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Abstract— This paper addresses the following question, which
is of interest in the design of a multiuser decentralized network:
given a total system bandwidth of W Hz and a fixed data
rate constraint of R bps for each transmission, how many
frequency slotsN of size W/N should the band be partitioned
into to maximize the number of simultaneous transmissions
in the network? Dividing the available spectrum reduces the
number of users on each band and therefore decreases multi-
user interference level, but also increases the SINR requirement
for each transmission because the same information rate must
be achieved over a smaller bandwidth. Exploring this tradeoff
between bandwidth and SINR and determining the optimum
value of N in terms of the system parameters is the focus of
the paper. Using stochastic geometry, we analytically derive the
optimal SINR threshold on this tradeoff curve and show that it
is a function of only the path loss exponent. Furthermore, the
optimal SINR point lies between the low-SINR (power-limited)
and high-SINR (bandwidth-limited) regimes.

I. I NTRODUCTION

We consider a spatially distributed network, representing
either a wireless ad hoc network or unlicensed (and uncoordi-
nated) spectrum usage by many nodes (e.g., WiFi), and con-
sider the tradeoff between bandwidth and SINR. We ask the
following question: given a fixed total system bandwidth anda
fixed rate requirement for each single-hop transmitter-receiver
link in the network, at what point along the bandwidth-
SINR tradeoff-curve should the system operate at in order to
maximize the spatial density of transmissions? For example,
given a system-wide bandwidth of 1 Hz and a desired rate of 1
bit/sec, should (a) each transmitter utilize the entire spectrum
(e.g., transmit one symbol per second) and thus require an
SINR of 1 (utilizingR = W log(1+SINR) if interference is
treated as noise), (b) the band be split into two orthogonal 0.5
Hz sub-bands where each transmitter utilizes one of the sub-
bands with the required SINR equal to 3, or (c) the band be
split into N > 2 orthogonal 1

N Hz sub-bands where each
transmitter utilizes one of the sub-bands with the required
SINR equal to2N − 1?

We consider a network with the following key characteris-
tics:

• Transmitter node locations are a realization of a homo-
geneous spatial Poisson process.

• Each transmitter communicates with a single receiver that
is a reference distanced meters away.

• All transmissions are constrained to have an absolute rate
of R bits/sec regardless of the bandwidth.

• All multi-user interference is treated as noise.

• The channel is frequency-flat, reflects path-loss and pos-
sibly fast and/or slow fading, and is constant for the
duration of a transmission.

• Transmitters do not have channel state information and no
transmission scheduling is performed, i.e., transmissions
are independent and random (e.g., ALOHA)

The last assumption should make it clear that we are con-
sidering only anoff-line optimization of the frequency band
structure, and that no on-line (e.g., channel- and queue-based)
transmission or sub-band decisions are considered.

A. Related Work

The transmission capacity framework introduced in [1] is
used to quantify the throughput of such a network, since
this metric captures notions of spatial density, data rate,and
outage probability, and is more amenable to analysis than
the more popular transport capacity [2]. Using tools from
stochastic geometry, the distribution of interference from other
concurrent transmissions at a reference receiving node1 is char-
acterized as a function of the spatial density of transmitters,
the path-loss exponent, and possibly the fading distribution.
The distribution of SINR at the receiving node can then be
computed, and an outage occurs whenever the SINR falls
below some thresholdβ. The outage probability is clearly an
increasing function of the density of transmissions, and the
transmission capacity is defined to be the maximum density
of successful transmissions such that the outage probability is
no larger than some prescribed constantǫ.

The problem studied in this work is essentially the opti-
mization of spatial frequency reuse in uncoordinated (ad hoc)
networks, which is a well studied problem in the context of
cellular networks (see for example [3] and references therein).
A key difference is that planned frequency reuse patterns can
be used in cellular networks while this is not possible in an ad
hoc network. There has been prior work on frequency reuse
in ad-hoc networks, e.g., [4], but this appears to be the first
analytical derivation of optimal reuse. The issue of optimal
reuse for ad hoc networks is considered in [5] for infinitely
dense networks, but this scenario differs drastically fromthe
finite density network we consider here.

1The randomness in interference is only due to the random positions of the
interfering nodes and fading.



II. K EY INSIGHTS

The bandwidth-SINR tradeoff reveals itself if the system
bandwidth is split intoN non-overlapping bands and each
transmitter transmits on a randomly chosen band with some
fixed power (independent ofN ). This splitting of the spectrum
results in two competing effects. First, the density of trans-
mitters on each band is a factor ofN smaller than the overall
density of transmitters, which reduces interference and thus
increases SINR. Second, the threshold SINR must be increased
in order to maintain a fixed rate while transmitting over1

N -
th of the bandwidth. Although intuition from point-to-point
AWGN channels might indicate that the optimum solution is
to not split the band (N = 1), this is generally quite far from
the optimum. Our analysis shows thatN should be chosen
such that the required threshold SINR lies between low-SNR
(power-limited) and high-SNR (bandwidth-limited).

