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Abstract

We deal with centralized and distributed rate-constrained estimation of random signal vectors per-

formed using a network of wireless sensors (encoders) communicating with a fusion center (decoder). For

this context, we determine lower and upper bounds on the corresponding distortion-rate (D-R) function.

The nonachievable lower bound is obtained by considering centralized estimation with a single-sensor

which has available all observation data, and by determining the associated D-R function in closed-

form. Interestingly, this D-R function can be achieved using an estimate first compress afterwards (EC)

approach, where the sensor: i) forms the minimum mean-square error (MMSE) estimate for the signal of

interest; and ii) optimally (in the MSE sense) compresses and transmits it to the FC that reconstructs it.

We further derive a novel alternating scheme to numerically determine an achievable upper bound of the

D-R function for general distributed estimation using multiple sensors. The proposed algorithm tackles

an analytically intractable minimization problem, while it accounts for sensor data correlations. The

obtained upper bound is tighter than the one determined by having each sensor performing MSE optimal

encoding independently of the others. Numerical examples indicate that the algorithm performs well

and yields D-R upper bounds which are relatively tight with respect to analytical alternatives obtained

without taking into account the cross-correlations among sensor data.
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I. INTRODUCTION

Stringent bandwidth and energy constraints that wireless sensor networks (WSNs) must adhere to

motivate efficient compression and encoding schemes when estimating random signals or parameter

vectors of interest. In such networks, it is of paramount importance to determine bounds on the minimum

achievable distortion between the signal of interest and its estimate formed at the fusion center (FC) using

the encoded information transmitted by the sensors subject to rate constraints.

In the reconstruction scenario, the FC wishes to accurately reconstruct the sensor observations that

are transmitted to the FC in a compressed form. In the estimation scenario, the FC is interested in

accurately estimating an underlying random vector which is correlated with, but not equal to, the sensor

observations. Thus, the FC utilizes the compressed sensor data to estimate a vector parameter which is

conveyed implicitly by the sensor data. In a setup involving one sensor, single-letter characterizations of

the D-R function for both scenarios are known: the reconstruction scenario is the standard distortion-rate

problem [4, p. 336]; and the estimation one, also referred to as a rate-distortion problem with a remote

source, has also been determined [1, p. 78]. In the distributed setup, involving multiple sensors with

correlated observations, neither problem is well understood. The best analytical inner and outer bounds

for the D-R function for reconstruction can be found in [2] and [16]; see also [17] that determines the rate-

distortion region for a two-sensor setup. An iterative scheme has been developed in [6], which numerically

determines an achievable upper bound for distributed reconstruction but not for signal estimation. The

numerical D-R upper bound obtained by [6] is applicable when the signal to be reconstructed at the FC

coincides with the sensor observations. However, this is not the case in the estimation setup considered

here, where sensors observe a statistically perturbed version of the signal of interested that the FC wishes

to reconstruct.

For the general problem of estimating a parameter vector with analog-amplitude entries correlated

with sensor observations, most of the existing literature examines Gaussian data and Gaussian parameters.

Specifically, when each sensor observes a common scalar random parameter contaminated with Gaussian

noise, the D-R function for estimating this parameter has been determined in [3], [7]–[9], [15] to solve

the so called Gaussian CEO problem. D-R bounds for a linear-Gaussian data model have been derived

in [10] and [11] when the number of parameters equals the number of all scalar observations, with

one scalar observation per sensor. Under a similar setup [17] determines the rate-distortion region in

a two-sensor WSN. Another formulation was considered in [21], where each sensor has available a

vector of observations having the same length as the parameter vector; see also [14] where a two-sensor
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setup is considered. All existing formulations dealing with vectors of parameters and observations are

special cases of the general vector Gaussian CEO problem. In this paper, we pursue D-R analysis for

distributed estimation with WSNs, under the vector Gaussian CEO setup, without constraining the number

of observations in each sensor and/or the number of random parameters to be estimated.

