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Abstract— We consider a MIMO fading broadcast channeland as x = Vu, such thatV ¢ CMXK s a zero-forcing

compare the achievable ergodic rates when the channel statepeamforming matrix anah € CX contains the symbols from

information at the transmitter is provided by “analog” noisy ; ;
feedback or by quantized (digital) feedback. The superioty tlrflng?rﬁ)endlently genefra{?d.Gal:]ssmn iodgwordslffjrwf,t
of digital feedback is shown whenever the number of feedback e n-th column vy, 0 IS chosen to be a unit vector

channel uses per channel coefficient is larger than 1. Also,ev ©Orthogonal to the subspaég = span{h; : j # k} generated

show that by proper design of the digital feedback link, erras by all other users’ channels. In this case, the achievabie su

in the feedback have a minor effect even by using very simple rate is given by

uncoded modulation. Finally, we show that analog feedback

achieves a fraction1 — 2F of the optimal multiplexing gain even - K IhZVkIQTk(H)

in the presence of a feedback delay, when the fading belongs R™ = max ZE [1og (1 + T)}

to the class of “Doppler processes” with normalized maximum 2 EPR(B)I<P = 0

Doppler frequency shift 0 < F < 1/2. (2)
where the optimal power allocation is obtained straightfor

|. MODEL SETUP AND BACKGROUND wardly by waterfilling over the set of channel gaifit;vs|? :

We consider a multi-input multi-output (MIMO) Gaussiark = 1,...,K}. If K > M, ZF precoding can be applied
broadcast channel modeling the downlink of a system whggintly with some user schedulingalgorithm that selects at
the base station (transmitter) hag¢ antennas and< user every channel use an active user subset of size not larger
terminals (receivers) have one antenna each. A channel th#n M. Schemes for user scheduling have been extensively
of such channel is described by discussed. In this paper, however, we are not concerned with
o - the user scheduling problem and we shall consider the &ituat

yp =hpx+2,, k=1,... . K (1) Kk = M. We are mainly interested in the high-spectral effi-
wherey;, is the channel output at receiviey zj, ~ CN(0, No) ciency regime, where we can characterize the ach_ieval?le sum
is the corresponding AWGNh, € CM is the vector of rate asslog P/No+O(1), and is the “system multiplexing
channel coefficients from thi-th receiver to the transmitter 9ain” or “pre-log factor” of the ergodic sum rate. Hence, it
antenna array ang is the channel input vector. The channgf Well-known that restricting to the simple constant power

input is subject to the average power constraifik|2] < p. allocation®;, = P/M for all k =1,..., M incurs in a loss
We assume that the chanrsthte given by the collection only in the O(1) term. We shall restrict to this choice in the
of all channel vectord = [hy, ..., hg] € CM*X varies in rest of this paper.

time according to a block fading model whe¥e is constant It 1S v_vell-kpo_wn that, linder perfect CSIT and CSIR, both
over each frame of lengtli’ channel uses, and evolves fronhe optlmaIZFDwty-Paper sum-rat€’ and the zero-forcing
frame to frame according to an ergodic stationary joint§um-rate R are equal toMlog P/Ny + O(1). On the
Gaussian process. As a special case, we have the i.i.d.-bidentrary, under non-perfect CSI the rate sum may behave in
fading channel wher#l is an independent random matrix orft fadically different way. For example, H has distribution
each frame. The entries & are mutually independent and!nvarlant under left multiplication by unitary matrices, i
identically distributed, and the first-order distributionH is 1S known [1,6] that under no CSIT and perfect CSIR the
Gaussian i.i.d. with elements €N(0, 1). multiplexing gain reduces to 1, i.e., the sum rate is equal to
log P/Ny + O(1).

B. Channel state feedback models

If H is perfectly and instantaneously known to all terminals We consider some specific CSIT and CSIR models and

erfect CSIT and CSIR), the capacity region of the channel . . . .
gg) is obtained by MMS)E—DFE l:l)oeam);orn?ing and Gaussia(?lenve lower-bounds to the corresponding achievable écgod

dirty-paper coding (see details in [1-5]). Because of sicitp] rates by analyzing naivebeamforming scheme that computes

and robustness to non-perfect CSIT, simpieear precoding a mismatched ZF beamforming mat from the CSIT. In

schemes with standard Gaussian coding have been extqnsiealrtlcmar’ we consider an "analog” CSIT feedback scheme

. . ! : where the transmitter observation at frame titris given by
considered. A particularly simple scheme consists of zero-

forcing (ZF) beamforming, where the transmit signal is fetm  {G(r) = \/GPH(7) + W(7) : 7 = —00,...,t —d} (3)

