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Abstract— This paper addresses the following question, which  « The channel is frequency-flat, reflects path-loss and pos-
is of interest in the design of a multiuser decentralized netork: sibly fast and/or slow fading, and is constant for the
given a total system bandwidth of W Hz and a fixed data duration of a transmission.

rate constraint of R bps for each transmission, how many T itters d th h | state inf i d
frequency slots N of size W/N should the band be partitioned + lransmitlers ao not have channei staté information and no

into to maximize the number of simultaneous transmissions transmission scheduling is performed, i.e., transmission
in the network? Dividing the available spectrum reduces the are independent and random (e.g., ALOHA)

number of users on each band and therefore decreases multi- . .
user interference level, but also increases the SINR requament 1he last assumption should make it clear that we are con-

for each transmission because the same information rate mus sidering only anoff-line optimization of the frequency band
be achieved over a smaller bandwidth. Exploring this tradeff  structure, and that no on-line (e.g., channel- and queseea

between bandwidth and SINR and determining the optimum {ansmission or sub-band decisions are considered.
value of N in terms of the system parameters is the focus of

the paper. Using stochastic geometry, we analytically dere the
optimal SINR threshold on this tradeoff curve and show that t A. Related Work
is a function of only the path loss exponent. Furthermore, tle )
optimal SINR point lies between the low-SINR (power-limited)

and high-SINR (bandwidth-limited) regimes. The transmission capacity framework introduced in [1] is

used to quantify the throughput of such a network, since
|. INTRODUCTION this metric captures notions of spatial density, data rae,

We consider a spatially distributed network, representiriyitage probability, and is more amenable to analysis than
either a wireless ad hoc network or unlicensed (and unceorthie more popular transport capacity [2]. Using tools from
nated) spectrum usage by many nodes (e.g., WiFi), and cétPchastic geometry, the distribution of interferencerfrather
sider the tradeoff between bandwidth and SINR. We ask thencurrent transmissions at a reference receiving hisdehar-
following question: given a fixed total system bandwidth andacterized as a function of the spatial density of transnsitte
fixed rate requirement for each single-hop transmitteeiver the path-loss exponent, and possibly the fading distabuti
link in the network, at what point along the bandwidthThe distribution of SINR at the receiving node can then be
SINR tradeoff-curve should the system operate at in order@@mputed, and an outage occurs whenever the SINR falls
maximize the spatial density of transmissions? For examplelow some threshold. The outage probability is clearly an
given a system-wide bandwidth of 1 Hz and a desired rate officreasing function of the density of transmissions, arel th
bit/sec, should (a) each transmitter utilize the entirecspen  transmission capacity is defined to be the maximum density
(e.g., transmit one symbol per second) and thus require @nsuccessful transmissions such that the outage protyaisili
SINR of 1 (utilizing R = W log(1+ SINR) if interference is no larger than some prescribed constant
treated as noise), (b) the band be split into two orthogorial 0 The problem studied in this work is essentially the opti-
Hz sub-bands where each transmitter utilizes one of the suhization of spatial frequency reuse in uncoordinated (at ho
bands with the required SINR equal to 3, or (c) the band Imetworks, which is a well studied problem in the context of
split into N > 2 orthogonal{; Hz sub-bands where eachcellular networks (see for example [3] and references thpre
transmitter utilizes one of the sub-bands with the requirgkkey difference is that planned frequency reuse patterns ca

SINR equal to2V — 1?2 be used in cellular networks while this is not possible in dn a
We consider a network with the following key characterisaioc network. There has been prior work on frequency reuse
tics: in ad-hoc networks, e.g., [4], but this appears to be the first
« Transmitter node locations are a realization of a homa@nalytical derivation of optimal reuse. The issue of optima
geneous spatial Poisson process. reuse for ad hoc networks is considered in [5] for infinitely
« Each transmitter communicates with a single receiver th@gnse networks, but this scenario differs drastically friwe
is a reference distana& meters away. finite density network we consider here.

« All transmissions are constrained to have an absolute rate

of R blt_S/SGC r_egardless Of_ the bandW|dth._ 1The randomness in interference is only due to the randontigosiof the
« All multi-user interference is treated as noise. interfering nodes and fading.



