}]

≈ q̃cp
l (λ) = 1− exp

{
−λπd2E[Hδ]E

[(
H

β
− η

pd−α

)−δ
]}

,

λcp(ε) ≈ λ̃cp(ε) = − log(1− ε)
1

πd2

1
E[Hδ]

E

[(
H

β
− η

pd−α

)−δ
]−1

. (6)

Channel inversion. Consider the same network withPi = p
E[H−1]H

−1
ii for all i. Then the following expressions

give tight bounds on the outage probability and transmission attempt intensity forλ, ε small:

qci(λ) ≥ qci
l (λ) = 1− exp

{
−λπd2E[Hδ]E[H−δ]

(
1
β
− ηE[H−1]

pd−α

)−δ
}

λci(ε) ≤ λci
u (ε) = − log(1− ε)

1
πd2

1
E[Hδ]E[H−δ]

(
1
β
− ηE[H−1]

pd−α

)δ

. (7)

Note thatcp denotes constant power, whileci denotes channel inversion. The constant power outage probability
approximationqcp

l (λ) ≈ q̃cp
l (λ) holds becausee−x is nearly linear for smallx. The constant power transmission

attempt intensity approximation is obtained by solvingq̃cp
l (λ) = ε for λ. Similarly, the channel inversion transmission

attempt intensity upper bound is obtained by solvingqci
l (λ) = ε for λ. The validity of the approximations is evaluated

in the numerical and simulation results in Section IV. The following corollary illustrates the simplification of the
above results when the noise may be ignored.

Corollary 2: Whenη = 0 the expressions in Theorem 2 simplify to:

qcp(λ) ≥ qcp
l (λ) = 1− E

[
exp

{
−λπd2βδE

[
Hδ

]
H−δ

}]
≈ q̃cp

l (λ) = 1− exp
{
−λπd2βδE

[
Hδ

]
E

[
H−δ

]}
,

qci(λ) ≥ qci
l (λ) = 1− exp

{
−λπd2βδE

[
Hδ

]
E

[
H−δ

]}
,

λcp(ε) ≈ λ̃cp(ε) = − log(1− ε)
1

πd2βδ

1
E [Hδ] E [H−δ]

,

λci(ε) ≤ λci
u (ε) = − log(1− ε)

1
πd2βδ

1
E [Hδ] E [H−δ]

. (8)

Note that in the absence of noise the constant power outage probability approximation equals the channel inversion
outage probability lower bound,̃qcp

l (λ) = qci
l (λ). Moreover, the constant power transmission attempt intensity

approximation equals the channel inversion transmission attempt intensity upper bound,λ̃cp = λci
u (ε). Comparing

λ̃cp = λci
u (ε) in (8) with λpl

u (ε) in (5) it is evident that the impact of fading on the transmission capacity is measured
by the loss factor,Lcp = Lci, defined as

Lcp = Lci =
1

E [Hδ] E [H−δ]
< 1. (9)

The inequality is obtained by applying Jensen’s inequality to the convex function1/x and the random variable
Hδ. If constant power is used, theE[H−δ] term is due to fading of the desired signal while theE[Hδ] term is due
to fading of the interfering links. Fading of the interfering signal has a positive effect while fading of the desired
signal has a negative effect. If channel inversion is performed theE[H−δ] term is due to each interfering transmitter
using power proportional toH−1

ii . When the path loss exponent,α, is close to 2 thenδ = 2/α is close to one, so
the termE[H−δ] is nearly equal to the expectation of the inverse of the fading, which can be extremely large for
severe fading distributions such as Rayleigh. As a less severe example,α = 3, the loss factor for Rayleigh fading
is Lcp = Lci = 0.41.
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B. Transmission capacity under fractional power control

In this section we generalize the results of Theorem 2 by introducing fractional power control (fpc) with parameter
s ∈ [0, 1]. Under fpc the transmission power is set toPi = p

E[H−s]H
−s
ii for eachi. The received power at receiver

i is thenPiHiid
−α = p

E[H−s]H
1−s
ii d−α, which depends uponi aside froms = 1. The expected transmission power

is p, ensuring a fair comparison with the results in Theorems 1 and 2. Note that constant power corresponds to
s = 0 and channel inversion corresponds tos = 1. The following theorem gives good approximations on the outage
probability and transmission attempt intensity under fpc.