A. Capacity results



where {W(7)} is a spatially and spectrally white Gaussiain every frame. Using stationarity and ergodicity, we have
process with elements: CN(0, Ny) and d is the feedback

delay. This models the case where the channel coefficieats ar R, > E { _inf I(uS; yilag, Zk)}
explicitly transmitted on the reverse link (uplink) using-u S Bl G %)< )

quar_1tized guadrature-amplitude modulation [7-9]. The grow @) E [log (1 + |a| P)] (6)
scaling 5 corresponds to the number of channel uses per XM

channel coeffigient, assuming that transmission in thetfeeld |\ hore (a) follows from [11], noticing that,u$ and ¢, are
channgl has fixed peak powét and _that the chgnnel statencorrelated (even after conditioning ap, X). _
vector is modulated by @M x M unitary spreading matrix ~ Next, we shall bound the rate gap incurred by the naive
[7]. A simplifying assumption of this work is that we conside ZF beamforming and analog feedback with respect to the ZF

no fading and orthogonal access in the CSIT feedback lifk¢@mforming with ideal CSIT. Denoting bizi™ the rate of

In addition, we assume that the SNR on the feedback chanﬁ%ﬁ,rekr a\‘/ﬁgféaltjiglr];%LTHSair(I)Ds/S]\/[uisne r(sz)) awg hcé)V%Stant (in time)

is equivalent to the un-faded downlink SNR ().

A different CSIT feedback approach is based on quantizidgRanaiog S RF-R
the channel vector at each receiver and transmitting battieto [hfv, 2P lax|?P
b . ; . : < El|log|14*= =" —E[log(l-ﬁ- )}
ase station a packet &f bits, representing the corresponding NoM S M
guantization index. In the case of no feedback delay and no Ihfv,|2P
feedback errors, in [10, Theorem 1] it is shown that the gap = E {10% (1 + ’;VOM”
between ZF with ideal CSI and the naive ZF scheme is given R
by E 1 (Zj;ék el v;[? + |ak\2) P
P__ s Bl Rl NoM
ARguans. <log |1+ —2" M1 (4)
No leHv; 2P
. i . . . +E log | 1+ Z kI
While this result is obtained for a particular random enslemb = NoM

of channel quantization schemes referred tRaadom Vector o Mo (2p
Quantizer(see [10] and references therein), a bound on the < E |log (1+ > %)
best possible channel vector quantizer shows that (4) g tig j#k 0
for large P/Ny [10]. (b) P
< log |1+ ]VO—M Z EHeEVHQ]
Il. RATE GAP BOUND FOR ANALOGCSIT FEEDBACK 7k
N . (© 2P M—1
In the case of i.i.d. block fading and no feedback delay, = log (1+ No M ) )

the analog CSIT feedback yields the observationGof=
g Y vat where (a) follows from the fact thaf_ ., [ef!V;[* + |ax|?

VvBPH + W at the beginning of every frame. The trans- _ _ He 1 4 b
mitter computes the MMSE estimate of the channel matrigtochastically dominatey; vy|* since|ax|* and|hy vi|* are
H-2P_G. The k-th columnv, of V is a unit vector identically distributed, (b) follows from Jensen’s inetiya

No+5P and the final expression (c) follows by noticing that ¥es a

orthogonal to the subspadg = spanth; : j # k}. Notice  joioministic function off and therefore it is independent of
that we can writeH = H + E, whereH andE are mutually g Therefore, we can writ€(|e'v; |2] = EFYE[erell)v;] =

independent and have Gaussian i.i.d. components with meO@le,P] — 02, sincev; has unit norm by ‘construction
J - Yer J '

i B8P 2 _ -1 _ e . ; . )
zero and variancey oz ando; = (1 + GP/No)™", respec- “\yq priefly discuss the impact of imperfect CSiRssume
tively. Furthermore H, H and E are identically distributed that the user terminals have an estin@gteof the useful signal
apart from different per-component variances (scaling).  coefficienta,, (e.g., obtained from downlink training symbols)

The signal at theé-th receiver is given by such thatay, = ay, + fi, whereE[|fx|*] = o} andE[a} fx] =
He H 0.2 We still assume that the interference plus noise variance
Yk = (hViur + Z(ek Vi)uj + 2 (®) 5, is accurately known on each frame. By repeating the same
37k lower bounding argument of (6) we arrive at
We assume that the frame duration is long enough such ~ 12
.. . . |ak| P
that some training scheme can be used in the downlink R > Ellog |1+ 55— (8)
channel. Training allows each receiver to estimate: 1) the o3P+ XM

useful signal coefficientq, = (hZGk) and 2) the variance
of the interference plus noisg. = >, (elv;)u; + 2,
given by ¥ = E [|Gu e, H| = No + 32, [efi9;/2P/M.
This conditioning is due to the fact that, is estimated on
each frame, and the coefficiente!t'v,;) are constant over
each frame and change from frame to frame, following the
block i.i.d. fading model. The maximum achievable rate orfhzereF(o) denotes the cdf oE.