[l. KEY INSIGHTS B. Transmission Capacity Model

The bandwidth-SINR tradeoff reveals itself if the system In the outage-based transmission capacity framework, an
bandwidth is split intoN non-overlapping bands and eacloutage occurs whenever the SINR falls below a prescribed
transmitter transmits on a randomly chosen band with sorigeshold3, or equivalently whenever the instantaneous mu-
fixed power (independent @¥). This splitting of the spectrum tual information falls belovog, (1+3). Therefore, the system-
results in two competing effects. First, the density of $ranwide outage probability is:
mitters on each band is a factor &f smaller than the overall
density of transmitters, which reduces interference ang th P pd”%|hol <.
increases SINR. Second, the threshold SINR must be inatease n+ ZieH(A) pX; “hil —

This quantity is computed over the distribution of trangenit

in order to maintain a fixed rate while transmitting ov)ép
th of the bandwidth. Although intuition from point-to-pain gositions as well as the iid fading coefficients, and thus
corresponds to fading that occurs on a slower time-scale

AWGN channels might indicate that the optimum solution i

to not split the band ¥ = 1), this is generally quite far from L o

the optimum. Our analysis shows that should be chosen Fhan pa_cket tran_smlssmn. _The oytage probability is ofemn
. . creasing function of the intensity.

such that the required threshold SINR lies between Iow—SI\IEQI]c A(e) is the maximum intensity aittemptedransmissions

(power-limited) and high-SNR (bandwidth-limited). ¢ Y P

The intuition behind this result is actually quite simplef#Ch th?;] thetﬁuta:ge prqba_blllty (for if')@jﬂl]s nodlafrgecrj
if N is such that the threshold SINR is in the widebang o ¢ €N the transmission capacily IS then detined as

: : c(e) = Ae)(1 — €)b, which is the maximum density of
regime (roughly below 0 dB), then doubling leads to Euccessfuﬂransmissions times the spectral efficiehayf each

an approximate doubling (in linear units) of the threshol o T LT
P g ( ) ansmission. In other words, transmission capacity & éikea

SINR. If the path-loss exponent is strictly greater than - . . .
doubling the threshold SINR reduces the allowable intgnsi pectral efﬁmgncy subject .to an _ogtage constraint. Usmg;t
rom stochastic geometry, in [1] it is shown that the maximum

of transmissions on each band by a factor strictly smallan thS atial intensitvr(e) for small values of is:

two. However, the total intensity is exactly twice the pebsu patiatt ityA(e) val IS-

band density. The combination of these effects is a netasere c /1 n \* )

in the allowable intensity of transmissions, and therefois Meo)=—% 5= €+t0(), 1)
- . . ) nd? \ B pd

beneficial to increaséV until the required SINR threshold

begins to increasexponentiallyrather thanlinearly with v. ~ Wherec is a constant that depends only on the fading distri-
bution [6]. Because fading has only a multiplicative effatt

Il. PRELIMINARIES does not effect the SINR-bandwidth tradeoff and thus is not
A. System Model considered in the remainder of the paper.

We consider a set of transmitting nodes at an arbitrary
shapshot in time with locations specified by a homogeneous
Poisson process of intensityon the infinite two-dimensional In this section we consider a network with a fixed total
plane. We consider a reference receiver that is locatetpwit bandwidth of iV Hz, and where each link has a rate require-
loss of generality, at the origin, and &% denote the distance ment of 2 bits/sec and an outage constraintAssuming the
of the i-th transmitting node to the reference receiver. THEetwork operates as described in the previous section dhle g
reference transmitter is placed a fixed distadcaway. Re- IS to determine the number of sub-bandisfor which the
ceived power is modeled by path loss with exponent 2 maximum density of transmissions can be supported.
and a distance-independent fading coefficigntfrom thei-th