We first determine in closed-form the D-R function for estimating a parameter vector when applying

rate-constrained encoding to the observation data collected by a single-sensor (Section III). Without

assuming that the number of parameters equals the number of observations, we prove that the optimal

scheme achieving the D-R function amounts to first computing the minimum mean-square error (MMSE)

estimate of the source at the sensor, and then optimally compressing at the sensor and reconstructing at

the FC the estimate via reverse water-filling (rwf). The D-R function for the single-sensor setup serves

as a non-achievable lower D-R bound for rate-constrained estimation in the multi-sensor setup. Next,

we develop an alternating scheme that numerically determines an achievable D-R upper bound for the

multi-sensor scenario (Section IV). Using this iterative algorithm we can tackle an analytically intractable

minimization problem and determine a D-R upper bound. Different from [6], which deals with WSN-

based distributed reconstruction, our approach aims at general estimation problems where the parameters

of interest are not directly observed at the sensors. Combining the lower bound of Section III with the

numerically determined upper bound of Section IV, we specify a region where the D-R function for

distributed estimation lies in.

II. PROBLEM STATEMENT

With reference to Fig. 1 (a), consider a WSN comprising L sensors that communicate with an FC.

Each sensor, say the ith, observes an Ni× 1 vector xi(t) which is correlated with a p× 1 random signal

(parameter vector) of interest s(t), where t denotes discrete time. Similar to [8], [11], [15], we assume

that:

(a1) No information is exchanged among sensors and the links with the FC are noise-free.

(a2) The random vector s(t) is generated by a stationary Gaussian vector memoryless source with s(t) ∼
N (0,Σss); the sensor data {xi(t)}L

i=1 adhere to the linear-Gaussian model xi(t) = His(t) + ni(t),

where ni(t) denotes additive white Gaussian noise (AWGN); i.e., ni(t) ∼ N (0, σ2I); noise ni(t) is

uncorrelated across sensors, across time, and with s; and Hi as well as (cross-) covariance matrices

Σss, Σsxi
and Σxixj

are known ∀i, j ∈ {1, . . . , L}.

Notice that (a1) holds when sufficiently strong channel codes are employed to cope with channel

effects. Further, whiteness of ni(t) and the zero-mean assumptions in (a2) are made without loss of
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generality. The linear model in (a2) is commonly encountered in estimation and in a number of cases

it even accurately approximates non-linear mappings; e.g., via a first-order Taylor expansion in target

tracking applications. Although confining ourselves to Gaussian vectors xi(t) is of interest on its own,

following arguments similar to those in [1, p. 134], it can be shown that the D-R functions obtained

in this paper upper bound their counterparts for non-Gaussian sensor data xi(t) with (cross)-covariance

matrices identical to those in (a2).

Blocks x(n)
i := {xi(t)}n

t=1, comprising n consecutive time instantiations of the vector xi(t), are

encoded per sensor to yield each encoder’s output u(n)
i = f (n)

i (x(n)
i ), i = 1, . . . , L. These encoded blocks

are communicated through ideal orthogonal channels to the FC. There, u(n)
i ’s are decoded to obtain an

estimate of s(n) := {s(t)}n
t=1, which we denote as ŝ(n)

R (u(n)
1 , . . . ,u(n)

L ) = g(n)
R (x(n)

1 , . . . ,x(n)
L ), since u(n)

i

is a function of x(n)
i . The subscript R signifies the rate constraint which is imposed through a bound

on the cardinality of the range of the sensor encoding functions; namely, the cardinality of the range of

f (n)
i must be no larger than 2nRi , where Ri is the available rate at the encoder of the ith sensor. The

sum rate satisfies the constraint
∑L

i=1 Ri ≤ R, where R is the total rate available for the L sensors. It is

worth re-iterating, that this setup is precisely the vector Gaussian CEO problem in its most general form

without any restrictions on the number of observations Ni at the ith sensor, and the number of random

parameters p.