; ; ; Notice that in this case model (3) still applies but the nd¥eaccounts
userk _SUbJeCt to th_e apove assquptlons is lowerbounded P0¥the observation noise at the receivers plus the CSIThized noise.
assuming a Gaussian inpuf = uj’ ~ €N(0, P/M), and by

R . ” iy SThis condition holds wher@i;, is the MMSE estimate ofi; given the
considering the worst-case noise plus interference bligtdn observation.

1with some abuse of notation, the term in the second line ohé&k the
following meaning:

E [infe, syic, 21 <, 145 9lak, Te)]

f inkai]EHCkP]SG I(“}?% Yklak, X = 0)dF (o)



By comparing (6) and (8) we notice that the effect of non- IV. EFFECTS OFCSIT FEEDBACK ERRORS

perfect CSIR is a) replacing with a; and b) increasing the  \we wish to investigate the impact on the above conclusions
interference power by the tere; P. We shall see in the next of the optimistic assumption that the quantized feedbaekich
section that the multiplexing gain of the analog CSIT fea#bane| can operate error-free and arbitrarily close to capaktis
scheme depends critically on the behavior of the teff#® assumption is particularly unrealistic because the feekiba
for P — oco. Typically, we have that? P> = O(o? P). Hence, piock coding length is very small3/). In addition, the
the multiplexing gain for imperfect CSIT/perfect CSIR andensitivity to feedback delay (see Section V) is likely tquize
for imperfect CSIT/imperfect CSIR are identical. This is ine|atively simple codes to be used.
sharp contrast to point to point channels, in which perfect v e shall consider a very simple CSIT feedback scheme that
imperfect CSIR may lead to very different high-SNR behaviogertainly represents a lower bound on the best quantizeti fee
[11-13]. back strategy. The user terminals perform quantizationgusi
11l. COMPARISON WITH QUANTIZED CSIT FEEDBACK Random Vector Quantizer[Q.O], and transmit the feedback
g{'ts using simple uncoded QAM. Furthermore, no intelligent
mapping of the quantization bits onto the QAM symbols is
used, Therefore, if even a single feedback bit from usés
erroneously received, the correspondingh CSIT vector is
log (1 + P/Ng ) completely independent of the actuatth channel vector or
1+ BP/No its quantization (this is because all of the quantizatiortwes

For the sake of simplicity we restrict to the case of perfe
CSIR. Replacing the estimation error variangg¢ = (1 +
BP/No)~1 in (7), we obtain

ARanalog

IN

| ] 1 9 in the codebook are random and are randomly assigned to
s log| 1+ 3 ©) the QAM symbols). Furthermore, since only uncoded QAM
B symbols are sent, error detection is not possible: the base
mzelfsmﬁl:?;’z upr?)?cbhoeudn?oerﬂl/;r el)S/JNV{?by 1 and where station computes the beamforming matik based on the
bp 9 ) %(?coded feedback messages, even if they are incorrect.

Let us now cons_ider_digital feedback over the same c_hann_ We again usggM symbol periods to transmit the feedback
The rate gap obtained in [10, Theorem 1] and reported in (4)Bﬁs. There is a non-trivial tradeoff between quantizaton

further upperbounded Hyg(1+(P/Np)-2~ 7). Let us assume A
(very unrealistically) that the digital feedback link capevate channel errors. In order to maintain a bounded gap, we must
scale feedback at least &8/ — 1) log, (14 P/Np), which we

error-free and at capacity, i.e., it can reliably transiwgt 1 + &Pproximate as log, P/N, for simplicity. Therefore, let us

P/Ny) bits per symbol. For the same number of feedba : ; B
channel periods; M, the number of feedback bits per mobileconsIder using3 = aM log, P/No for o > 1. We send these

. N . . B bits in M symbol periods, and thus we sefjdog; (/o)
is B= (M logQ(_l + P/Ny). Replacing this into the rate gapIoits per QAM feedback symbol.
bound, we obtain:

From [15], using thae fact that the QAM constellation size is
AR, < l0g <1 N P/No > . (10) equaltoL = (P/Ny)7, we have the following upper bound
(14 P/No)? to the symbol error probability for QAM modulation:
If 8 = 1 the quantized and analog feedback achieve essentially 3/ p\le/s
Py < 2exp <—§ < > )

A

the same rate gap of at most 1 b/s/Hz. Howevef i 1, — (11)
unlike the analog feedback case, the rate gap of the qudntize No
feedback vanishes faP/Ny — oc. For « = 8 (which means trying to signal at capacity with
We conclude that for3 > 1 the quantized feedback isuncoded modulation!)P, does not decreases with SNR and
far superior to the analog scheme. This conclusion finds #re system performance is very poor. However,dgp < 1,
appealing interpretation in the context of sending an analwhich corresponds to transmitting at a constant fraction of
source via a noisy channel with minimal end-to-end distorti capacity, thenP, — 0 as P/Ny — oo. The upper bound on
In our case, the source is the Gaussian channel végtor the error probability of the whole quantized vector (traitted
and the noisy channel is the feedback AWGN channel with 30\ symbols) is given byP, s, = 1— (1 — P,)?M. A lower
SNR P/N, that we have postulated in our model. It is wellbound on the achievable ergodic rate is obtained by assuming
known (see [14] and references therein) that when the southat when a feedback error occurs for ussdts SINR is zero
block length (/ in our case) is constrained to be equal t¢hecause uset receives a large amount of interference due
the channel code block lengtl (= 1 in our case), then an to the useless quantization vector available to the tratber)i
optimal strategy to send a Gaussian source over a Gaussiuile if the feedback error does not occur its rate is given
channel with minimal end-to-end quadratic distortion Gstss RZ¥ — AR ..., that is, the rate of ideal ZF decreased by the
of scaling the source symbols and sending them uncoded gogper bound to) the rate gap. It follows that the ergodie rat
unquantized through the channel. Hence, the fact that gnalsf userk in the presence of quantized feedback with errors is
feedback cannot be essentially outperformed for= 1 is upperbounded by
expected. However, it is also well-known that if we are akow o
to use a channel coding block length larger than the source Ry = (1= P (R’%F — log (1 + (P/No)! )) (12)
block length (3 > 1 in our case), the analog strategy is strictlfChoosingl < « < 8 we achieve both vanishing, and van-
suboptimal because the distortion with analog transmissishing ARquant. 8S P/Ny — oo. Thus, even under this very
scales ad /3 whereas it decreases exponentially witlfi.e., simple CSIT feedback scheme the optimal ZF performance
along the vector quantizer R-D curve) for digital transneoiss can be eventually approached for sufficiently high SNR.



Effect of alpha, for beta=4

30 . d} where, following the analog feedback model (3), we let
—— ZF with perfect CSIT g(7) = h(r) +w(r), with w(r) i.id. ~ €N(0,6) andd = 8.

25} digital feedback . In particular, we consider the case of 1-step predictiba: (1)
—o=1 and the case of filteringl(= 0). From classical Wiener filering

20 ——a=15 /- theory [16], we have that the prediction error is given by

| 1/2
€1(0) = exp </ log(d + Sh(f))d§> -5 (13)

average sum rate [bit/channel use]
=
a1

—1/2
10 .
and that the filtering MMSE is given by
5 b 661(5)
§) = —1 14
. . . | | 00 = 5 @) (14)
0 5 10 15 20 25 30 that is, the filtering error is the harmonic mean between the
_ _ SNR [d?] _ observation noise variance and the prediction errog; (9).
Fig. 1. Quantized feedback with QAM modulation. Notice that if;(§) = 1 (e.g., the channel process is i.i.d.

so that the observation of the past is useless), Hhéh) =

Analog vs. Optimized Digital FB with errors, M=K=4 §/(1+6), which is the same expression that we have used in

N the Section Il for the case of i.i.d. block-fading and defege
. e N U E—— feedback.
N 25dB | We shall discuss the rate gap bound (7) letting =
2 n_ ea(No/(BP)) for d = 0,1, under different assumptions on
?-:; 15 //—/H;r/‘ the fading proces$h(t)}. We distinguish two cases: Doppler
= process and regular process. We say {H#dt)} is a Doppler
<, 10f 4@__,_\/\ process ifS,(§) is strictly band-limited in[—F, F|, where
3 S 15dB F < 1/2 is the maximum Doppler frequency shift, given by
’E o — F= ”Tf“Tf, wherev is the mobile terminal speed (m/g), is
ZF with CSIT the carrier frequency (Hz}; is light speed (m/s) andy is the
1048 Btat B with error (envelope) frame duration (s). Furthermore, a Doppler process must sat
°1 15 2 25 3 35 4 isfy ffF log S (€)dé > —oo. This condition holds for most (if
Beta not all) channel models usually adopted in the wireless taobi
Fig. 2. Quantized vs. analog feedback. communication literature, where typically within the sopp

