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Abstract—Block diagonalization is a linear precoding tech-
nique for the multiple antenna broadcast (downlink) channel
that involves transmission of multiple data streams to each
receiver such that no multi-user interference is experienced at
any of the receivers. This low-complexity scheme operates only a
few dB away from capacity but requires very accurate channel
knowledge at the transmitter. We consider a limited feedback
system where each receiver knows its channel perfectly, but the
transmitter is only provided with a finite number of channel
feedback bits from each receiver. Using a random quantization
argument, we quantify the throughput loss due to imperfect
channel knowledge as a function of the feedback level. The
quality of channel knowledge must improve proportional to the
SNR in order to prevent interference-limitations, and we show
that scaling the number of feedback bits linearly with the system
SNR is sufficient to maintain a bounded rate loss. Finally, we
compare our quantization strategy to an analog feedback scheme
and show the superiority of quantized feedback.

Index Terms—Multiple-input multiple-output (MIMO) chan-
nels, Broadcast channels (BC), quantized feedback, limited
feedback, multiuser diversity, block diagonalization (BD), zero-
forcing (ZF) beamforming, random vector quantization (RVQ)

I. INTRODUCTION

IN MULTIPLE antenna broadcast (downlink) channels,
transmit antenna arrays can be used to simultaneously

transmit data streams to receivers and thereby significantly
increase throughput. Dirty paper coding (DPC) is capacity
achieving for the MIMO broadcast channel [1], but this tech-
nique has a very high level of complexity. Zero Forcing (ZF)
and Block Diagonalization (BD) [2] [3] are alternative low-
complexity transmission techniques. Although not optimal,
these linear precoding techniques utilize all available spatial
degrees of freedom and perform measurably close to DPC in
many scenarios [4].
If the transmitter is equipped withM antennas and there are

at least M aggregate receive antennas, zero-forcing involves
transmission of M spatial beams such that independent, de-
coupled data channels are created from the transmit antenna
array to M receive antennas distributed amongst a number of
receivers. Block diagonalization similarly involves transmis-
sion of M spatial beams, but the beams are selected such that
the signals received at different receivers, but not necessarily
at the different antenna elements of a particular receiver, are
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de-coupled. For example, if there are M/2 receivers with
two antennas each, then two beams are aimed at each of the
receivers. If ZF is used, an independent and de-coupled data
stream is received on each of the M antennas. If BD is used,
the streams for different receivers do not interfere, but the
two streams intended for a particular receiver are generally
not aligned with its two antennas and thus post-multiplication
by a rotation matrix (to align the streams) is generally required
before decoding.
In order to correctly aim the transmit beams, both schemes

require perfect Channel State Information at the Transmitter
(CSIT). Imperfect CSIT leads to incorrect beam selection and
therefore multiuser interference, which ultimately leads to a
throughput loss. Unlike point to point MIMO systems where
imperfect CSIT causes only an SNR offset in the capacity vs.
SNR curve, the level of CSIT affects the slope of the curve
and hence the multiplexing gain in broadcast MIMO systems.
We consider the case when the channel is known perfectly at
the receiver and is communicated to the transmitter through a
limited feedback channel and quantify the maximum rate loss
due to limited feedback with BD.
In [5], the performance of zero-forcing based on limited

feedback in a vector downlink channel (multiple transmit
antennas, single antenna per receiver) is studied. Similar to the
results in [5], we show that scaling the number of feedback bits
approximately linearly with the system SNR is sufficient to
maintain the slope of the capacity vs. SNR curve and achieve
a rate that is a constant gap from the throughput of BD with
perfect CSIT. The scaling factor for BD offers an advantage
over ZF in terms of the number of bits required to achieve the
same sum capacity.
Rather than quantizing the CSIT into a finite number of

bits and feeding this information back, the channel coefficients
can also be explicitly transmitted over the feedback link. We
compare this scheme to quantized feedback for an AWGN
feedback channel, and show the superiority of quantized
feedback.

II. SYSTEM MODEL

We consider a MIMO broadcast (downlink) system with
a single transmitter or base station and K receivers or users.
Each user has N antennas and the transmitter hasM antennas.
The broadcast channel is described as:

yk = HH
kx + nk, k = 1, . . . , K (1)

whereHk ∈ C
M×N is the channel matrix from the transmitter

to the kth user (1 ≤ k ≤ K), the vector x ∈ C
M×1 the

transmitted signal, nk ∈ C
N×1 a zero-mean complex Gaussian
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noise vector with independently distributed entries of unit
variance each, and yk ∈ C

N×1 the received signal vector
at the kth user. We assume a transmit power constraint so that
E[||x||2] ≤ P (P > 0). We also assume that K = M

N (with
K ≥ 2), which implies that the aggregate number of receive
antennas equals the number of transmit antennas; as a result
it is not necessary to select a subset of users for transmission.
The entries of Hk are assumed to be i.i.d. unit variance

complex Gaussian random variables, and the channel is as-
sumed to be block fading with independent fading from block
to block. Each of the users are assumed to have perfect and
instantaneous knowledge of their own channel matrix. The
channel matrix is quantized by each user and fed back to
the transmitter (which has no other knowledge of the instan-
taneous CSI) over a zero delay, error free, limited feedback
channel.
It is assumed that a uniform power allocation policy is

adopted (i.e., we do not perform waterfilling across streams),
which is known to be asymptotically optimal for large SNR.
Hence, in order to perform Block Diagonalization, it is only
necessary to know the spatial direction of each user’s channel,
i.e., the subspace spanned by the columns of Hk, and the
feedback only needs to convey this information.
The quantization codebook used by each user is fixed

beforehand and is known to the transmitter. A quantiza-
tion codebook C consists of 2B matrices in C