The intuition behind this result is actually quite simple:
if N is such that the threshold SINR is in the wideband
regime (roughly below 0 dB), then doublingN leads to
an approximate doubling (in linear units) of the threshold
SINR. If the path-loss exponent is strictly greater than 2,
doubling the threshold SINR reduces the allowable intensity
of transmissions on each band by a factor strictly smaller than
two. However, the total intensity is exactly twice the per sub-
band density. The combination of these effects is a net increase
in the allowable intensity of transmissions, and thereforeit is
beneficial to increaseN until the required SINR threshold
begins to increaseexponentiallyrather thanlinearly with N .

III. PRELIMINARIES

A. System Model

We consider a set of transmitting nodes at an arbitrary
snapshot in time with locations specified by a homogeneous
Poisson process of intensityλ on the infinite two-dimensional
plane. We consider a reference receiver that is located, without
loss of generality, at the origin, and letXi denote the distance
of the i-th transmitting node to the reference receiver. The
reference transmitter is placed a fixed distanced away. Re-
ceived power is modeled by path loss with exponentα > 2
and a distance-independent fading coefficienthi (from thei-th
transmitter to the reference receiver). Therefore, the SINR at
the reference receiver is:

SINR0 =
ρd−α|h0|

η +
∑

i∈Π(λ) ρX−α
i |hi|

,

whereΠ(λ) indicates the point process describing the (ran-
dom) interferer locations, andη is the noise power. If Gaussian
signaling is used, the mutual information conditioned on the
transmitter locations and fading realizations is:

I(X0; Y0|Π(λ),h) = log2(1 + SINR0),

where h = (h0, h1, . . .). Notice that we assume that all
nodes simultaneously transmit with the same powerρ, i.e.,
power control is not used. Moreover, nodes decide to transmit
independently and irrespective of their channel conditions,
which corresponds roughly to slotted ALOHA.

B. Transmission Capacity Model

In the outage-based transmission capacity framework, an
outage occurs whenever the SINR falls below a prescribed
thresholdβ, or equivalently whenever the instantaneous mu-
tual information falls belowlog2(1+β). Therefore, the system-
wide outage probability is:

P

(

ρd−α|h0|

η +
∑

i∈Π(λ) ρX−α
i |hi|

≤ β

)

.

This quantity is computed over the distribution of transmitter
positions as well as the iid fading coefficients, and thus
corresponds to fading that occurs on a slower time-scale
than packet transmission. The outage probability is clearly an
increasing function of the intensityλ.

If λ(ǫ) is the maximum intensity ofattemptedtransmissions
such that the outage probability (for a fixedβ) is no larger
than ǫ, then the transmission capacity is then defined as
c(ǫ) = λ(ǫ)(1 − ǫ)b, which is the maximum density of
successfultransmissions times the spectral efficiencyb of each
transmission. In other words, transmission capacity is like area
spectral efficiency subject to an outage constraint. Using tools
from stochastic geometry, in [1] it is shown that the maximum
spatial intensityλ(ǫ) for small values ofǫ is:

λ(ǫ) =
c

πd2

(

1

β
−

η

ρd−α

)
2

α

ǫ + O(ǫ2), (1)

wherec is a constant that depends only on the fading distri-
bution [6]. Because fading has only a multiplicative effect, it
does not effect the SINR-bandwidth tradeoff and thus is not
considered in the remainder of the paper.

IV. OPTIMIZING FREQUENCY USAGE

In this section we consider a network with a fixed total
bandwidth ofW Hz, and where each link has a rate require-
ment ofR bits/sec and an outage constraintǫ. Assuming the
network operates as described in the previous section, the goal
is to determine the number of sub-bandsN for which the
maximum density of transmissions can be supported.

A. Definitions and Setup

In performing this analysis, we assume that there exist
coding schemes that operate at any point along the AWGN
capacity curve.2 We define thespectral utilizationR̃ as the
ratio between the required rate and total bandwidth:

R̃ ,
R

W
bps/Hz/user.

We intentionally refer toR̃, which is externally defined, as the
spectral utilization; thespectral efficiency, on the other hand,
is a system design parameter determined by the choice ofN .