[~ F, F)] the Doppler spectrum has no spectral nulls (see [17]
and references therein). Following [13], we say tffatt)} is a
Fig. 1 shows the ergodic rate achieved by ZF beamformiRggular process if; (0) > 0. In particular, a process satisfying
with quantized CSIT and QAM feedback trasmissionfér= o Paley-Wiener condition [16]1/2 log Sy (€)dE > —oo is
K = 4, independent Rayleigh fadingi = 4 and different oqjay. —1/2
values ofa. It is noticed that by proper design of the feedback 5 Doppler process satisfying our assumptions has predictio
parameters the performance can be made very close to the
ideal CSIT case. »
Fig. 2 shows the rate achieved by ideal CSIT, by analog e1(6) = 312F exp (/ log(5+5h(§))d§> —5 (15)
feedback and quantized digital feedback with QAM modu- _F
lation at different SNRs as a function of the feedback raﬁ teedback del — 0V In thi
(£ channel uses per channel coefficient. The result for digi p teedback delay ¢=0). In this case

feedback is optimized with respect o We notice that for3 o (&)

sufficiently large the digital feedback eventually outpenfis Po? = No_ “T\BP) (16)
the analog feedback. The cross-over point decreases as SNR s év—lg + € (év—lg)

increases.

Hence,limp_ .o, Po? = o for both Doppler and regular
V. EFFECTS OFCSIT FEEDBACK DELAY processes. For the latter, this is clear from the fact that

; 0) > 0. For the former, this follows from (15). Applying
We consider now the case of analog feedback when eegé hsen's inequality and the fact thas), (€)d¢ = 1, we arrive

entry of H evolves independently (in the block-fading way; the upper bound
described above) according to the same complex circularly ap T . op
symmetric Gaussian stationary ergodic random process, de- (ﬂ) < (ﬂ) - (i (ﬂ)) _ (&) } 17)
noted by {A(t)}, with mean zero, variance 1 and power \AP/ = \BP 2F - \BP AP
spectral density (Doppler spectrum) denoted $)(¢), £ € Using the fact thatog is increasing, we arrive at the lower
[-1/2,1/2]. boun
Because of stationarity, without loss of generality we can 1-2F | F 2F
: TR () (5) o /o) ()

focus ont = 0. We are interested in the linear MMSE “!{ 5p 3P 3P

estimation ofh(t) from the observatiodg(r) : 7 = —o0,t — 18)



These bounds yield that (Ny/SP) = kP~ (1=2F) £ O(1/P)
for some constank. Hence,e; = O(P~(1=2F)) while § =
O(1/P), and the limits holds.

We conclude that in the case of no feedback delay the
estimation error is essentially dominated by the insteettas
observation and not much improvement can be expected by
taking into account the channel memory. On the other hand,
this means also that the fading time-correlation has little
impact on the performance provided that the feedback is fast
enough.

Feedback delay ¢ = 1). In this case, the behavior of
Doppler versus regular processes is radically differeot. F
Doppler processes, using (17) and (18), we have that =
Pei(No/BP) = kP?F + O(1). It follows that the achievable
rate sum is lowerbounded by

M
> Ry >M(1-2F)log P+ 0(1) (19)
k=1

or, equivalently, that the multiplexing gain of the systesn i

M(1—2F).

For regular processes, on the contrary, we have gt >
Pe;(0) = O(P). Hence, the rate gap grows likeg P and the
achieved multiplexing gain is zerd.

In conclusions, the most noteworthy result of this analysis
is that under common fading models (Doppler processes), the
analog feedback scheme achieves a potentially high multi-
plexing gain even with realistic, noisy and delayed fee#bac
Notice for example that with mobile spead = 50 km/h,
fe =2 GHz, and frame duratioh ms, we haveF' = 0.0926.

With M = 4 antennas we achieve a yet respectable pre-log
factor equal t03.26 instead of 4.

Figs. 3 and 4 show the achievable ergodic rates for the
Jakes’ ‘Jy” correlation (strictly band-limited) and the Gauss-
Markov AR-1 correlation (regular process) for differensfir
lag correlation values. For the AR-1 process with= 1
the system becomes interference limited. On the contraey,

(7]

t8l

performance under Jakes' model degrades gracefully as the

user mobility (Doppler bandwidth) increases. 9]
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