M×N i.e.
(W1, . . . ,W2B ), where B is the number of feedback bits
allocated per user. The quantization of a channel matrix Hk,
say Ĥk, is chosen from the codebook C according to the
following rule:

Ĥk = arg min
W ∈ C

d2 (Hk,W) (2)

where d (Hk,W) is the distance metric. Here, we consider
the chordal distance [6]:

d (Hk,W) =

√√√√ N∑
j=1

sin2 θj (3)

where the θj’s are the principal angles between the two sub-
spaces spanned by the columns of the matricesHk andW [6].
As the principal angles depend only on the subspaces spanned
by the columns of the matrices, it can be assumed that the ele-
ments of C are unitary matrices (i.e. WHW = IN ∀ W ∈ C),
without loss of generality. An alternate form for the chordal
distance is d2 (Hk,W) = N− tr

(
H̃H

kWWHH̃k

)
, where H̃k

forms an orthonormal basis for the subspace spanned by Hk.
Note that other distance metrics may also be considered, but
we do not investigate this further in this work. No channel
magnitude information is fed back to the transmitter.

III. BACKGROUND

A. Block Diagonalization

The Block Diagonalization strategy, when perfect CSI is
available at the transmitter, involves linear precoding that
suppresses the interference at each user due to all other users
(but does not suppress interference due to different antennas
for the same user). If uk ∈ C

N×1 contains the N complex
(data) symbols intended for the kth (1 ≤ k ≤ K) user and

Vk ∈ C
M×N is the precoding matrix, then the transmitted

vector is given by:

x =
K∑

k=1

Vkuk (4)

and the received signal at the kth user is given by:

yk = HH
kVkuk +

K∑
j=1,j �=k

HH
kVjuj + nk (5)

The
K∑

j=1,j �=k

HH
kVjuj term represents the multi-user inter-

ference at user k. In order to maintain the power constraint,
it is assumed that VH

k Vk = IN and E
[||uk||2

]
= P

K , for
k = 1, . . . , K .
Following the BD procedure, each Vk is chosen such

that HH
j Vk is 0, ∀k �= j. This amounts to determining an

orthonormal basis for the left null space of the matrix formed
by stacking all {Hj}j �=k matrices together. This reduces the
interference terms in equation (6) to zero at each user. This
is different from Zero Forcing where each complex symbol
to be transmitted to the mth antenna (among the N antennas,
i.e., m = 1, . . . , N ) of the kth user is precoded by a vector
that is orthogonal to all the columns of Hj , j �= k, as well as
orthogonal to all but the mth column of Hk.
However, zero interference can only be achieved with

perfect knowledge of {Hk}K
k=1 at the transmitter. In the case

of limited feedback, when only a quantized version of the
subspace spanned by the columns of each Hk is available at
the transmitter, namely Ĥk, we use a naive strategy where the
precoding matrices are selected by treating Ĥ1, . . . , ĤK as
the true channels while performing BD. To distinguish these
precoding matrices from those selected with perfect CSIT,
we denote these matrices as V̂1, . . . , V̂K , where each V̂k

is chosen such that ĤH
j V̂k = 0 ∀k �= j. Thus, HH

j V̂k �= 0
in general, which leads to residual interference terms and a
loss in throughput. The received signal in the case of limited
feedback is thus written as:

yk = HH
k V̂kuk +

K∑
j=1,j �=k

HH
k V̂juj + nk (6)

B. Random Quantization Codebooks

Since the design of optimal quantization codebooks for
the given distance metric is a very difficult problem, we
instead study performance averaged over random quantization
codebooks [7]. The Grassmann manifold is the set of all N
dimensional subspaces (or planes) passing through the origin,
in an M dimensional space. This is denoted by GM,N . We
consider complex Euclidean subspaces in this work. Each of
the 2B unitary matrices making up the random quantization
codebook are chosen independently and are uniformly dis-
tributed over GM,N [8] [9]. We alternatively refer to this uni-
form distribution as the isotropic distribution in the respective
space. A random element drawn from this distribution (over
GM,N ) can be generated by generating an M ×N matrix with
i.i.d. complex Gaussian elements and then forming a specific
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orthonormal basis for the N dimensional subspace spanned
by the matrix (e.g., through a QR decomposition).
We analyze the performance averaged over all possible

random codebooks. The distortion or error associated with a
given codebook C for the quantization of Hk ∈ C

M×N is
defined as:

D
Δ= E

[
d2(Hk, Ĥk)

]
= E

[
min
W∈C

d2(Hk,W)
]

, (7)

where Ĥk is the quantization of Hk. It is shown in [8] that
D ≤ D where,

D =
Γ( 1

T )
T

(CMN )−
1
T 2−

B
T + N exp

[−(2BCMN )1−a
]
, (8)

for a codebook of size 2B. Here, T = N(M − N) and a ∈
(0, 1) is a real number between 0 and 1 chosen such that(
CMN2B

)− a
T ≤ 1. CMN is given by 1

T !

N∏
i=1

(M−i)!
(N−i)! . The

second (exponential) term in (8) can be neglected for large B.
For systems where N = 2 or 3, the exponential term may be
neglected for most practical cases.

