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Abstract— A multiple antenna broadcast channel (multiple the multiplexing gain, which is equal to the minimum of the
transmit antennas, one antenna at each receiver) with impéect number of transmit and receive antennas, assuming perfect
channel state information available to the transmitter is ©n- =gy at the receiver and a full rank channel matrix

sidered. If perfect channel state information is availableto the .
transmitter, then a multiplexing gain equal to the minimum of Motivated by the extreme cases of perfect and no CSIT,

the number of transmit antennas and the number of receivers N this paper we consider the following simple question: how
is achievable. On the other hand, if each receiver has idemtal accurate must the CSIT be in order for the full multiplexing

fading statistics and the transmitter has no channel information, gain to be achievable? We do not limit ourselves to any par-
the maximum achievable multiplexing gain is only one. The fous ticular transmission scheme (e.g., zero-forcing beamifugin

of this paper is on determination of necessary and sufficient . . . . :
conditions on the rate at which CSIT quality must improve with but instead ask this from a fundamental information théoret

SNR in order for full multiplexing gain to be achievable. The Perspective.
main result of the paper shows that scaling CSIT quality such There are two earlier results that more precisely set the
that the CSIT error is dominated by the inverse of the SNR is context of this work. In [7] it is shown that if the transmitte
both necessary and sufficient to achieve the full multiplexig gain - 55 jmperfect CSIT and the quality of the CSIT is fixed retativ
as well as a bounded rate offset (i.e., the sum rate has no neya to the SNR. then th ltinlexi . hi ble b
sub-logarithmic terms) in the compound channel setting. 0 e. T en g muftiplexing gain ac.|evf’;\ e. y any
transmission strategy is upper bounded%bywmch is strictly
|. INTRODUCTION smaller than the factor o2 achievable with perfect CSIT.

This result implies that that CSIT quality must improve with

b W% cor;suaer a rlnult:;nlput rtrr:ultgoutplgtk(MflMO) ?auss'ﬁ%NR in order for full multiplexing to be achievable, althdug
roadcast channel modeling the downiink ot a System WN&iE, (ate of improvement is not specified. On the other hand,
the base station (transmitter) hdg¢ antennas andV/ user

terminal . h ¢ h. A ch ’ in [8][9] it is shown that a naive zero-forcing beamforming
erminais (recqvers) ave one antenna each. A channefiust ategy performed on the basis of imperfect CSIT can aehiev
such channel is described by

the full multiplexing gain if the error in the CSIT scales as
yr=h"%+ 2z, k=1,... K 1) O(SN_R_*). The_re_zfore,()(SN_R*_l) scaling of CSIT error is
a sufficient condition for achieving full multiplexing.

whereyy, is the channel output at receivir z;, ~ CN(0, Ny) The contribution of this work is an information theoretic
is the corresponding AWGNh,, € CM is the vector of analysis of the required scaling of CSIT error in the context
channel coefficients from thk-th receiver to the transmitter of a multiple-antennacompoundbroadcast channel. In the
antenna array ang is the channel input vector. The channegrgodic setting, the channels are drawn repeatedly (i.e., per
input is subject to the average power constréifik|?] < P. channel use or frame) according to a specified distribution

If the transmitter has perfect CSIT, dirty paper codingnd the long-term average rate (with respect to the channel
achieves the capacity region of this channel and a multipéex distribution) is considered; this is the setting of all ofeth
gain of M is achievable, although each receiver has only opeeviously cited works. In the compound setting, on the
antenna [1-5]. On the other extreme, if each receiver hather hand, the channels are randomly drawn once from a
perfect CSI but the transmitter has no CSIT and each usgrecified set but then fixed forever, and the relevant medric i
has identical identical fading statistics (e.g., spatiallhite the maximum rate that can be achieved regardless of which
Rayleigh fading) then TDMA is optimal and the maximunparticular channel realization was chosen. Thus the ecgodi
multiplexing gain is one [1][6]. CSIT is clearly critical fahe setting considers the average rate achievable over trerefiff
MIMO broadcast channel. Note that the MIMO broadcast shannel realizations, while the compound setting is corestr
very different from a point-to-point MIMO channel, in whichwith the worst-case rate over the possible channel remizst
case the level of CSl available at the transmitter does riettaf The multiplexing gain of a compound MIMO broadcast



channel in which the possible channel realizations are fixadsystem, which is defined as the maximum of
(i.e., are independent of SNR) is analyzed in [10]. In our
setting, the quality of the CSIT is determined by the (angula
spread of the possible channel realizations, and thus we lim R1(P) + R2(P)
consider the case where the potential channel realizatanys P—00 log, P
with SNR (i.e., where the spread decreases with SNR).