Theorem 3:Fractional power control. Consider a network where the SINR at the reference receiver is given by
(3) with Pi = p

E[H−s]H
−s
ii for all i, for somes ∈ [0, 1]. Then the following expressions give good approximations

of the outage probability and transmission attempt intensity forλ, ε small:

qfpc(λ) ≥ qfpc
l (λ) = 1− E

[
exp

{
−λπd2E[H−sδ]E[Hδ]

(
H1−s

β
− ηE[H−s]

pd−α

)−δ
}]

≈ q̃fpc
l (λ) = 1− exp

{
−λπE[H−sδ]E[Hδ]E

[(
H1−s

β
− ηE[H−s]

pd−α

)−δ
]}

,

λfpc(ε) ≈ λ̃fpc(ε) = − log(1− ε)
1

πd2

1
E[H−sδ]E[Hδ]

E

[(
H1−s

β
− ηE[H−s]

pd−α

)−δ
]−1

. (10)

Proof: Under fpc, the SINR is given by:

SINR0 =
P0H0d

−α∑
i∈Π(λ) PiHiX

−α
i + η

=
p

E[H−s]H
1−s
0 d−α∑

i∈Π(λ)
p

E[H−s]H
−s
ii HiX

−α
i + η

(11)

Therefore, the outage probability is given by:

qfpc(λ) = P

 ∑
i∈Π(λ)

H−s
ii HiX

−α
i >

1
β

H1−s
0 d−α − ηE[H−s]

p

 . (12)

As shown in [4], if Π(λ) = {(Xi, Zi)} is a homogeneous marked Poisson point process with points{Xi} of
intensityλ and iid marks{Zi} independent of the{Xi}, then

P

 ∑
i∈Π(λ)

ZiX
−α
i > y

 ≥ 1− exp
{
−πλE[Zδ]y−δ

}
, (13)

where the bound is asymptotically tight asy → ∞. Conditioned onH0 the RHS in (12) is a constant, hence we
define:

Zi = H−s
ii Hi, y =

1
β

H1−s
0 d−α − ηE[H−s]

p
. (14)

Applying the above result yields:

qfpc(λ) ≥ qfpc
l (λ) = 1− E

[
exp

{
−πλE

[(
H−s

ii Hi

)δ
] (

1
β

H1−s
0 d−α − ηE[H−s]

p

)−δ
}]

. (15)

Recall thatHii andHi = Hi0 are assumed to be independent random variables.
As with Theorem 2, the approximationqfpc

l (λ) ≈ q̃fpc
l (λ) holds becausee−x is nearly linear for smallx. The

fpc transmission attempt intensity approximation,λ̃fpc(ε), is obtained by solving̃qfpc
l (λ) = ε for λ. The following

corollary illustrates the simplification of the above results when the noise may be ignored.
Corollary 3: Whenη = 0 the expressions in Theorem 3 simplify to:

qfpc(λ) ≥ qfpc
l (λ) = 1− E

[
exp

{
−λπd2βδE

[
Hδ

]
E

[
H−sδ

]
H−(1−s)δ

}]
≈ q̃fpc

l (λ) = 1− exp
{
−λπd2βδE

[
Hδ

]
E

[
H−sδ

]
E

[
H−(1−s)δ

]}
,

λfpc(ε) ≈ λ̃fpc(ε) = − log(1− ε)
1

πd2βδ

1
E [Hδ] E [H−sδ] E

[
H−(1−s)δ

] . (16)
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The loss factor for fpc,Lfpc, is the reduction in the transmission capacity approximation relative to the pure
pathloss case:

Lfpc(s) =
1

E [Hδ] E [H−sδ] E
[
H−(1−s)δ

] . (17)

Clearly, the loss factorLfpc for fpc depends on the design choice of the exponents.