IV. THROUGHPUT ANALYSIS

In this section, we analyze the achievable throughput of the
limited feedback-based system described so far. We first de-
scribe some preliminary mathematical results. In the following
Lemma, we show that the subspace of the true channel matrix
can be decomposed as the weighted sum of the quantized
channel and an independent and isotropic quantization error
term.
Lemma 1: The quantization Ĥk of the channel Hk admits

the following decomposition:

H̃k = ĤkXkYk + SkZk (9)

where

1) H̃k ∈ C
M×N is an orthonormal basis for the subspace

spanned by the columns of Hk,
2) Xk ∈ C

N×N is unitary and distributed uniformly over
GN,N ,

3) Zk ∈ C
N×N is upper triangular with positive diagonal

elements, satisfying tr(ZH
kZk) = d2

(
Hk, Ĥk

)
,

4) Yk ∈ C
N×N is upper triangular with positive diagonal

elements and satisfies YH
k Yk = IN − ZH

kZk, and
5) Sk ∈ C

M×N is an orthonormal basis for an isotropically
distributed (complex)N dimensional plane in theM−N
dimensional left nullspace of Ĥk.

Moreover, the quantities Yk , Ĥk and Xk are distributed
independent of each other, as are the pair Sk and Zk. This
decomposition is a generalization of the decomposition in [5],
which was for the specific case of N = 1. Similar to [5], the
matrix Zk represents the quantization error.

Proof: See Appendix A.
A direct application of Lemma 1 allows us to bound the rate

loss due to limited feedback. This decomposition also allows
us to perform low complexity Monte-Carlo simulations for
evaluating the performance of random quantization codebooks,
even for very large B, as described in detail in Section IV-D.

A. Throughput analysis for quantized feedback

In the case of perfect CSIT and BD, the transmitter has
the ability to suppress all interference terms giving a per user
ergodic rate of [3]:

RCSIT-BD (P ) = E log2

∣∣∣∣IN +
P

M
HH

kVkVH
k Hk

∣∣∣∣ (10)
where k is any user from 1, . . . , K and equal power allocation
is used. The expectation is carried out over the distribution of
Hk.
For limited feedback of B bits per user, multiuser interfer-

ence cannot be completely canceled and this leads to residual
interference power. The per-user rate (throughput) is given by:

RQUANT(P ) = E log2

∣∣∣∣∣IN + P
M

K∑
j=1

HH
k V̂jV̂H

j Hk

∣∣∣∣∣∣∣∣∣∣∣∣IN + P
M

K∑
j=1

j �=k

HH
k V̂jV̂H

j Hk

∣∣∣∣∣∣∣
(11)

= E log2

∣∣∣∣∣∣IN +
P

M

K∑
j=1

HH
k V̂jV̂H

j Hk

∣∣∣∣∣∣−

E log2

∣∣∣∣∣∣∣∣IN +
P

M

K∑
j=1

j �=k

HH
k V̂jV̂H

j Hk

∣∣∣∣∣∣∣∣ (12)
where k is any user between 1 and K and the expectation is
carried out over the channel distribution as well as random
codebooks C. Note that HH

k V̂kV̂H
k Hk represents the useful

signal component at user k and
K∑

j=1,j �=k

HH
k V̂jV̂H

j Hk repre-

sents the interference at user k due to all other users. The
achievable rate in (12) assumes that each user has knowledge
of its signal and interference covariance.
Theorem 1: The rate loss incurred per user due to limited

feedback with respect to perfect CSIT using Block Diagonal-
ization can be bounded from above by:

ΔRQUANT(P ) = RCSIT-BD (P ) − RQUANT(P )

≤ N log2

(
1 +

P

N
D

)
Proof: See Appendix B.

This provides a bound on the rate loss per user1. Further-
more, D can be upper bounded tightly by D from (8). Fig. 1
depicts the accuracy of the upper bound derived above, for an
M = 6, N = 2 system at 20 dB.

B. Controlling feedback quality

If B is kept fixed and the SNR is taken to ∞, it is easy
to see that residual interference will eventually overwhelm
signal power, and this leads to a bounded throughput (i.e., zero
multiplexing gain). Therefore, it is of interest to determine how
fast B must grow with SNR in order to prevent this behavior

1Note that a factor of N was erroneously omitted from this bound when
this result was stated in [10].
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and to maintain a bounded rate loss relative to a perfect CSIT
system.
Theorem 2: In order to bound the per-user rate loss

ΔRQUANT(P ) from above by log2(b) > 0, it is sufficient for
the number of feedback bits per user to be scaled with SNR
as:

B ≈ N(M−N)
3 PdB − N(M − N) log2(N(b

1
N − 1)) +

N(M − N) log2

[
Γ( 1

N(M−N) )

N(M−N)

]
− log2(CMN ) (13)

Proof: This expression can be found by equating the
upper bound from Theorem 1 with log2 b and solving for B
as a function of P . If D is bounded by D from (8), we have
that:

log2 b = N log2

(
1 +

P

N
D

)
(14)

⇒ − log2 D = log2 P − log2

(
N
(
b

1
N − 1

))
(15)

Substituting the value for D from (8) and solving the
above expression numerically for B will yield the number
of bits sufficient for a rate loss of no more than log2 b. We
assume that B is large enough to neglect the exponential
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Fig. 3. MIMO Broadcast Channel with M = 4, N = 2, K = M
N

= 2

term in the expression for D from (8), i.e.,

D ≈ Γ( 1
T )

T
(CMN )−

1
T 2−

B
T (16)