Under the sum rate constraint
∑L

i=1 Ri ≤ R, the ultimate goal is to determine the minimum possible

MSE distortion (1/n)
∑n

t=1 E[‖s(t) − ŝR(t)‖2] for estimating s in the limit of infinite block-length n.

Such a (so called single-letter) characterization of the D-R function is available for the single-sensor case

(L = 1), but not for the distributed multi-sensor scenario. For this reason, our objective in this paper is

to derive (preferably tight) inner and outer bounds on the D-R function of the general vector CEO setup.

III. DISTORTION-RATE FOR CENTRALIZED ESTIMATION

We will first determine in closed form the D-R function for estimating s(t) in a single-sensor setup

and provide a scheme that achieves it. The single-letter characterization of the D-R function in this setup

allows us to drop the time index. Here, all observation data {xi}L
i=1 := x, whose dimensionality is N , are

available to a single sensor, and are related to the p× 1 parameter vector s according to the linear model

x = Hs+n. The D-R function in this setting provides a lower (non-achievable) bound on the MMSE that

can be achieved in a multi-sensor distributed setup, where each xi is observed and encoded by a different

sensor. Existing works treat the case N = p [5], [13], [19] and transform the D-R function with a remote
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(a)

(b)

Fig. 1. (a): Distributed setup; (b): Test channel for x Gaussian in a point-to-point link.

source to an ordinary reconstruction D-R problem; see also [18] which provides more general conditions

under which this transformation is possible. Other works deal with practical encoding-decoding schemes

using e.g., vector quantization [12]. However, here we look for the D-R function for general N and p,

in the linear-Gaussian model framework.

A. Background on D-R for Reconstruction

The D-R function for encoding x, which has probability density function (pdf) p(x), with rate R at

an individual sensor, and reconstructing it (in the MMSE sense) as x̂ at the FC, is given by [4, p. 342]

Dx(R) = min
p(x̂|x)

I(x;x̂)≤R

Ep(x̂,x)[‖x− x̂‖2], x ∈ RN , x̂ ∈ RN (1)

where the minimization is w.r.t. the conditional pdf p(x̂|x). Let Σxx = QxΛxQT
x denote the eigenvalue

decomposition of Σxx, where Λx = diag(λx,1 · · ·λx,N ) and λx,1 ≥ · · · ≥ λx,N > 0.

For x Gaussian, Dx(R) can be determined by applying rwf to the pre-whitened vector xw := QT
x x [4,

p. 348]. For a prescribed rate R, it turns out that ∃ k such that the first k entries {xw(i)}k
i=1 of xw, are

encoded and reconstructed independently from each other using rates {Ri = 0.5 log2 (λx,i/d(k, R))}k
i=1,

where d(k, R) =
(∏k

i=1 λx,i

)1/k
2−2R/k; while the last N − k entries of xw are assigned no rate; i.e.,

{Ri = 0}N
i=k+1 and R =

∑k
i=1 Ri. The corresponding MMSE for encoding xw(i), under a rate constraint

Ri, is Di := E[‖xw(i)− x̂w(i)‖2] = d(k,R) when i = 1, . . . , k and Di = λx,i when i = k + 1 . . . , N .
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The resultant overall MMSE (D-R function) is

Dx(R) = E[‖x− x̂‖2] = E[‖xw − x̂w‖2] = kd(k,R) +
N∑

i=k+1

λx,i (2)

where x̂w = QT
x x̂. Note that d(k, R) can be bounded as max({λx,i}N

i=k+1) ≤ d(k, R) < min({λx,i}k
i=1).

Intuitively, d(k, R) is a threshold distortion determining which entries of xw are assigned with nonzero

rate. The first k entries of xw with variance λx,i > d(k, R) are encoded with non-zero rate, but the last

N − k ones with variance λx,i ≤ d(k, R) are discarded in the encoding procedure (are set to zero).