C. Optimal Fractional Power Control

Fractional power control represents a balance between the extremes of no power control and channel inversion.
The mathematical effect of fractional power control is to replace theE[H−δ] term with E[H−sδ]E[H−(1−s)δ]. This
is because the signal fading issoftenedby the power control exponent−s so that it results in a leading term of
H−(1−s) (rather thanH−1) in the numerator of the SINR expression, and ultimately to theE[H−(1−s)δ] term. The
interference power is also softened by the fractional power control and leads to theE[H−sδ] term. The key question
of course lies in determining the optimal power control exponent. It is given by the following theorem.

Theorem 4: In the absence of noise (η = 0), the fractional power control outage probability approximation,
q̃fpc
l (λ), is minimized fors = 1

2 . Hence, the fractional power control transmission attempt intensity approximation,
λ̃fpc(ε) is also maximized fors = 1

2 .
Proof: To prove the theorem we must show that the quantityE

[
H−sδ

]
E

[
H−(1−s)δ

]
is minimized ats = 1

2 . To
do this, we apply the following general result withX = Hδ, which we prove in the Appendix. For any non-negative
random variableX, the function

h(s) = E
[
X−s

]
E

[
Xs−1

]
, (18)

is convex ins for s ∈ R with a unique minimum ats = 1
2 . Sinceλ̃fpc(ε) is inversely proportional toE

[
H−sδ

]
E

[
H−(1−s)δ

]
with no other dependence ons, then clearlys = 1

2 maximizes the transmission capacity approximation.
The theorem shows that transmission density is maximized, or equivalently, outage probability is minimized, by

balancing the positive and negative effects of power control, which are reduction of signal fading and increasing
interference, respectively. Using an exponent greater than1

2 over-compensates for signal fading and leads to
interference levels that are too high, while using an exponent smaller than1

2 leads to small interference levels
but an under-compensation for signal fading. Note that because the key expressionE

[
H−sδ

]
E

[
H−(1−s)δ

]
is

convex, the loss relative to usings = 1
2 increases monotonically both ass → 0 ands → 1.

One can certainly envision “fractional” power control schemes that go even further. For example,s > 1
corresponds to “super” channel inversion, in which bad channels take resources from good channels even more so
than in normal channel inversion. Not surprisingly, this is not a wise policy. Less obviously,s < 0 corresponds
to what is sometimes called “greedy” optimization, in which good channels are given more resources at the
further expense of poor channels. Waterfilling is an example of a greedy optimization procedure. But, since
E

[
H−sδ

]
E

[
H−(1−s)δ

]
monotonically increases ass decreases, it is clear that greedy power allocations of any

type are worse than even constant transmit power.
The fpc transmission attempt intensity approximation at the optimal exponents = 1

2 is given by

λ̃fpc(ε) ≈ − log(1− ε)
1

πd2βδ

1

E [Hδ]
(
E

[
H− δ

2

])2 . (19)

The numerical results given in the proceeding pages show that this optimized density can be significantly higher
than that achieved without any power control or with channel inversion. However, it should be noted that fading
has a deleterious effect relative to no fading even if the optimal exponent is used. To see this, note thatx−

1
2 is

a convex function and therefore Jensen’s yieldsE[X− 1
2 ] ≥ (E[X])−

1
2 for any non-negative random variableX.

Applying this toX = Hδ we get
(
E

[
H− δ

2

])2
≥

(
E[Hδ]

)−1
, which implies

Lfpc(1/2) =
1

E [Hδ]
(
E

[
H− δ

2

])2 ≤ 1.