Note that the N exp
[−(2BCMN )1−a

]
term vanishes ex-

tremely rapidly with B when compared to the first term
(proportional to 2−

B
T ), and can be effectively neglected for

moderate to large values of B. By substituting (16) in (15)
and solving for B, (13) results.
Moreover, the total contribution of the term containing the

logarithm of the gamma function is very small and can usually
be neglected. To maintain a system throughput loss of M
bps/Hz, which corresponds to an SNR gap of no more than
3 dB with respect to BD with perfect CSIT, it is sufficient to
scale the bits as:

B ≈ N(M − N)
3

PdB − log2(C
′
MN ) (17)

where C′
MN = NN(M−N)CMN . Fig. 2 shows the sufficient

number of bits required to maintain this level of performance,
when N = 2 and M = 4, 6 and 8.
The pre-log factor (i.e. the factor that multiplies the SNR in

dB) is N(M − N) rather than MN , which intuitively makes
sense as the space of N dimensional subspaces in an M
dimensional space has a dimensionality of N(M − N).

C. Numerical Results

We present numerical results for N = 2 and M = 4, 6, 8
in Fig. 3, Fig. 4 and Fig. 5 respectively, while scaling the bits
as per (17), i.e. with a target of staying at most 3 dB away
(in SNR) from BD with perfect CSIT. As Theorem 2 only
provides the sufficient number of bits, this is a conservative
strategy and the actual SNR gaps are found to be 2.65 dB,
2.72 dB and 2.84 dB for M = 4, 6 and 8 respectively, instead
of 3 dB. The results also show that keeping the number of
bits fixed will result in a rate gap that increases unbounded
with SNR. Although our derivations assumed uniform power
allocation, the numerical results were performed with optimal
power allocation (i.e., waterfilling across effective channel
gains).

Authorized licensed use limited to: University of Minnesota. Downloaded on May 8, 2009 at 15:07 from IEEE Xplore.  Restrictions apply.



RAVINDRAN and JINDAL: LIMITED FEEDBACK-BASED BLOCK DIAGONALIZATION FOR THE MIMO BROADCAST CHANNEL 1477

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

SNR (dB)

T
hr

ou
gh

pu
t (

bp
s/

H
z)

M = 6, N = 2, K = 3

 

 

BD with perfect CSIT

BD with quantized CSIT,
Scaled B

BD with quantized CSIT,
Fixed B = 10 bits

2.72 dB

Fig. 4. MIMO Broadcast Channel with M = 6, N = 2, K = M
N

= 3

D. Generation of Numerical Results

The number of bits given by (13) can be very large and
numerical simulation becomes a computationally complex
task, as the chordal distance will have to be calculated for
each of the 2B matrices in the codebook. However, utilizing
the statistics of random codebooks, the quantization proce-
dure can be precisely emulated without having to do actual
quantization. From Lemma 1, we can repeat the argument by
interchanging H̃k and Ĥk, to yield the following equivalent
decomposition:

Ĥk = H̃kXkYk + SkZk (18)

which can be used to generate Ĥk, given H̃k and a codebook
size. Xk is isotropic and independent of the codebook size, as
is Sk which (in this decomposition) is isotropically distributed
in the left nullspace of H̃k. Samples drawn from the distribu-
tion of these matrices can thus be generated as samples from
the isotropic distribution in their respective spaces.
Moreover, d2

(
H̃k, Ĥk

)
= tr

(
ZH

kZk

)
is the 1st order

statistic from 2B samples. Here, each sample is drawn from the
distribution of the trace of a matrix-variate beta distribution
(as described in Appendix A). Thus, a sample drawn from
the distribution of tr

(
ZH

k Zk

)
can be generated by the ‘CDF

inversion’ method, by computing the CDF for a specific M
and N . A general expression for the CDF has been computed
in closed form in [8], for the case when d2

(
H̃k, Ĥk

)
≤ 1.

For moderate to large B and practical values of M , N ,
this event occurs with extremely high probability, allowing
for low complexity CDF inversion. For very small values
of B, d2

(
H̃k, Ĥk

)
may be greater than 1 with appreciable

probability, but an exhaustive searching among 2B possibilities
is not a problem in these cases.
From the eigen decomposition ZH

kZk = EkDkEH
k , as

described in Appendix B, Ek can be generated as the eigen-
vectors of any (complex) Beta(N, M −N) distributed matrix.
Further, the distribution of the eigenvalues (i.e., the entries of
Dk) conditioned on their sum (which is equal to d2(H̃k, Ĥk)),
can be computed from their joint distribution [11] ([8] for
the complex case). The conditional distribution can be easily
computed for small values of N .
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In particular, for N = 2, if D1, D2 are the diagonal ele-
ments ofDk with joint density fD1,D2(d1, d2), the distribution
of D1 conditioned on Z = D1 + D2 ≤ 1 is given as:

FD1|Z(d1|z) =

z∫
0

fD1,D2(d1, z − d1) d(d1)

fZ(z)
(19)

=

z∫
0

VM
(z−2d1)

2(1−d1)
M−4

(1−z+d1)4−M d(d1)

fZ(z)
(20)

where fZ(z) is the pdf of Z computed to be:

fZ(z) =
z2M−5(Γ(M))2

(M − 1)Γ(2M − 4)
(21)

for z ≤ 1. VM is a normalizing constant and is given by
VM = 1

2 (M−1)(M−2)2(M−3). For efficient CDF inversion,
FD1|Z(d1|z) can be computed in closed form for specific
values of M .
As YH

k Yk = IN − ZkZH
k , Yk can be obtained as well.