If the system bandwidth is not split (N = 1), each node
utilizes the entire bandwidth ofW Hz. Therefore, the required

2It is straightforward to show that relaxing this assumptionby allowing for
operation at a constant coding gap from AWGN capacity has no effect on our
analysis.



SINR β is determined by inverting the standard rate expres-
sion:R = W log2(1+β), which givesβ = 2

R

W −1 = 2R̃−1.
The maximum intensity of transmissions can be determined
by plugging in this value ofβ into (1), along with the other
relevant constants.

If the system bandwidth is split intoN orthogonal sub-
bands each of widthW

N , and each transmitter-receiver pair
uses only one of these sub-bands at random, the required
SINR β(N) is determined by inverting the rate expression
R = W

N log2(1 + β(N)) which yields:

β(N) = 2
NR

W − 1 = 2NR̃ − 1.

Notice that the spectral efficiency (on each sub-band) isb =
R

W/N bps/Hz, which isN times the spectral utilizatioñR.
The maximum intensity of transmissionsper sub-bandfor
a particular value ofN is determined by pluggingβ(N)
into (1) with noise powerη = W

N N0. Since theN sub-
bands are statistically identical, the maximum total intensity
of transmissions, denoted byλ(ǫ, N), is the per sub-band
intensity multiplied by a factor ofN . Dropping the second
order term in (1), we have:

λ(ǫ, N) ≈ N
( ǫ

πd2

)

(

1

β(N)
−

1

N · SNR

)
2

α

, (2)

where the constantSNR ,
ρd−α

N0W is the signal-to-noise ratio
in the absence of interference when the entire band is used.

B. Optimization

Optimizing the number of sub-bandsN therefore reduces
to the following one-dimensional maximization:

N∗ = argmax
N

λ(ǫ, N), (3)

which yields a solution that depends only on the path-loss
exponentα, the spectral utilizatioñR, and the constantSNR.

In general, the interference-freeSNR can be ignored be-
cause the systems of interest are interference- rather than
noise-limited. AssumingSNR is infinite we have:

λ(ǫ, N) ≈
( ǫ

πd2

)

N · β(N)−
2

α (4)

=
( ǫ

πd2

)

N(2NR̃ − 1)−
2

α . (5)

SinceR̃ is a constant, we make the substitutionb = NR̃ and
equivalently solve:

max
b>0

b(2b − 1)−
2

α . (6)

By taking the derivative and solving appropriately, it is
straightforward to show the optimalb∗ satisfies:

b∗ = (log2 e)
α

2
(1 − e−b∗), (7)

which has solution

b∗ = log2 e
[α

2
+ W

(

−
α

2
e−

α

2

)]

, (8)
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Fig. 1. Optimal Spectral Efficiency vs. Path-Loss Exponent

whereW (z) is the principle branch of the LambertW function
and thus solvesW (z)eW (z) = z.3 It is easily shown thatb∗

is an increasing function ofα, is upper bounded byα2 log2 e,
and thatb∗/(α

2 log2 e) converges to1 asα grows large.

Recalling thatb = NR̃ is the spectral efficiency on each
sub-band, the quantityb∗, which is a function of only the path-
loss exponentα, is theoptimum spectral efficiency.4 Therefore,
the optimal value ofN (ignoring the integer constraint) is
determined by simply dividing the optimal spectrum efficiency
b∗ by the spectral utilizatioñR:

N∗ =
b∗

R̃
. (9)

To take care of the integer constraint onN , the nature of
the derivative ofb(2b − 1)−

2

α makes it sufficient to consider
only the integer floor and ceiling ofN∗ in (9). If the spectral
utilization is larger than the optimum spectral efficiency,i.e.,
R̃ ≥ b∗, then choosingN = 1 is optimal. On the other hand,
if R̃ ≤ 1

2b∗, then the optimalN is strictly larger than 1. In
the intermediate regime where12b∗ ≤ R̃ ≤ b∗, the optimalN
is either one or two.

In Fig. 1 the optimal spectral efficiencyb∗ is plotted (in
units of bps/Hz) as a function of the path-loss exponentα,
along with the quantityb∗(2b∗ − 1)−

2

α , which is referred
to as the density constant because the optimal densityλ∗(ǫ)

is this quantity multiplied by
(

ǫ
R̃πd2

)

. The optimal spectral
efficiency is very small forα close to 2 but then increases
nearly linearly with α; for example, the optimal spectral
efficiency for α = 3 is 1.26 bps/Hz (corresponding toβ =
1.45 dB).

3Equation (8) is nearly identical, save for a factor of 2, to the expression
for the optimal number of hops in an interference-free linear network given
in equation (18) of [4]. This similarity is due to the fact that the objective
function in equation (17) of [4] coincides almost exactly with (5).