Our first result (Theorem 1) shows that a necessary and
sufficient condition for full multiplexing gain is that thatio Wwhere(R:(P), R2(P)) denote achievable rate pairs for power
of the logarithm of the CSIT error to the logarithm of the SNRonstraint” and the maximum is taken over all achievable rate
be no larger than-1. This condition is slightly weaker than pairs. In order to derive our results, we make the following
anO(SNR~!) condition, and this weakness is a consequenagsumptions:
of the coarseness of the multiplexing gain metric. In order ,
to remedy this situation, we further insist on a bounded rates Each of the channel vectors has unit norm, jl || = 1.
offset (i.e., the achievable sum rate cannot have negative s « For anyi, j , vectors(hi, h}) are linearly independent.
logarithmic terms) in addition to the full multiplexing ga(in N )
the sense of the affine approximation to high-SNR capacity!Ntuitively speaking, accurate CSIT corresponds to a small
proposed in [11]). We then show (Theorem 2) that CSIT errgfgular spread between thig possible channel realizations.
that scales a§)(SNR~!) is both necessary and sufficient td" terms of the quantized channel feedback scenario destrib

achieve the full multiplexing gain and a bounded rate oﬁseqarlier, this corresponds to a small Voronoi region and thus
as desired. to fine/high-rate quantization of the channel vector. This,

essence of this paper is determining the rate at which the
angular spread of the channel realizations must decredbe wi
SNR in order for full multiplexing to be achievable.

We consider a memoryless compound multiple-antennapue to the worst-case nature of the compound channel set-
broadcast channel in which the transmitter h&6 > 1 ting, removing potential channel realizations (i.e., @asing
antennas and there ak¢ receivers with a single antenna eacheither J; or .J,) cannot decrease capacity, and in fact we can
For simplicity we state our results for the two transmit ani@ concentrate on the simple case whére= 1 (i.e., the channel
(M = 2), two user channel. In the compound setting, th@ receiver one is fixed and known perfectly) afd= 2. For
channel vector of user 1 hds possible instancds!, ..., h{*, notational simplicity, we refer to the two possible rediaas
while the channel vector of user 2 hds possible instances of user 2's channel al,, andhs,. Although it is possible to
h},...,hJ>. The transmitter has perfect knowledge of the consider the general scenario where the vediarsh,, and
possible channel vectors of each user, but is not aware of #ag vary with SNR P, the essence of the problem is captured
actual realization. On the other hand, each receiver is@ssu by assuming that vectots; andh,, are fixed (for all SNR)
to know the particular realization. The received signalsgru and onlyh,, varies with SNR.

k if the channel takes on realizatignis:

II. MAIN RESULTS

Given these assumptions, we are able to find a necessary and
j j j sufficient condition for achievability of the full multipk
yl = (0)x + 2, @ oo y piing

where the Gaussian nois¢ is independent across users and

. o Theorem 1:The following is a necessary and sufficient
different channel realizations.

condition for achieving the full multiplexing gain of two the

The above setting is str(_)ngly _mot|vated by a mUIt'p_lﬁNO—user, two transmit antenna compound broadcast channel
antenna broadcast channel in which the transmitter regeiVR qer the assumptiongh, || = [[hoa|| = [[hes|| = 1 with
= ol = =

quantized (digit_al) .channel feedback from each recgivgﬁannel vectord, andhy, fixed for all SNR’s:
[8][9][12]. In this limited-feedback setting, each recsiv
learns its own channel vector (presumably through downlink
training) and then quantizes this vector according to some log (1 — ¥ h2b|2)
guantization codebook and feeds back the index of the quan- Ijiinm oa P
tization. Assuming error-free feedback, the transmitteoviks &
the Voronoi region in which the channel vector lies, but not  Proof: (Sufficiency) We first prove sufficiency by show-
the actual realization. Although a Voronoi region will tgplly  ing that full multiplexing can be achieved with simple zero-
contain an uncountable number of vectors, it will soon bezonforcing beamforming. The input is chosenxas- vy, +vaus
apparent that it is sufficient to consider the case whereghe @here v, u, are i.i.d. zero-mean complex Gaussian’s, each
of possible channel realizations is finite. with variance g, and v; and vy are unit norm vectors
Although the capacity region of this generally non-degcahdehosen orthogonal td,, and hy, respectively. The rates
compound broadcast channel is not known, we are able B = I(Uy;Y1) and Ry = min(I(Us; Ya,), [(Us; Yop)) are
derive strong results regarding the multiplexing gain aftsu achievable, where the mutual information expressions are