Putting all this together, one is able to randomly generate
a realization of the quantized version of H̃k, when random
codebooks are used. This prevents the computational com-
plexity from growing with B. However, for extremely large
B, numerical errors may dominate and care must be taken to
maintain numerical precision.

V. PERFORMANCE COMPARISONS

A. Zero forcing vs. Block diagonalization

Zero forcing is simple low-complexity linear precoding
strategy, and it is important to compare the performance of
this to BD under the presence of limited feedback. With the
channel model assumed in our work, Zero forcing for a MIMO
broadcast system with K users and N antennas per user is
equivalent to a KN = M user system with a single antenna
per user (in fact, BD collapses to ZF when each user has
a single receive antenna). An alternative antenna combining
method (when the users have multiple antennas) is proposed
in [12], where each user receives only a single stream of data
(as opposed to N streams of data with BD), but uses the
extra antennas to obtain a very accurate quantization of the
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effective channel. This effectively allows for a reduction in
feedback load.
We first compare the feedback load required for BD, ZF

and antenna combining to achieve the same rate. The feedback
scaling law for a ZF system is derived in [5] to be:

BZF ≈ (M − 1)
3

PdB (22)

to maintain an SNR gap of no more than 3 dB with respect to
ZF under perfect CSIT conditions. In this system, each user
with N antennas quantizes the direction of the channel vector
(i.e. the channel vector normalized to have norm unity) of
each of the N antennas separately, and feeds this back to the
transmitter.
If each user has N antennas and antenna combining is used,

the scaling law becomes [12]:

BAC ≈ M − N

3
PdB − (M − N) log2 e −

log2

(
M

M − N + 1

)M−N

− log2

(
M − 1
N − 1

)
(23)

to maintain an SNR gap of no more than 3 dB with respect
to ZF under perfect CSIT conditions.
It is known that with perfect CSIT, BD outperforms ZF

because ZF has a more stringent constraint on the input and
thus achieves a lower effective SNR (see, for example, [4]).
In other words, even though both ZF and BD with perfect
CSIT achieve full multiplexing gain, there is a constant rate (or
equivalently, power) offset between the two strategies as P →
∞, with BD dominating ZF. This offset has been calculated
in [4]. For example, when M = 6 and N = 2 with 3 users
in the system, BD with CSIT achieves a throughput of 25.5
bps/Hz while ZF with CSIT achieves only about 21 bps/Hz,
at 20 dB. Hence, as both ZF and antenna combining can only
do as well as ZF with CSIT, we can only compare feedback
loads at a rate that is less than that achieved by ZF with CSIT.
The rate gap between BD and ZF with perfect CSIT is

computed to be [4]:

Rg(P ) = K log2(e)
N∑

j=1

N − j

j
(24)

at high SNR. For fair comparison of the number of bits
required for BD, ZF and antenna combining under imperfect
CSIT and limited feedback, it is necessary to fix a common
target rate. By setting b = 2Rg(P )+R in (13) where b is as
defined in Theorem 2, Rg(P ) the (per-user) rate gap between
BD and ZF (with perfect CSIT) and R the target (per-user)
rate loss for the ZF system, we can compare the sufficient
number of bits required to achieve the same sum rate for both
strategies.
Furthermore. when there is limited feedback, we see the

dimensionality advantage of BD (and antenna combining) over
ZF in the pre-log factor for the bit scaling law. From (17),
the pre-log factor for BD is N(M − N) for N antennas, or
M−N per user antenna. This is compared to the factorM−1
in (22). The fact that (22) is relative to ZF with CSIT, a lower
target rate than BD with CSIT, only reinforces our conclusion.
This difference between M − 1 and M − N is perhaps due
to the fact that the space of N dimensional subspaces in an

5 10 15 20 25 30
1

2

3

4

5

6

7

8

9

SNR (dB)

T
hr

ou
gh

pu
t (

bp
s/

H
z)

M = 6

ZF with N = 1, K = 6
and 5 bits/user

Antenna combining with N = 2, K = 6 
and 5 bits/user

BD with N = 2, K = 3
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Fig. 6. Comparison of BD (N = 2, K = M
N

= 3), ZF (N = 1, K =
M = 6) and Antenna combining (N = 2, K = M = 6) with M = 6 and
5 bits/antenna.

M dimensional space has a dimensionality of N(M − N)
while the space of N one-dimensional subspaces in an M
dimensional space has dimensionality N(M − 1). The bit
scaling law for antenna combining (23) results in the same
pre-log factor as BD, but needs N times the number of users
in the system (i.e. K = M where each user as N antennas,
rather than the K = M

N for BD).
When the target rate is fixed to be 3 dB (in SNR) away

from the rate achievable with ZF and perfect CSIT, using BD
results in a bit savings of 48% for an M = 6, N = 2 system
at 15 dB, and 63% for an M = 9, N = 3 system relative to
ZF. The scaling law in Theorem 2 is slightly conservative for
large b, and the advantage of BD is somewhat underestimated.
Numerical results show that the bit savings possible with BD
are, in fact, even higher.
Table I compares the sufficient number of bits required to

achieve the same target rate, i.e., 3 dB (in SNR) away from ZF
with perfect CSIT, when using BD, ZF and antenna combining
for an M = 6, N = 2 system. ZF and BD have K = 3, while
antenna combining has K = 6.
Next, we fix the feedback load and compare the throughput

of BD, ZF and antenna combining as a function of SNR. Note
that even though we assume N times more users for antenna
combining during comparison, the total feedback load in the
system remains fixed. For example, whenM = 6, we compare
BD with N = 2, K = 3 with 5 bits/user antenna to ZF with
N = 1, K = 6 and antenna combining with N = 2, K = 6
with 5 bits/user. In all cases, the total feedback load across
all users in the system is 30 bits. From Fig. 6, BD is seen to
perform better for this system, even at low SNR. Clearly, the
advantage of BD in terms of feedback load to achieve a fixed
rate translates to a rate advantage when the feedback load is
fixed. A similar plot in Fig. 7 compares all three strategies at
10 dB and M = 4 for varying feedback load.