4An optimal spectral efficiency is derived for interference-free, regularly
spaced, 1-D networks in [7]; however, these results differ by approximately a
factor of 2 from our results due to the difference in the network dimensionality.



 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0  2  4  6  8  10  12  14  16  18  20

tr
an

sm
is

si
on

 d
en

si
ty

number of sub-bands (N)

Rt = 0.25, no noise
Rt = 0.25, with noise

Rt = 0.25, approx
Rt = 0.5, no noise

Rt = 0.5, with noise
Rt = 0.5, approx

Fig. 2. Optimal Spectral Efficiency vs. Path-Loss Exponent

C. Interpretation

To gain an intuitive understanding of the optimal solution,
first consider the behavior ofλ(ǫ, N) when the quantityNR̃
is small, i.e.NR̃ ≪ 1. In this regime, the SINR threshold
β(N) grows approximately linearly withN :

β(N) = 2NR̃ − 1 = eNR̃ log
e
2 − 1

≈ NR̃ loge 2.

Plugging into (5) we have

λ(ǫ, N) ≈
( ǫ

πd2

)

N(NR̃ loge 2)−
2

α

=
( ǫ

πd2

)

R̃ loge 2
−

2

α N(1− 2

α).

For any path-loss exponentα > 2, the maximum intensity of
transmissions monotonically increases with the number of sub-
bandsN asN(1− 2

α ), i.e., using more sub-bands with higher
spectral efficiency leads to an increased transmission capacity,
as long as the linear approximation toβ(N) remains valid.
The key reason for this behavior is the fact that transmission
capacity scales with the SINR threshold asβ−

2

α , which
translates toN−

2

α in the low spectral efficiency regime.
As NR̃ increases, the linear approximation toβ(N) be-

comes increasingly inaccurate becauseβ(N) begins to grow
exponentiallyrather than linearly withN . In this regime, the
SINR cost of increasing spectral efficiency is extremely large.
For example, doubling spectral efficiency requires doubling
the SINR in dB units rather than in linear units. Clearly,
the benefit of further increasing the number of sub-bands is
strongly outweighed by the SINR cost.

V. NUMERICAL RESULTS AND DISCUSSION

In Figure 2, the maximum density of transmissions is plotted
as a function ofN for two different spectrum utilizations
R̃ for a network with α = 4, d = 10 m, and an outage
constraint ofǫ = 0.1. The bottom set of curves correspond
to a relatively high utilization ofR̃ = 0.5 bps/Hz, while
the top set corresponds tõR = 0.25 bps/Hz. Each set
of three curves correspond to the approximation from (2):
λ(ǫ, N) ≈ N

(

ǫ
πd2

)

β(N)−
2

α , numerically computed values
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of λ(ǫ, N) for SNR = ∞, and numerically computed values
for SNR = 20 dB. For both sets of curves, notice that
the approximation, based on which the optimal value ofN
was derived, matches almost exactly with the numerically
computed values. Furthermore, introducing noise into the
network has a minimal effect on the density of transmissions.

For a path loss exponent of4, evaluation of (8) yields an
optimal spectral efficiency of2.3 bps/Hz. WhenR̃ = 0.25,
this corresponds toN∗ = 2.3

0.25 = 9.2 and N = 9 is seen to
be the maximizing integer value. WheñR = 0.5, we have
N∗ = 4.6 andN = 5 is the optimal integer choice. Note that
there is a significant penalty to naively choosingN = 1: for
R̃ = 0.25 this leads to a factor of2 decrease in density, while
for R̃ = 0.5 this leads to loss of a factor of1.5.

A. Sensitivity to Spectral Efficiency

In addition to deriving the optimal spectral efficiency, it is
also important to understand the sensitivity to this optimal. In
Fig. 3 the quantityb(2b − 1)−

2

α (which multiplied by ǫ
πd2R̃

is the actual density) is plotted versus the spectral efficiency
b for a few different values ofα. When α is close to 2, a
severe penalty is paid for not operating in the wideband regime
(b ≈ 0). If α is on the order of 3 or 4, the densityb(2b−1)−

2

α is
rather peaky and a significant penalty is incurred for choosing
b either too small or too large.

Perhaps the most interesting point to notice is that every
curve passes through(1, 1), becauseb(2b − 1)−

2

α = 1 for
b = 1 and any α. The choiceb = 1 is sub-optimal for every
path loss exponent except for one particular value close to 3,
but for reasonable path loss exponents (between 2 and 4) the
optimalb∗(2b∗ −1)−

2

α is not much larger than one. Therefore,
not much density is lost by choosingb = 1 rather thanb∗. As
a result,b = 1 (or β = 0 dB) is a very useful robust operating
point that can be used when the path loss exponent is not
precisely known or when it varies throughout the network.