Therefore, fractional PC cannot fully overcome fading, but it is definitely a better power control policy than constant
power transmission or traditional power control (channel inversion).



7

IV. N UMERICAL RESULTS

The benefit of fractional power control is well illustrated by examining performance in Rayleigh fading, in which
caseH is exponentially distributed and the moment generating function is therefore

E[Ht] = Γ(1 + t), (20)

whereΓ(·) is the standard gamma function. If fractional power control is used, the effect of fading is

Lfpc =
1

E [Hδ] E [H−sδ] E
[
H(1−s)δ

] =
1

Γ(1 + δ) · Γ(1− sδ) · Γ(1− (1− s)δ)
(21)

In Figure 1 this loss factor (L) is plotted as a function ofs for path loss exponentsα = {2.1, 3, 4}. Notice that
for each value ofα the maximum takes place ats = 1

2 , and that the cost of not using fractional power control is
highest for small path loss exponents becauseΓ(1 + x) goes to infinity quite steeply asx → −1.
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Fig. 1. The loss factorL vs. s. Note thatLcp andLci are the left edge and right edge of the plot, respectively.

In Figure 2 the loss factorL is again plotted against the path loss exponentα for s = 1
2 and for no power

control/channel inversion (i.e.s = 0 or s = 1). If no power control or channel inversion is used (s = 0 or s = 1) in
a network with a path loss exponent near two, Rayleigh fading almost completely zeroes the transmission capacity.
This is becauseL → 0 ass → 0 or s → 1, coupled with the fact that the mean interference is infinite in a Poisson
field of interferers withα < 2 [6]. However, if fractional PC withs = 1/2 is used, it is feasible to operate in
Rayleigh fading becauseLfpc > 1

γ(0.5)2 = 0.3183 for all path loss exponents greater than 2.
Although fractional power control is quite powerful with respect to no/full power control, fading still has a

significant effect on transmission capacity because the multiplicative loss factorL is still non-negligibly far from
one. For example, forα = 3 Rayleigh fading still reduces capacity by a factor of0.6 with fractional PC (rather
than by0.4 with no PC). In Figure 3 the multiplicative savings of optimal fractional power control relative to no
power control/channel inversion, which is the quantity

Lfpc

Lcp
=

Γ(1− δ)(
Γ(1− 1

2δ)
)2 , (22)

is shown. For path loss exponents near 2, there is a very substantial performance increase. This advantage is reduced
for larger values ofα, but is still quite significant.

The above numerical results are in terms of the approximation to transmission capacity. Of course, it is also
necessary to show how accurate this approximation is. Figure 4 presents simulation results for the outage probability,
q(λ), versus the fpc exponent,s, for λ = 0.02 in Rayleigh fading (H exponential). The simulation results are Monte
Carlo averages. The simulation results assume

α = 4 β = 1 d = 1 p = 1 η = 10−6. (23)
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Fig. 2. Fading loss factorL for fractional power control, channel inversion, and constant power transmission.
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Fig. 3. The ratio of transmission capacity for fractional power control (s = 1
2
) relative to no power control or channel inversion. The gain

from FPC becomes quite significant asα→ 2.

The no noise plot (i.e., SIR) corresponds toη = 0, while the curve with noise was computed forη = 10−2 (i.e.,
a received SNR of 20 dB in the absence of any interference). The figure illustrates a close match between the
simulated outage probability and the numerical approximation in (16), and note that the optimal exponent is 0.5
with or without noise. It is interesting to note that the outage probability with noise diverges fors near one; this
is because the power cost of Rayleigh fading goes to infinity ass approaches one.

V. A REAS FORFUTURE STUDY

Given the historically very high level of interest in the subject of power control for wireless systems, this new
paradigm for power control opens many new questions. We document some that have occurred to us here, but note
that this list is certainly not exhaustive.