B. Analog vs. Digital Feedback

We consider here the case when each user k feeds back
its channel Hk by explicitly transmitting the MN complex
coefficients (Hk)mn , m = 1, . . . M, n = 1, . . . , N over the
feedback channel. We assume that the uplink feedback channel
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TABLE I
FEEDBACK REQUIREMENT (BITS) FOR DIFFERENT MULTIPLE USER-ANTENNA STRATEGIES (M = 6, N = 2)

SNR Block Diagonalization Zero Forcing Antenna Combining

5 dB 1 9 8

10 dB 7 17 15

15 dB 13 25 21

20 dB 20 34 28

25 dB 26 42 35

30 dB 33 50 41
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Fig. 7. Comparison of BD (N = 2, K = M
N

= 2), ZF (N = 1, K = M =
4) and Antenna combining (N = 2, K = M = 4) with M = 4 and SNR =
10 dB.

is unfaded AWGN with the same SNR as the downlink (i.e.,
P ). Each user may transmit each coefficient effectively ‘β’
times on the uplink, resulting in the following matrix being
received at the transmitter:

Gk =
√

βPHk + Nk. (25)

Here, Nk represents the feedback (additive white Gaussian)
noise, whose entries are independent and complex Gaussian
with unit variance. As the coefficients of Hk are also inde-
pendent and complex Gaussian with unit variance, the optimal
estimator is the MMSE estimator:

H̆k =
√

βP

1 + βP
Gk, (26)

where H̆k is the estimate of Hk formed at the transmitter. It
is convenient to express Hk in terms of the estimate H̆k and
estimation noise as follows:

Hk = H̆k +
1√

1 + βP
Fk, (27)

where the entries of Fk are also independent and complex
Gaussian with unit variance, and independent of the estimator.
The beamformers {V̆k}K

k=1 are selected by treating
{H̆k}K

k=1 as the ‘true’ set of channels, and following the
BD procedure. Note that the marginal distribution of the
beamformers are the same as in the quantized feedback case,
as the addition of independent white Gaussian noise does not
affect the isotropic property. As in the case for quantized

(digital) feedback, we compute the quantity:

HH
k V̆j =

1√
1 + βP

FH
k V̆j (28)

for k �= j, which follows from the fact that H̆H
k V̆j = 0 for k �=

j. Similar to (12), we write the rate with ‘analog’ feedback as
follows:

RANALOG(P ) = E

⎡
⎣log2

∣∣∣∣∣∣IN +
P

M

K∑
j=1

HH
k V̆jV̆H

j Hk

∣∣∣∣∣∣
⎤
⎦−

E

⎡
⎢⎢⎣log2

∣∣∣∣∣∣∣∣IN +
P

M

K∑
j=1

j �=k

HH
k V̆jV̆H

j Hk

∣∣∣∣∣∣∣∣

⎤
⎥⎥⎦ (29)

Similar to the proof of Theorem 1 and using techniques
similar to those in [13], we compute a bound on the rate gap
relative to BD with perfect CSIT to be:

ΔRANALOG (P ) = [RCSIT-BD (P ) − RANALOG(P )] (30)

≤ N log2

(
1 +

M − N

M

P

1 + βP

)
(31)

< N log2

(
1 +

M − N

M

1
β

)
(32)

The proof (31) bound is given in Appendix C, and (32) is
obtained by letting P → ∞ in (31).
In order to compare analog and quantized feedback, we

measure the feedback quantity in terms of ‘feedback symbols’
rather than bits. Although analog feedback involves effectively
βMN channel uses per user (assuming that the users have or-
thogonal feedback channels), it also conveys more information
that the quantized case, specifically information regarding the
eigenvalues and eigenvector structure, which the ‘subspace’
information does not capture.
Hence, for fair comparison, we equate the βMN analog

channel uses to βN(M−N) channel symbols in the quantized
case (the ‘subspace’ information may be specified by N(M −
N) complex numbers). Under the simplifying assumption that
error-free communication at capacity is possible, we set B =
βN(M −N) log2(1+P ) for βN(M−N) channel uses of the
AWGN feedback channel with SNR P . Using this, we have
from Theorem 1 that:

ΔRQUANT(P ) ≤ N log2

(
1 +

P

(1 + P )β
C′′

MN

)
(33)
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where D has been bounded from (8) (neglecting the exponen-
tial term), where

C′′
MN =

Γ
(
(N(M − N))−1

)
N2(M − N)

C
(N(M−N))−1

MN . (34)

Our conclusions are similar to the N = 1 case, which was
considered in [13]. For β ≈ 1, both bounds on the rate gap
(i.e. for analog and quantized feedback) behave similarly, and
the gap does not vanish as P → ∞. For β > 1, the rate
gap bound decreases rapidly (exponentially fast) for quantized
feedback, and vanishes entirely as P → ∞. However, for
analog feedback, the decrease is relatively slow (i.e. only
polynomially fast) and does not vanish as P → ∞. The
analysis may also be extended to the case when errors occur
with quantized feedback, using techniques similar to those in
[13].