Associated with the rwf principle is the so called test channel; see Fig. 1 (b) and e.g., [4, p. 345]. The

encoder’s MSE optimal output is u = QT
x,kx+ζ, where Qx,k is formed by the first k columns of Qx, and

ζ models the distortion noise that results due to the rate-constrained encoding of x. The zero-mean AWGN

ζ is uncorrelated with x and its diagonal covariance matrix Σζζ has entries [Σζζ ]ii = λx,iDi/(λx,i−Di).

The part of the test channel that takes as input u and outputs x̂, models the decoder. The reconstruction

x̂ of x at the decoder output is

x̂ = Qx,kΘku = Qx,kΘkQT
x,kx + Qx,kΘkζ (3)

where Θk is a diagonal matrix with non-zero entries [Θk]ii = (λx,i −Di)/λx,i, i = 1, . . . , k.

B. D-R for Estimation

The D-R function for estimating source s given observation x (where the source and observation are

probabilistically drawn from the joint pdf p(x, s)) with rate R at an individual sensor, and reconstructing

it (in the MMSE sense) as ŝR at the FC is given by [1, p. 79]

Ds(R) = min
p(ŝR|x)

I(x;ŝR)≤R

Ep(ŝR,s)[‖s− ŝR‖2], s ∈ Rp, ŝR ∈ Rp (4)

where the minimization is w.r.t. the conditional pdf p(ŝR|x).

In order to achieve this D-R function, one might be tempted to first compress the observation x by

applying rwf at the sensor, without taking into account the data model relating s with x, and subsequently

use the reconstructed x̂ to form the MMSE estimate ŝce = E[s|x̂] at the FC. An alternative option would

be to first form the MMSE estimate ŝ = E[s|x], encode the latter using rwf at the sensor by exploiting

only the covariance of ŝ, and after decoding at the FC, obtain the reconstructed estimate ŝec. Referring

to the former option as Compress-Estimate (CE) and to the latter as Estimate-Compress (EC), we

are interested in determining which one yields the smallest MSE under a rate constraint R. Another

interesting question is whether any of the CE and EC schemes enjoys MMSE optimality in the sense

January 17, 2008 DRAFT



EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING (TO APPEAR) 7

of achieving (4). With subscripts ce and ec corresponding to these two options, let us also define the

errors s̃ce := s− ŝce and s̃ec := s− ŝec.

For CE, we depict in Fig. 2 (a) the test channel for encoding x via rwf, followed by MMSE estimation

of s based on x̂. Suppose that when applying rwf to x with prescribed rate R, the first kce ∈ {1, . . . , N}
components of xw are assigned with non-zero rate and the rest are discarded. The MMSE optimal

encoder’s output for encoding x is then given, as in Section III.A, by uce = QT
x,kce

x+ζce. The covariance

matrix of ζce has diagonal entries [Σζceζce
]ii = λx,iD

ce
i /(λx,i −Dce

i ) for i = 1, . . . , kce, where Dce
i :=

E[(xw(i) − x̂w(i))2]. Recalling that Dce
i =

(∏kce

i=1 λx,i

)1/kce

2−2R/kce when i = 1, . . . , kce and Dce
i =

λx,i, when i = kce + 1, . . . , N , the reconstructed x̂ in CE is [c.f. (3)]

x̂ = Qx,kce
ΘceQT

x,kce
x + Qx,kce

Θceζce (5)

where [Θce]ii = (λx,i −Dce
i )/λx,i, for i = 1, . . . , kce. Letting x̌ := QT

x x̂ = [x̌T
1 01×(N−kce)]

T , with

x̌1 := ΘceQT
x,kce

x + Θceζce, we have for the MMSE estimate

ŝce = E[s|x̂] = E[s|QT
x x̂] = E[s|x̌1] = Σsx̌1Σ

−1
x̌1x̌1

x̌1 (6)

since QT
x is unitary and the last N − kce entries of x̌ are useless for estimating s. We show in Appendix