. . A. Definitions and Setu
transmitter to the reference receiver). Therefore, theRSHY ] ) P ) )
the reference receiver is: In performing this analysis, we assume that there exist

coding schemes that operate at any point along the AWGN

IV. OPTIMIZING FREQUENCY USAGE

SINRy = pd”?ho| —, capacity curvé. We define thespectral utilizationR as the
1+ Dieney pXi kil ratio between the required rate and total bandwidth:
whereII()\) indicates the point process describing the (ran- - . R
dom) interferer locations, angis the noise power. If Gaussian R = 5 bpsiHzluser
signaling is used, the mutual information conditioned oa th ] - o ]
transmitter locations and fading realizations is: We intentionally refer tak, which is externally defined, as the
spectral utilization; thespectral efficiencyon the other hand,
1(Xo; Yo[II(A), h) = logy (1 + SIN Ry), is a system design parameter determined by the choicé. of

where h = (hg, hy,...). Notice that we assume that all If the system bandwidth is not split\( = 1), each node
nodes simultaneously transmit with the same popei.e., Utilizes the entire bandwidth d¥” Hz. Therefore, the required
power control is not used. Moreover, nodes decide to transmlzIt is straightforward to show that relaxing this assumptiynallowing for

ind_ependently and irrespective of their channel Condi;';ionoperation at a constant coding gap from AWGN capacity hasfeoteon our
which corresponds roughly to slotted ALOHA. analysis.



SINR § is determined by inverting the standard rate expres- 5
sion: R = W log,(1+ /), which givesg = 2w —1 = 28 —1.

The maximum intensity of transmissions can be determined i ' ‘ ‘ ‘ ]
by plugging in this value of3 into (1), along with the other 25l _ 3 -
relevant constants. R ey oo

If the system bandwidth is split intdv orthogonal sub- 2f
bands each of widthy-, and each transmitter-receiver pair Ll / |
uses only one of these sub-bands at random, the required T // I,

SINR 3(N) is determined by inverting the rate expression
R = Y log,(1+ B(N)) which yields:

Density:Constant

BN) = 2W —1=9NR_1

3 35 4 4.5 5
Notice that the spectral efficiency (on each sub-band)-s Paih loss exponent
WL;N bps/Hz, which isN times the spectral utilizatiorR.
The maximum intensity of transmissiomeer sub-bandfor
a particular value ofN is determined by pluggings(NV)
into (1) with noise powern = %NO. Since the N sub- ) o )
bands are statistically identical, the maximum total istgn WhereW (z) is the pr|n<‘:/[|/ple brangh of the Lambeit function
of transmissions, denoted by(e, N), is the per sub-band @nd thus solvesV’(z)e ) = 22 It is easily shown thab*
intensity multiplied by a factor ofV. Dropping the second IS @n increasing function of, is upper bounded b§ log, e,
order term in (1), we have: and thatb* /(5 log, e) converges td asa grows large.
) Recalling thath = NR is the spectral efficiency on each
e, N) ~ N (L) ( 11 )‘* @ sub-band, the quantity’, which is a function of only the path-
’ wd?) \B(N) N-SNR) ’ loss exponent, is theoptimum spectral efficiendyTherefore,
. the optimal value ofN (ignoring the integer constraint) is
where the constaf§ NR £ 1 is the signal-to-noise ratio determined by simply dividing the optimal spectrum efficign
in the absence of interference when the entire band is useg: py the spectral utilizatior:

Fig. 1. Optimal Spectral Efficiency vs. Path-Loss Exponent

B. Optimization -
Optimizing the number of sub-band$ therefore reduces N*= 23
to the following one-dimensional maximization:

9)

. To take care of the integer constraint év, the nature of
N* = argmax A(e, N), () the derivative ofb(2” — 1)~% makes it sufficient to consider

only the integer floor and ceiling aV* in (9). If the spectral

which yields a solution ”?‘?‘t o_Iep~ends only on the Ioath'Iolsfﬁlization is larger than the optimum spectral efficienicy,,
exponenty, the spectral utilizatiorR, and the constari N R. R > b, then choosingV — 1 is optimal. On the other hand

In general, the interference-fré&V R can be ignored be- if 2 < 1b*, then the optimalV is strictly larger than 1. In

cause the systems of interest are interference- rather ﬂilﬁlg intermediate regime whe@;* < R < b*, the optimalN
noise-limited. Assuming' N R is infinite we have: is either one or two.