What is the effect of scheduling on FPC?If scheduling is used, then how should power levels between a
transmitter and receiver be set? Wills = 1

2 still be optimal? Will the gain be increased or reduced? We conjecture
that the gain from FPC will be smaller but non-zero for most any sensible scheduling policy, as the effect of
interference inversion is softened.

How does FPC perform in cellular systems?. Cellular systems in this case are harder to analyze than ad hoc
networks, because the base stations (receivers) are located on a regular grid and thus the tractability of the spatial
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Poisson model cannot be exploited. On the other hand, FPC may be even more helpful in centralized systems. Note
that some numerical results for cellular systems are given in reference [2], but no analysis is provided.

VI. CONCLUSIONS

This paper has applied fractional power control as a general approach to pairwise power control in ad hoc
networks. We have shown that under some assumptions, the optimum power control exponent iss∗ = 1

2 , in contrast
to constant transmit power (s = 0) or channel inversion (s = 1). This implies that there is an optimal balance
between compensating for fades in the desired signal and amplifying interference. We saw that a gain on the order
of 50% or larger (relative to no power control) might be typical for fractional power control in a typical wireless
channel. The gains are larger for channels with low attenuation, and smaller for channels with high attenuation.

APPENDIX

We prove that for any non-negative random variableX, the function

h(s) = E
[
X−s

]
E

[
Xs−1

]
, (24)

is convex ins for s ∈ R with a unique minimum ats = 1
2 . Define the functions

f(s) = E
[
X−s

]
, g(s) = E

[
Xs−1

]
, (25)

so thath(s) = f(s)g(s). Recall that a functionh is said to belog-convexif log h is convex. Two relevant properties
of log-convex functions are:i) if h is log-convex thenh is convex (although the converse need not hold), andii)
the product of two log-convex functions is log-convex. Thus the theorem will be proved if we show thatf, g are
log-convex. The functionsf, g are easily shown to be convex by the fact thatf

′′
(s), g

′′
(s) are non-negative for all

s:

f ′(s) = −E [X−s log X] , f
′′
(s) = E

[
X−s(log X)2

]
g′(s) = E

[
Xs−1 log X

]
, g

′′
(s) = E

[
Xs−1(log X)2

]
, (26)

DefineF (s) = log f(s), G(s) = log g(s), andH(s) = log h(s). Then:

F ′(s) = −E[X−s log X]
E[X−s] , F

′′
(s) =

E [X−s] E
[
X−s(log X)2

]
− (E [X−s log X])2

(E [X−s])2

G′(s) = −E[Xs−1 log X]
E[Xs−1] , G

′′
(s) =

E[Xs−1]E[Xs−1(log X)2]−
(
E

[
Xs−1 log X

])2

(E [Xs−1])2
. (27)
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We employ the Cauchy-Schwarz inequality in the form

(E [a(X)b(X)])2 ≤ E
[
a(X)2

]
E

[
b(X)2

]
, (28)

for arbitrary functionsa, b of a random variableX.

F
′′
(s) =

E
[(

X− s

2

)2
]

E
[(

X− s

2 log X
)2

]
− (E [X−s log X])2

(E [X−s])2

≥
E

[
X− s

2 X− s

2 log X
]2 − (E [X−s log X])2

(E [X−s])2
= 0

G
′′
(s) =

E
[(

X
s−1
2

)2
]

E
[(

X
s−1
2 log X

)2
]
−

(
E

[
Xs−1 log X

])2

(E [Xs−1])2

≥
E

[
X

s−1
2 X

s−1
2 log X

]2
−

(
E

[
Xs−1 log X

])2

(E [Xs−1])2
= 0 (29)

This establishes the log-convexity off, g, and hence the log-convexity ofh, and thus the convexity ofh. The
derivative ofh is

h′(s) = E
[
X−s

]
E

[
Xs−1 log X

]
− E

[
Xs−1

]
E

[
X−s log X

]
. (30)

It can easily be seen thats = 1
2 is the unique maximizer satisfyingh′(s) = 0.
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