VI. I NFORMATION DENSITY

An interesting information densityinterpretation can be
arrived at by plugging in the appropriate expressions for the



maximum density of transmissions when the number of sub-
bands is optimized. By plugging in the optimal value ofN
(and ignoring the integer constraint onN , which is reasonable
when R̃ is considerably smaller than one) we have:

λ∗(ǫ) ≈
( ǫ

πd2

) 1

R̃
b∗(2b∗ − 1)−

2

α (10)

whereb∗ is defined in (8) and the quantityb∗(2b∗ − 1)−
2

α is
denoted as the density constant in Fig. 1.

From this expression we can make a number of observa-
tions regarding the various parameters of interest. First note
that density is directly proportional to outageǫ and to the
inverse of the square of the ranged−2. Thus, doubling the
outage constraint leads to a doubling of density, or inversely
tightening the outage constraint by a factor of two leads to a
factor of two reduction in density. The quadratic nature of the
range dependence implies that doubling transmission distance
leads to a factor of four reduction in density. Perhaps one
of the most interesting tradeoffs is between density and rate:
since the two quantities are inversely proportional, doubling
the rate leads to halving the density, and vice versa.

If we consider the product of density and spectral utilization,
we get a quantity that has units bps/Hz/m2:

λ∗(ǫ)R̃ ≈
( ǫ

πd2

)

b∗(2b∗ − 1)−
2

α (11)

This quantity is very similar to thearea spectral efficiency
(ASE) defined in [8]. In our random network setting, the ASE
is inversely proportional to the square of the transmission
distance, which is somewhat analogous to cell radius in a
cellular network, and is directly proportional to the outage
constraint. Since the quantityb∗(2b∗ − 1)−

2

α does not vary
too significantly with the path-loss exponent (see Fig. 1) for
α between 2 and 5, we see that ASE and path-loss exponent
are not very strongly dependent. Perhaps most interesting is
the fact that the ASE does not depend on the desired rate:
a random network can support a low density of high rate
transmissions, a high density of low rate transmissions, orany
intermediate point between these extremes.

VII. G ENERAL INTERPRETATION

In this section we describe the general tradeoff between
bandwidth and spectral efficiency/SINR in an interference-
limited network. Consider a transmitter that wishes to convey
a packet consisting ofB bits to a receiver located a distanced
meters away. Assuming that transmission power is fixed, the
transmitter has two parameters to decide upon: bandwidthW
and timeT . The choice of these two parameters determine the
operating spectral efficiencyb = B

WT bits/sec/Hz, as well as
the operating SNRβ = 2b−1 = 2

B

WT −1. A large bandwidth-
time productWT corresponds to a small spectral efficiency
(i.e., wideband), and vice versa.

If interference is treated as noise, a necessary but not
sufficient condition for successful transmission is that no
other transmission transmission occur on the same bandwidth-
time within a distancedβ

1

α of the receiver. Therefore, the

bandwidth-time-area consumed by a transmission is:

WT (πd2β
2

α ) = πd2B
1

b
(2b − 1)

2

α .

The same metric is considered in [9] and specific coding and
modulation formats are evaluated, but no general analysis is
performed.

In order to maximize the density of transmissions, the
bandwidth-time-area product in (12) should be minimized. In
terms ofb, this corresponds to:

max
b>0

b(2b − 1)−
2

α .

This maximization is clearly identical to the optimizationin
Section IV-B, and thus the optimal spectral efficiency is also
given by (8). Thus, the optimal spectral efficiency derived
earlier has a rather general interpretation in the context of
interference-limited networks.

VIII. C ONCLUSION

In this work we studied bandwidth-SINR tradeoffs in ad-hoc
networks and derived the optimal operating spectral efficiency,
which was shown to be a function only of the path loss
exponent. A network can operate at this optimal point by
dividing the total bandwidth into sub-bands sized such that
each transmission occurs on one of the sub-bands at precisely
the optimal spectral efficiency.

The key takeaway of this work is that an interference-
limited ad-hoc network should operate in neither the wideband
(power-limited) nor high-SNR (bandwidth-limited) regimes,
but rather at a point between the two extremes because this
is where the optimal balance between multi-user interference
and bandwidth is achieved. Although we considered a rather
simple network model, we believe that many of the insights
developed here will also apply to more complicated scenarios,
e.g., wideband fading channels and networks in which some
degree of local transmission scheduling is performed.
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