Ae,N) =~ (#) N-B(N)-2 (4) In Fig. 1 the optimal spectral efficiendy is plotted (in
. units of bps/Hz) as a function of the path-loss exponent
= (%) N@NE _1)~%. (5) along with the quantityb*(2"" — 1)=&, which is referred
md to as the density constant because the optimal density)
Since R is a constant, we make the substitutior- Nz and s this quantity multiplied by =< ). The optimal spectral
equivalently solve: efficiency is very small fora close’to 2 but then increases
_z2 nearly linearly with «; for example, the optimal spectral
gas b2 —1)7=. ©6) efﬁcie)z/ncy forz; =31is 1.26 bps/HF; (correspznding t¢p? =

By taking the derivative and solving appropriately, it isl'45 dB).

straightforward to show the optimaf satisfies:

a . SEquation (8) is nearly identical, save for a factor of 2, te #xpression
b* = (logye)=(1 — e ? ), (7) for the optimal number of hops in an interference-free lineatwork given
in equation (18) of [4]. This similarity is due to the fact ththe objective

function in equation (17) of [4] coincides almost exactlyttw(5).
4An optimal spectral efficiency is derived for interfererfoee, regularly
a spaced, 1-D networks in [7]; however, these results diffeapproximately a
2 )} ) (8) factor of 2 from our results due to the difference in the nekndimensionality.

which has solution

« o
0gy € 2—|—W %€
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Fig. 2. Optimal Spectral Efficiency vs. Path-Loss Exponent
Fig. 3. Density vs. Spectral Efficiency

C. Interpretation

To gain an intuitive understanding of the optimal solutior?f A(€; V) for SN R = oo, and numerically computed values

first consider the behavior of(e, N) when the quantityvR for SNR = 20 dB. For both sets of curves, notice that
is small, i.e. NR < 1. In this regime, the SINR thresholdthe approximation, based on which the optimal valueNof
B(N) grows approximately linearly withV: was derived, matches almost exactly with the numerically

) ~ computed values. Furthermore, introducing noise into the
BIN)=2NE 1 = NRle.2_ network has a minimal effect on the density of transmissions
NRloge 9. For a path loss exponent df evaluation of (8) yields an
o optimal spectral efficiency o2.3 bps/Hz. WhenR = 0.25,
Plugging into (5) we have this corresponds tdV* = 22 = 9.2 and N = 9 is seen to

0.25
€ ~ _
Ae,N) =~ (W)N(Nmogem

2 be the maximizing integer value. Whelt = 0.5, we have
= (L) Rlog 2—§N(1—§)_ there is a significant penalty to naively choosiig= 1: for

%

N* =4.6 and N =5 is the optimal integer choice. Note that
md? R

R = 0.25 this leads to a factor df decrease in density, while
For any path-loss exponent> 2, the maximum intensity of for R = 0.5 this leads to loss of a factor df5.
transmissions monotonically increases with the numbeulof s . .
bandsN as N(l‘%), i.e., using more sub-bands with higherA' Sensitivity to Spectral Efficiency
spectral efficiency leads to an increased transmissionciaga  In addition to deriving the optimal spectral efficiency, st i
as long as the linear approximation f§N) remains valid. also important to understand 2the sensitivity to this optirra
The key reason for this behavior is the fact that transmissiig. 3 the quantityp(2” — 1)~= (which multiplied by ——
capacity scales with the SINR threshold ds <, which is the actual density) is plotted versus the spectral effigie
translates taV—4 in the low spectral efficiency regime. b for a few different values otv. When« is close to 2, a
As NR increases, the linear approximation f§N) be- severe penalty is paid for not operating in the widebangmegi
comes increasingly inaccurate becauké’) begins to grow (b= 0).If a is on the order of 3 or 4, the densit{2’—1)~= is
exponentiallyrather than linearly withV. In this regime, the rather peaky and a significant penalty is incurred for chupsi
SINR cost of increasing spectral efficiency is extremelgéar b either too small or too large.
For example, doubling spectral efficiency requires dowgplin Perhaps the most interesting point to notice is that every
the SINRin dB units rather than in linear units. Clearly,Curve passes througfi, 1), becauseh(2® — 1)=& = 1 for
the benefit of further increasing the number of sub-bandstis= 1 andany a. The choiceb = 1 is sub-optimal for every

strongly outweighed by the SINR cost. path loss exponent except for one particular value close to 3
but for reasonable path loss exponents (between 2 and 4) the
. * 2 .
V. NUMERICAL RESULTS AND DISCUSSION optimalb*(2¥" —1)~= is not much larger than one. Therefore,