A that the covariance matrix Σs̃ces̃ce
:= E[(s− ŝce)(s− ŝce)T ] of the estimation error s̃ce is

Σs̃ces̃ce
= Σss −Σsx̌1Σ

−1
x̌1x̌1

Σx̌1s = Σss −ΣsxΣ−1
xx Σxs + ΣsxQx∆ceQT

x Σxs (7)

where ∆ce := diag
(
Dce

1 λ−2
x,1 · · ·Dce

N λ−2
x,N

)
. Eqs. (6) and (7) characterize fully the CE scheme.

(a)

(b)

Fig. 2. (a): Test channel for the CE scheme; (b): Test channel for the EC scheme.

In Fig. 2 (b) we depict the test channel for the EC scheme. The MMSE estimate ŝ = E[s|x] is

followed by the test channel that results when applying rwf to a pre-whitened version of ŝ, with rate R.
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Let Σŝŝ = ΣsxΣ−1
xx Σxs = QŝΛŝQT

ŝ be the eigenvalue decomposition for the covariance matrix of ŝ,

where Λŝ = diag(λŝ,1 · · ·λŝ,p) and λŝ,1 ≥ · · · ≥ λŝ,ρ > λŝ,ρ−1 = · · · = λŝ,1 = 0, and ρ := rank(Σsx)

denotes the rank of matrix Σsx. Suppose now that the first kec ∈ {1, . . . , ρ} entries of ŝw = QT
ŝ ŝ are

assigned with non-zero rate and the rest are discarded. The MSE optimal encoder’s output is given by

uec = QT
ŝ,kec

ŝ + ζec, and the estimate ŝec is

ŝec = Qŝ,kec
ΘecQT

ŝ,kec
ŝ + Qŝ,kec

Θecζec (8)

where Qŝ,kec
is formed by the first kec columns of Qŝ. For the kec × kec diagonal matrices Θec and

Σζecζec
we have [Θec]ii = (λŝ,i −Dec

i )/λŝ,i and [Σζecζec
]ii = λŝ,iD

ec
i /(λŝ,i − Dec

i ), where Dec
i :=

E[(ŝw(i) − ŝec,w(i))2], and ŝec,w := QT
ŝ ŝec. Recall also, that Dec

i =
(∏kec

i=1 λŝ,i

)1/kec

2−2R/kec when

i = 1, . . . , kec and Dec
i = λŝ,i, for i = kec + 1, . . . , p. Upon defining ∆ec := diag

(
Dec

1 · · ·Dec
p

)
, the

covariance matrix of s̃ec is found in Appendix B as

Σs̃ecs̃ec
= Σss −ΣsxΣ−1

xx Σxs + Qŝ∆ecQT
ŝ . (9)

The MMSE associated with CE and EC is given, respectively, by [c.f. (7) and (9)]

Dce(R) := tr(Σs̃ces̃ce
) = Jo + εce(R), and Dec(R) := tr(Σs̃ecs̃ec

) = Jo + εec(R) (10)

where εce(R) := tr(ΣsxQx∆ceQT
x Σxs), εec(R) := tr(Qŝ∆ecQT

ŝ ), and Jo := tr(Σss −ΣsxΣ−1
xx Σxs) is

the MMSE achieved when estimating s based on x, without source encoding (R → ∞). Since Jo is

common to both EC and CE it is important to compare εce(R) with εec(R) in order to determine which

estimation scheme achieves the smallest MSE. The following theorem, proved in Appendix C, provides

such an asymptotic comparison.

Theorem 1: If under (a1) and (a2), R > Rth := 0.5 max
{
log2

(
(
∏ρ

i=1 λx,i) /σ2ρ
)
, log2 ((

∏ρ
i=1 λŝ,i) /(λŝ,ρ)ρ)

}
,

then εce(R) = γ12−2R/N and εec(R) = γ22−2R/ρ, where γ1, γ2 are constants not dependent on R.