VI. CONCLUSION

Accurate CSIT is clearly important for MIMO broadcast
systems in order to achieve maximum throughput. When the
receiver knows the channel perfectly and instantaneously feeds
this information back to the transmitter using a finite number
of bits, we have quantified the rate loss and have shown that
increasing the number of bits linearly with the system SNR
is sufficient to maintain a constant SNR loss with respect
to perfect CSIT. Further, we have established the advantage
of BD relative to ZF in terms of feedback load, and the
advantage of using quantized feedback as opposed to using
analog feedback. Note that BD is just one of many linear
precoding techniques that can be used on the MIMO broadcast
channel with multiple user antennas (for e.g., see coordinated
beamforming [14] and Multiuser Eigenmode Transmission
[15]). It remains to be seen which of these perform best in a
limited feedback setting and also when multiuser diversity/user
selection is considered.

APPENDIX A
PROOF OF LEMMA 1

Let W be any arbitrary matrix in the codebook C. Note
that W is independent of H̃k. We then decompose H̃k into
components that lie in the column space of W and the left
nullspace of W as follows:

H̃k = WWHH̃k +
(
IM − WWH

)
H̃k (35)

= WWHH̃k + W⊥(W⊥)HH̃k (36)

where WWH and W⊥(W⊥)H = IM − WWH are the
projection matrices for the column space and left nullspace
of W respectively. W⊥ ∈ C

M×(M−N) is chosen such that it
forms an orthonormal basis for the left nullsapce of W.
Let the (thin) QR decomposition of WWHH̃k be QkAk

where Qk ∈ C
M×N forms an orthonormal basis for the

same space as W, and Ak ∈ C
N×N is upper triangular

with positive diagonal elements. Further, Qk and Ak are
independent, from [16, Theorem 2.3.18] (after verification for
the complex case). As Qk andW describe the same subspace,
Qk may be represented as a rotation of W, i.e., Qk = WXk

for some unitary matrix Xk ∈ C
N×N .

By isotropy and independence of W and H̃k, Xk is also
isotropically distributed and is independent ofW, which is an
arbitrary orthonormal basis. Also note that WWH = QkQH

k

and hence AH
kAk = H̃H

kWWHH̃k. Thus tr
(
AH

kAk

)
= N −

d2
(
W, H̃k

)
.

Note that W⊥(W⊥)HH̃k is the projection of H̃k onto the
left nullspace of W. As H̃k is isotropically distributed, the
projection is also isotropically distributed in the corresponding
M −N dimensional nullspace. Let the (thin) QR decomposi-
tion of W⊥(W⊥)HH̃k be SkBk, where Sk ∈ C

M×N is an
orthonormal basis for an isotropically distributed (complex)N
dimensional plane in the M − N dimensional left nullspace
of W and Bk ∈ C

N×N is upper triangular with positive
diagonal elements. Similar to the previous case, Sk and Bk

are independently distributed. It is also straightforward to see
that BH

kBk = IN − AH
kAk and tr

(
BH

kBk

)
= d2

(
W, H̃k

)
.

As H̃k and W are independent, which has been our
assumption thus far in the proof, BH

kBk is matrix-variate
(complex) Beta(N, M − N) distributed [11]. We will now
argue that most of the above conclusions remain unchanged,
even when the quantization procedure (2) is followed.
The quantization procedure amounts to choosing a BH

kBk

such that its trace is the minimum among 2B choices. Thus, it
follows that the quantization procedure only affects Bk (and
Ak, which is the quantization ‘accuracy’ and is related to Bk

by AH
kAk = IN − BH

kBk). We use Yk and Zk to denote
the matrices Ak and Bk after following the quantization
procedure. Hence, even though ZH

kZk is not beta distributed,
the distribution of the quantities Xk, Sk and W remain the
same, and are independent of Zk (and Yk). We now use
Ĥk to denote W after following the quantization procedure,
according to the convention in (2).

APPENDIX B
PROOF OF THEOREM 1

Theorem 1 is proved as follows:

ΔRQUANT(P ) = RCSIT-BD (P ) − RQUANT(P )

(a)≤ E log2

∣∣∣∣IN +
P

M
HH

kVkVH
k Hk

∣∣∣∣−
E log2

∣∣∣∣IN +
P

M
HH

k V̂kV̂H
k Hk

∣∣∣∣+
E log2

∣∣∣∣∣∣IN +
P

M

K∑
j=1,j �=k

HH
k V̂jV̂H

j Hk

∣∣∣∣∣∣ (37)

(b)= E log2

∣∣∣∣∣∣IN +
P

M

K∑
j=1,j �=k

HH
k V̂jV̂H

j Hk

∣∣∣∣∣∣ (38)

(c)= E log2

∣∣∣∣∣∣IN +
P

M
H̃H

k

⎛
⎝∑

j �=k

V̂jV̂H
j

⎞
⎠ H̃kΛk

∣∣∣∣∣∣ (39)
(d)≤ log2

∣∣∣IN + P (K − 1)E
[
H̃H

k V̂jV̂H
j H̃k

]∣∣∣ (40)
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Here, (a) follows by neglecting the positive semi-definite
interference terms in the quantity:

E

⎡
⎣log2

∣∣∣∣∣∣IN +
P

M

K∑
j=1

HH
k V̂jV̂H

j Hk

∣∣∣∣∣∣
⎤
⎦ .