< -1 3



given by: where the first and third lines follow from Markovity (i.e,
h(Y1|X, U, Y2q, Yop) = h(Y1|X) = h(V1]X,Yaq,Y2p) =
) h(Z1)) and the second line because conditioning reduces

P
I(U; Y1) = logy (1 §|h§'v1|2
entropy. Furthermore, we trivially have:

+
P
14 = |n4 2) 1
g 122! win{I(U: Yoo) 1(U3¥)} < & (U3¥20) + 103 V). (9)
P1,H 2
| zlhavol ) Using (6), (7), (8), and (9) in th&, + R, upper bound in

I(Uy;Yay) = log
? No + 5|hth vy [? (5) therefore gives the following sum rate upper bound:

(
I(U3;Ya2,) = 1og2<

Z|hb,vol? Ri+Ry < I(X;Yaa|U)+ I(X;Ya|U) + (10)
h2a|2)

= log, <1 + B H
P(1= 1

Mo+ (1B, F(X: Vi Vo, Yan) + 5 (1(U3 ¥a0) + 1(U3 Vi),

Because|h!'v,|? and |hY v4|? are positive constants, the

quantitiesI (Uy; Y1) andI(Us; Ya,) each have a multiplexing

gain of one. The ternd (Us; Ya,) can be lower bounded as:

In order to achieve the full multiplexing gain; must
achieve a multiplexing gain of one, which by (4) implies
I(U;Ya2,) and I(U;Ys,) each have multiplexing gain one.

I(Uy;Yay) > log, (14 Ph,va]?) This, however, implies that the first two terms in (10) have
P 9y ) zero multiplexing gain. To see this note
—log, <N0 + — (1 — |hjhag| )> .
2 I(X;Y20|U) +1(U;Y2a) = I(X,U;Y2a) = I(X;Y2a)
The condition in (3) impliesht), v, |? converges to the constant I(X;Y5|U) +I(U;Ya) = I(X,U;Ya) = I(X; Yap).

H 2 ; ;
[hi, v2[” and thus the first term in the above upper bound hﬁnce Ys, and Yy, are single antenna outputs, the quantities

a multlplexmg gain of one. Fgrtherr_nore, it is straightferdl I(X: Yaw) and I(X; Yas) each have at most a multiplexing
to confirm that the multiplexing gain of the second term is}. f hus. if7(T- d ] h h |
zero if (3) s satisfied. gain of 1. Thus, ifI(U;Y2,) and I(U;Y3,) each have mul-

Proof: (Necessity) In order to prove the necessity of thtéplexmg gain 1 then the multiplexing gains a{X; Y2, |U)

e . : .. andI(X;Ys|U) are each upper bounded by 0.
condition in (3), we upper bound the capacity region by gijvin ’ ) ) -
outputs (Yaa, Yas) 1o receiver 1 which creates a degraded As a result, the right hand side of (10) can have multi

channel. We then utilize the upper bound on the degrad%@ﬁ'in?egi?‘m O;:IV\S; ;ﬂgagttgﬁ;elrg(tﬁr};lv?é’é}?ﬁg fr:) TIS a
compound broadcast channel given in [13], which states: P 99 : ' oy

is necessary condition for full multiplexing:

Ry < min{I(U;Ya,),I(U;Ya2p)} (4) . I(X;Y:|Yaa, Yas)
Ri+Ry < I(X:Yi,Yao Ya|U) A ——ep 2t (11)
+min{/(U;Yaq), [(U; Y2p) } () We upper bound (X; Y;|Yaq, Ya3) as follows:
for some marginal-preserving joint distribution with theus- I(X;Y1|Yaa, Yap) = h(Y1|Yaa, Yap) — h(Y1|X)

tureU — X — (Y1, Yaq, Yop).

We now show that (3) is a necessary condition for the
degraded channel. Because the broadcast channel capacity
region depends only on the marginal probabilities, we can
assume arbitrary correlation between the additive noisses
1, 2a, and2b; for our upper bound, we find it best to assum
these noises are independent.