An immediate consequence of Theorem 1 is that the MSE distortion for EC, namely Dec(R), converges

as R → ∞ to Jo with rate O(2−2R/ρ). The MSE distortion of CE converges likewise, but with rate

O(2−2R/N ). Typically sensors acquire more observations, namely N , than the number of parameters of

interest p. Having N > p enables identifiability and improved MSE performance in estimating s. With

N > p it clearly holds that ρ ≤ min(N, p) < N . Then, the EC scheme approaches the lower bound Jo

faster than CE, implying a more efficient usage of the available rate R. This is intuitively reasonable

since CE compresses x, taking into account only the covariance matrix Σxx which can result in using

part of the rate to compress components of x that are irrelevant (e.g., noise) to the estimation of s. On the
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contrary, the MMSE estimator ŝec in EC first extracts from x all the information pertinent to estimating

s, and then performs compression. In that way EC suppresses significant part of the noise and the rate

is allocated more efficiently.

Let us now examine now some special cases to gain more insight about Theorem 1.

Scalar model (p = 1, N = 1): Let x = hs + n, where h is fixed, while s, n are uncorrelated with

s ∼ N (0, σ2
s), n ∼ N (0, σ2

n), and σ2
x = h2σ2

s + σ2
n. With σ2

s̃ce
and σ2

s̃ec
denoting the variances of s̃ce

and s̃ec, respectively, we prove in Appendix D that

Proposition 1: If (a1), (a2) hold and N = p = 1, then σ2
s̃ce

= σ2
s̃ec

and hence the D-R functions

for EC and CE are identical; i.e., Dec(R) = Dce(R).

Vector model (p = 1, N > 1): With x = hs + n, we establish in Appendix E that:

Proposition 2: If (a1), (a2) hold and R ≤ Rth := 0.5 log2

(
1 + σ2

s‖h‖2/σ2
)
, then εce(R) = εec(R),

and thus Dec(R) = Dce(R). For R > Rth, we have εce(R) > εec(R); therefore, Dce(R) > Dec(R)

which implies that EC uses more efficiently the available rate.

Matrix-vector model (N > 1, p > 1 and Σss = σ2
sIp): For this setup, we have Σsx = σ2

sH
T and

Σxx = σ2
sHHT +σ2I. Letting H = UhΣhVT

h be the SVD of H, where Σh is an N ×p diagonal matrix

Σh = diag(σh,1 · · ·σh,p), we show in Appendix F that

Proposition 3: If (a1), (a2) hold, N > ρ and R > Rth with

Rth :=
1
2

max

{
log2

(
ρ∏

i=1

(
1 +

σ2
sσ2

h,i

σ2

))
, log2

(∏ρ
i=1 σ2

h,i/(σ2
h,iσ

2
s + σ2)

(σ2ρ
h,ρ/(σ2

h,ρσ
2
s + σ2)ρ)

)}
(11)

then εce(R) > εec(R), implying that the EC is more rate efficient than CE. If N = ρ, and ∃ i, j ∈ [1, ρ]

with i 6= j such that σh,i 6= σh,j , then εce(R) > εec(R) and consequently Dce(R) > Dec(R) ∀R ∈ [0,∞).

Finally, if for N = ρ, it holds that σh,1 = . . . = σh,ρ, then Dce(R) = Dec(R) ∀R ∈ [0,∞).

Defining the signal-to-noise ratio (SNR) as SNR = tr(HΣssHT )/(Nσ2), we compare in Fig. 3 (a,b)

the MMSE when estimating s using the CE and EC schemes. With Σss = σ2
sIp, p = 4 and N = 40,

we observe that beyond a threshold rate, the distortion of EC converges to Jo faster than that of CE,

which corroborates Theorem 1. Notice also that the gap between the EC and CE curves for SNR = 2

is larger than the gap for SNR = 4. This is true because as the noise power increases, the portion of the
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Fig. 3. D-R region for EC and CE at SNR = 2 (a) and SNR = 4 (b).

rate allocated to noise terms in CE increases accordingly. However, thanks to the MMSE estimator, EC

cancels part of the noise and utilizes the available rate more efficiently.