By the BD procedure, both Vk and V̂k are distributed
isotropically, and are chosen independent ofHk, which means
the first two terms in (37) are identical and thus gives (b). We
write HkHH

k = H̃kΛkH̃H
k , where H̃k ∈ C

M×N forms an
orthonormal basis for the subspace spanned be the columns
of Hk and Λk = diag[λ1, . . . , λN ] are the N non-zero,
unordered eigenvalues of HkHH

k (Hk is of rank N and
diagonalizable with probability 1). Both the density function
of Hk (which is matrix-variate complex Normal distributed)
[16] and the Jacobian of the singular value decomposition
transformation of a matrix [17] can be separated into a product
of functions of H̃k and Λk alone. Thus, H̃k and Λk are
independent and E [Λk] = MIN . Step (c) follows using this
and the fact that |I + AB| = |I + BA|, for matricesA and B.
Next, (d) follows from Jensen’s inequality due to the concavity
of log | · |. Note that E [Λk] = MIN .

E

[
H̃H

k

(
V̂jV̂H

j

)
H̃k

]
is computed as follows. First, we

compute

H̃H
k V̂j = YH

k XH
k ĤH

k V̂j + ZH
kSH

k V̂j (41)

= ZH
kSH

k V̂j (42)

for k �= j, which follows from Lemma 1 and the fact that
ĤH

k V̂j = 0 ∀k �= j, by the BD procedure. Therefore,

E

[
H̃H

k V̂jV̂H
j H̃k

]
= E

[
ZH

k

(
SH

k V̂jV̂H
j Sk

)
Zk

]
(43)

(e)=
N

M − N
E
[
ZH

kZk

]
(44)

(f)=
D

N

N

M − N
(45)

Here, (e) follows from the fact that V̂j (which is just
isotropically distributed in the left nullspace of Ĥk) and
Zk are independent, as are Sk and Zk from Lemma 1.
Further, Sk is also isotropically and distributed in the left
nullspace of Ĥk, and is independent of V̂k. Thus V̂H

j SkSH
k V̂j

is matrix-variate Beta(N, M − 2N) distributed [16], and

E

[
ZH

k

(
SH

k V̂jV̂H
j Sk

)
Zk

]
= N

M−N E
[
ZH

kZk

]
, by [16, The-

orem 5.3.12] and [16, Theorem 5.3.19] (after verification for
the complex case).
Let EkDkEH

k be the eigen decomposition of Z
H
kZk , where

Ek ∈ C
N×N is orthonormal and Dk ∈ C

N×N is diagonal,
with strictly positive elements along the diagonal. If an arbi-
trary matrix in the codebook C is selected as the quantization,
ZH

kZk is matrix-variate (complex) Beta(N, M−N) distributed
(as described in Appendix A), and E

[
ZH

kZk

]
is a multiple

of the identity matrix. Both the density function of this
distribution [16] and the Jacobian of the eigen decomposition
transformation for a matrix [17] can be separated into a
product of functions of Ek and Dk alone, and these are hence
independently distributed.
For the actual quantization matrix, after following the

procedure in (2), only the distribution of the diagonal matrix

Dk is affected, and the distribution of Ek remains unchanged
and independent of Dk. Thus, we have that E

[
ZH

kZk

]
= ρIN

for some constant ρ, even after following the quantization
procedure. This can also be concluded by observing that ZH

kZk

is invariant to unitary rotations. In terms of the trace of the

matrix, we have ρ =
E[tr(ZkZH

k)]
N = D

N , and (f) follows.
Substituting (45) in (40), we have:

ΔRQUANT(P ) ≤ N log2

(
1 +

P

N
D

)
(46)

APPENDIX C
PROOF OF EQUATION (31)

ΔRANALOG (P ) = RCSIT-BD (P ) − RANALOG (P )

(a)≤ E log2

∣∣∣∣IN +
P

M
HH

kVkVH
k Hk

∣∣∣∣−
E log2

∣∣∣∣IN +
P

M
HH

k V̆kV̆H
k Hk

∣∣∣∣+
E log2

∣∣∣∣∣∣IN +
P

M

K∑
j=1,j �=k

HH
k V̆jV̆H

j Hk

∣∣∣∣∣∣ (47)

(b)= E log2

∣∣∣∣∣∣IN +
P

M

K∑
j=1,j �=k

HH
k V̆jV̆H

j Hk

∣∣∣∣∣∣ (48)

(c)= E log2

∣∣∣∣∣∣∣∣IN +
P

M

1
1 + βP

K∑
j=1

j �=k

FH
k V̆jV̆H

j Fk

∣∣∣∣∣∣∣∣ (49)

(d)≤ log2

∣∣∣∣IN +
P (K − 1)

M(1 + βP )
E

[
FH

k V̆jV̆H
j Fk

]∣∣∣∣ (50)

(e)= log2

∣∣∣∣IN +
P (K − 1)

M

1
1 + βP

NIN

∣∣∣∣ (51)

= N log2

(
1 +

M − N

M

P

1 + βP

)
(52)

Here, (a) and (b) have the same justification as in the proof
of Theorem 1 (in Appendix B), (c) follows from (28), and (d)
is obtained by applying Jensens inequality. By Gaussianity
of Fk and independence of Fk and V̆j , FH

k V̆j is matrix-
variate complex Gaussian distributed with i.i.d. elements, and
E

[
FH

k V̆jV̆H
j Fk

]
= NIN , which results in (e).
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