Applying the chain rule on the first term in (5) gives

h(Yl - f(}/Qav }/Qb)|}/2a7 }/21;) — log 2mre
h(Y1 — f(Yaq, Yap)) — log 2me
log E[|Y1 — f(Yaa, Ya0)|?] (12)

where f(-,-) is any mappingC?> — C, that may of course
(eiepend orhy, hog, hoy,.
In order to obtain the tightest bound, we can chogée-)
to be the MMSE estimator (or linear MMSE estimator)af
I(X;Y7, Y524, Yop|U) = I(X;Yaq, Yap|U) from (Y3, Yap). However, since we are interested in the high
+I(X;Y1|U, Yaa, Yap).  (6) SNRregime, it is sufficient to lef(-,-) be the least-squares

) ) ) ) _ o approximation ofY;, given by
Using Markovity, the first term in this expansion is upper

[VANVAN

bounded as: F(You, Yay) = hH(HoHY) 'H, [ 1;2: ]
)+ 1Ckova), e We defie the bty = [hubu) € T
The second term in (6) can be upper bounded as: Yi — [(Yaa, Yay) = —h' (HL,HY) " H, [ Z2a ]
I(X;Y1|U, Yaa, Yor) = h(Y1|U, Yoa, Yay) — h(Y1]X) Z2b
< h(Yi|Yaq, Yap) — h(Y1|X) and, eventually,

I(X; Y1[Yaa, Yab), (8) E[|Y1 - f(Yaa, Y2) "] = b} (HoHY) "'hy - (13)



From the definition of eigenvalues in terms of Rayleigh
quotients and using the fact thigh, || = 1 we have

1
)\min (HQHH) .
“(14)
The matrixH,HY has the same eigenvaluesid§ H, which
is given by:

i
©

=
o
T

N
>
T

h (HoHY) " hy < Ao (HoHY) L) =

.
N
T

Sum Rate (bps/Hz)
N
o

y 1 7 82=1/P7
HyHy = { o 1 ] (15)

¢’ = log, (P) / P
where p = h} hy,. This matrix has eigenvalues + |p| 2f
and 1 — |p|. Because our sufficient condition is specified 0 ‘ ‘ ‘ ‘ ‘

in terms of |p|2, it is convenient to write this expression ° ’ ° SR * *
in terms of |p|? rather than|p|. A Taylor expansion of the

minimum eigenvalue in terms ¢p|? about the pointp|? = 1 Fig. 1. Achievable Sum Rate for Different CSIT Scaling
gives Amin(HoHY) = 3 (1 — |p|?) + O(|p|*). Therefore, (11)

translates to the following necessary condition:

where constant$,, andL ., are the multiplexing gain and rate
log (ﬁ) offset, respectively. This affine approximation has beery ve
lim ———+ > 1, (16) useful in differentiating between systems with the same-mul
tiplexing gain but different rate offsets, e.g., CDMA syste
which implies (3). B with different receivers [11], point-to-point MIMO system
If the quantity (1 — [h, hay|?), which can be thought of aswith spatially correlated fading [14], and MIMO broadcast
the error in the CSIT, scales @ (P~') then the condition employing sub-optimal linear-precoding techniques on the
of Theorem 1 clearly is satisfied. However, the condition @fasis of perfect CSIT [15].
Theorem 1 is in fact looser tha@ (P~') because scaling |f we require both full multiplexing gainS.. = 2) and a
(1 — |hf,hyy|?) as 2F also satisfies (3). As the following bounded rate offset (i.e. finité..), then we can modify the
simple example shows, this looseness is in fact non-trivighroof of Theorem 1 to show that the conditiaih(P—l) is

P—co 10g P

Consider the following simple set of channels: both necessary and sufficient.
h — 1 hy — 0 hor — € Theorem 2:The sum rate capacity of the two-user, two
=710 | BT I -e transmit antenna compound broadcast channel (assuming
Th dition in (3 | ) [|hi]| = ||h2a|| = ||ha2s|| = 1 with channel vectord; and
e condition in (3) translates to: hy, fixed for all SNR’s) admits an affine expansion in the
i og €2 < 17 form of (18) with S, = 2) and finite L, if and only if
A fog P = T AN (1= g, ha ) = 0 (P,

The sum rate achievable (using the zero-forcing techniged u Proof: Sufficiency follows trivially using the same ap-

to show the sufficiency of the condition in Theorem 1) foproach as Theorem 1. To prove necessity, we begin at the sum

two valid scalings,? = L and e = ®2” (along with rate capacity bound in (10):

the sum rate achieved faf = 0, is shown in Figure 1 ).