Our analysis so far raises the question whether EC is MSE optimal. We have shown that this is the

case when estimating s with a given rate R without forcing any relationship between N and p. A related

claim has been reported in [13], [19] for N = p, but the extension to N 6= p is not obvious. To this end,

we prove in Appendix G that:

Theorem 2: Under (a1) and (a2), the D-R function when estimating s based on x can be expressed as

Ds(R) = min
p(ŝR|x)

I(x;ŝR)≤R

E[‖s− ŝR‖2] = E[‖s− ŝ‖2] + min
p(ŝR|ŝ)

I(ŝ;ŝR)≤R

E[‖ŝ− ŝR‖2] (12)

where ŝ = ΣsxΣ−1
xx x is the MMSE estimator, and s− ŝ is the corresponding MMSE.

Theorem 2 reveals that the optimal means of estimating s is to first form the optimal MMSE estimate ŝ

and then apply optimal D-R encoding to this estimate. The lower bound on this distortion when R →∞,

is Jo = E[‖s− ŝ‖2], which is intuitively appealing. The D-R function in (12) is achievable, because the

rightmost term in (12) corresponds to the D-R function for reconstructing the MMSE estimate ŝ which

is known to be achievable using random coding; see e.g., [1, p. 66]. Theorem 2 implies an important
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separation result regarding estimation of (remote) Gaussian sources. Optimal estimation can be performed

by separately estimating the source s based on the observation x, and then compressing the estimate ŝ

based only on the covariance of ŝ. The important consequence of this result is that the total distortion

Ds(R) can be minimized after minimizing separately: i) the MSE distortion associated the estimation of

s based on x; and ii) the MSE distortion related to the compression/reconstruction task that is given by

the second term in the right hand side (RHS) of (12).

IV. DISTORTION-RATE FOR DISTRIBUTED ESTIMATION

Let us now consider the D-R function for estimating s in a multi-sensor setup, under a total available

rate R which has to be shared among all sensors. Because analytical specification of the D-R function

in this case remains intractable, we will develop an alternating algorithm that numerically determines

an achievable upper bound for it. Combining this upper bound with the non-achievable lower bound

corresponding to an equivalent single-sensor setup, when applying the MMSE optimal EC scheme, will

provide a (hopefully tight) region where the D-R function lies in. For simplicity in exposition, we confine

ourselves to a two-sensor setup, but our results can be extended readily to any L > 2.

To this end, we consider the following single-letter characterization of the upper bound on the D-R

function

D̄(R) = min
p(u1|x1),p(u2|x2),ŝR

I(x;u1,u2)≤R

Ep(s,u1,u2)[‖s− ŝR(u1,u2)‖2] (13)

where the minimization is w.r.t. {p(ui|xi)}2
i=1 and ŝR := ŝR(u1,u2). Achievability of D̄(R) can be

established by readily extending to the vector case the scalar results in [3]. To carry out the minimization

in (13), we develop an alternating scheme whereby u2 is treated as side information that is available

at the decoder when optimizing (13) w.r.t. p(u1|x1) and ŝR(u1,u2). The minimization is carried within

the class of Gaussian auxiliaries u1,u2. As a starting point, we assume that the side information u2 is

the output of an optimal D-R encoder applied to x2 for estimating s, without taking into account x1.

This initialization for u2 is motivated by the Gaussianity of s and x2, as well as the single-sensor D-R

results in Section III-B. Since x2 is Gaussian, the side information will have the form (c.f. Section III.B)

u2 = Q2x2 + ζ2, where Q2 ∈ Rk2×N2 and k2 ≤ N2, due to the rate constrained encoding of x2. Recall

also that the k2 × 1 vector ζ2 is uncorrelated with x2 and Gaussian; i.e., ζ2 ∼ N (0,Σζ2ζ2).