In Figure 2, the maximum density of transmissions is plottetbt much density is lost by choositig= 1 rather tharb*. As

as a function of N for two different spectrum utilizations a result,b = 1 (or 5 = 0 dB) is a very useful robust operating

R for a network witha = 4, d = 10 m, and an outage point that can be used when the path loss exponent is not
constraint ofe = 0.1. The bottom set of curves correspongbrecisely known or when it varies throughout the network.

to a relatively high utilization ofR = 0.5 bps/Hz, while

the top set corresponds t& = 0.25 bps/Hz. Each set
of three curves correspond to the approximation from (2): An interesting information densityinterpretation can be

Ae, N) =~ N( < )ﬁ(N)*g, numerically computed valuesarrived at by plugging in the appropriate expressions fer th

wd?

VI. INFORMATION DENSITY



maximum density of transmissions when the number of subandwidth-time-area consumed by a transmission is:
bands is optimized. By plugging in the optimal value /8f ) 1 )

) ; . ! s 2y _ b 2
(and ignoring the integer constraint &, which is reasonable WT(nd*=) = Wd?Bg(Q —1)=.

when & is considerably smaller than one) we have: The same metric is considered in [9] and specific coding and

. eN 1 ., 2 modulation formats are evaluated, but no general analgsis i
A(e) = (W) }—?b (2> =17 (10) performed.
. ] ) e L In order to maximize the density of transmissions, the
whereb” is defined in (8) and the quantity (2° —1)"% is  pandwidth-time-area product in (12) should be minimized. |

denoted as the density constant in Fig. 1. terms ofb, this corresponds to:
From this expression we can make a number of observa- b s
tions regarding the various parameters of interest. Fios¢ n o b(2” = 1)"=.

that density is directly proportional to outageand to the This maximization is clearly identical to the optimizatiam

) 5 .
inverse of the square of the range”. Thus, doubling the Section IV-B, and thus the optimal spectral efficiency isals

outage constraint leads to a (_joubling of density, or in\rgrsegiven by (8). Thus, the optimal spectral efficiency derived
tightening the outage C_O”S”a'm by a factor Of_ two leads B ier has a rather general interpretation in the contéxt o
factor of two reduction in density. The quadratic naturehsf t

range dependence implies that doubling transmissionrdista

leads to a factor of four reduction in density. Perhaps one VIIl. CONCLUSION

of the most interesting tradeoffs is between density anet rat In this work we studied bandwidth-SINR tradeoffs in ad-hoc
since the two quantities are inversely proportional, dimgbl networks and derived the optimal operating spectral effmje

interference-limited networks.

the rate leads to halving the density, and vice versa. which was shown to be a function only of the path loss
If we consider the product of density and spectral utilizati exponent. A network can operate at this optimal point by
we get a quantity that has units bps/H2im dividing the total bandwidth into sub-bands sized such that
. ¢ . ) each transmission occurs on one of the sub-bands at psecisel
* * (b —= . ..
A ()R ~ (ﬁ) b(27 —1) = (11)  the optimal spectral efficiency.

. o - - The key takeaway of this work is that an interference-
This quantity is very similar to tharea spectral efficiency limited ad-hoc network should operate in neither the widceba
(ASE) defined in [8]. In our random network setting, the AS ower-limited) nor high-SNR (bandwidth-limited) regisye

is_ inversely prop_ortional to the square of the trans_misgignﬁn rather at a point between the two extremes because this
distance, which is somewhat analogous to cell radius i@ pere the optimal balance between multi-user interiegen
cellular network, and is directly proportional to the OWag,ng handwidth is achieved. Although we considered a rather

. . . b* _ 2
const.ralqj. S|r;ce the ﬂuantlﬂﬁflﬁ — 1)7= does ng Valryfsimple network model, we believe that many of the insights
too significantly with the path-loss exponent (see Fig. 1) Qjeveloped here will also apply to more complicated scesario

nger:\(,)vte\?grj ;?gnz,lngezz(:l(ﬁit APSelfh:gi Frfézgl?;tserz)gizgg" wideband fading channels and networks in which some
: ree of local transmission scheduling is performed.
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