Both €2 scalings achieve a multiplexing gain of two, but th§1 thRy < (X Ya|U) + I(X; Yo |U) + (19)

difference between the reference perfect CSIT curfe= I(X; Y1 |Yaq, Yap) + 1 (I(U; Yao) + I(U; Yap)) .

0) and the rate achieved witt? = &% increases double- 2

logarithmically with SNR and thus is unbounded; on the othdéfr we assume the sum rate capacity achieves the full multi-

hand, the difference between the rate achieved wits 0 and plexing gain and a bounded rate offs&; (P) and Rz(P)

e = % is bounded for all SNR’s. Furthermore, from the figurenust each have a multiplexing gain of one and a bounded rate

we see that the double-logarithmic rate loss is non-trisi@n offset. As a result](U;Y2,) and I(U;Ys,) must each have

at moderate SNR values. multiplexing gain one and a bounded rate offset. Because the
This behavior is due to the coarseness of the multiplexigiantities!(X; Ys2,) and I(X;Y2,) have a maximum multi-

gain metric, which is only a zero-th order approximation gflexing gain of one but cannot hap®sitive sub-logarithmic

capacity at high SNR and is unable to capture the effect @ims (for any choice of inpuX), the termsI(X;Ys,|U)

sub-polynomial (but non-trivial) terms. In order to rematis and I(X; Y5,|U) must beO(1). From the bound in (10) this

situation, it is necessary to consider thaffine approximation implies that/(X; Y7 |Y2,, Y2,) has a multiplexing gain of one,

to high-SNR capacity proposed in [11]: exactly as in the previous proof, and that the following gitgn

C(P) = 8c (logy P — Loo) +0(1), (18) log P —log I(X; Y1[Y2q, Ya2b) (20)



does not go to positive infinity. Sincé&(X;Y7|Ya,, Yap) <
1OgE[|Yl - f(Y2aa Y2b)|2] <log m,
1

log P — log <7/\min (HgHg)

) = log (PAmin(H2HY))

Although the compound setting, which essentially consider

this implies that the worst-case rate achievable over the set of all possible
channel realizations, appears to capture the essence of the

(21) problem at hand, it remains to rigorously show that the same
necessary condition also applies to the less stringentdargo

also does not go to infinity. Due to the monotonicity of th&etting.

log(-) function and becausg,;, (HoHY) = 1—|p[?4+0(|p[*),
this further implies thatP(1 — |p|?) does not go to infinity,
ie,(1—1]p?)=0(P1). [ |
Theorems 1 and 2 easily extend to thetransmit antenna,
M-receiver broadcast channel. Full multiplexing is achieve

if and only if each user achieves a multiplexing gain of one,
and thus each pair of users must achieve full multiplexingg]

Thus, the proofs of Theorems 1 and 2 are applied tb/a
antenna, 2 user channel with = 1 andJ, = M and the

same dependence on the behavior of the minimum eigenvalue

of matrix Hy can be shown.

The main result can also be nicely interpreted in term&”
of limited channel feedback systems. As mentioned earlier,

in such systems each receiver quantizes the direction of i
channel vector td bits according to some vector quantization

codebook and feeds these bits back to the transmitter. In an

ideal (but not necessarily achievablgbit vector quantization
codebook, each of tr2® Voronoi regions would be a spherical
cap of are2". Some simple geometry confirms that the?

of the angle between the center of such a cap and a vector &h

its boundary (note thatin?(w,v) = 1 — |whv|? for unit
. B .
norm vectorsw,v) is equal to2~¥-1. Furthermore, it is

straightforward to use the results of [16] to show existence

[10]
of the center and boundary of the largest Voronoi region is

[11

of actual vector quantization codebooks such that e

within a congtant factor of~ 7. In order to ensure that the
quantity2~ -1 decreases at least as fast askhe condition
of Theorem 2, it is necessary fdB to be proportional to

(M — 1)log, P, which agrees with the sufficiency results id2]

8].
I1l. CONCLUSION
In this work we have derived necessary and sufficie

with SNR for achievability of the full multiplexing gain aral
bounded rate offset for the multiple antenna broadcastralan
in the compound setting. This result indicates the fundadaten

necessity of scaling CSIT quality with SNR in multi-usef16]

MIMO downlink systems and exactly matches with prior work
showing that full multiplexing is achievable using simpéra-
forcing beamforming strategies if CSIT is appropriatelgied.

[13]

t
4
conditions on the rate at which CSIT quality must increasﬁe]

[15]
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