Based on ψ := [xT
1 uT

2 ]T , which is the information that the decoder can have assuming infinite rate

at the first encoder, the optimal estimator for s is the MMSE one: ŝ = E[s|x1,u2] = ΣsψΣ−1
ψψψ =

L1x1 + L2u2, where L1, L2 are p × N1 and p × k2 matrices such that ΣsψΣ−1
ψψ = [L1 L2]. If s̃ is
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the corresponding MSE, then s = ŝ + s̃, where s̃ := s − ŝ is uncorrelated with ψ and ŝ due to the

orthogonality principle. Noticing also that ŝR(u1,u2) is uncorrelated with s̃ because it is a function of

x1 and u2, we obtain E[‖s− ŝR(u1,u2)‖2] = E[‖ŝ− ŝR(u1,u2)‖2] + E[‖s̃‖2], or,

E[‖s− ŝR(u1,u2)‖2] = E[‖L1x1 − (ŝR(u1,u2)− L2u2)‖2] + E[‖s̃‖2]. (14)

Since x1 and x2 are correlated, and u1 is stochastically related with x1 through the conditional pdf

p(u1|x1) we have the Markov chain (MC) (x2,u2) → x1 → u1. Using MC properties, we obtain after

some simple algebra that I(x;u1,u2) = R2 + I(x1;u1) − I(u2;u1), where R2 := I(x;u2) is the rate

consumed to form the side information u2; while the rate constraint in (13) becomes I(x;u1,u2) ≤
R ⇔ I(x1;u1)− I(u2;u1) ≤ R −R2 := R1. The new signal of interest that we wish to reconstruct in

(14) is L1x1. Continuing, we prove in Appendix H that

I(x1;u1) = I(L1x1;u1) (15)

Using (15), we obtain I(x1;u1) − I(u2;u1) = I(L1x1;u1) − I(u2;u1), and from the RHS of the last

equation, we deduce the equivalent rate constraint I(L1x1;u1)− I(u2;u1) ≤ R1. Combining the latter

with (14) and (13), we arrive at the D-R upper bound

¯̄D(R1) = min
p(u1|L1x1),ŝR

I(L1x1;u1)−I(u1;u2)≤R1

E[‖L1x1 − (ŝR(u1,u2)− L2u2)‖2] + E[‖s̃‖2] (16)

through which we can determine an achievable D-R region, having available rate R1 at the encoder and

side information u2 at the decoder. Since x1 and u2 are jointly Gaussian, we can apply the Wyner-Ziv

result [20], which allows us to consider that u2 is available both at the decoder and the encoder. This,

in turn, permits re-writing the first expectation in (16) as

min
p(ŝR|L1x1,u2)

I(L1x1;ŝR|u2)≤R1

E[‖L1x1 − (ŝR(u1,u2)− L2u2)‖2]. (17)

If ŝ1 := E[L1x1|u2] = L1Σx1u2Σ
−1
u2u2

u2 and s̃1 is the corresponding MSE, then we can write L1x1 =

ŝ1 + s̃1. For the rate constraint in (17), we have

I(L1x1; ŝR|u2) = I(L1x1 − ŝ1; ŝR − L2u2 − ŝ1|u2) = I(s̃1; ŝR − L2u2 − ŝ1) (18)

where the first equality holds because u2 is given; the second one holds since u2 is uncorrelated with

s̃1, due to the orthogonality principle; and likewise, u2 can be uncorrelated with ŝR,12(u1,u2) :=

ŝR(u1,u2) − L2u2 − ŝ1, since ŝR,12 is the reconstructed version of s̃1 which is uncorrelated with u2.
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Utilizing (17) and (18), we arrive at

¯̄D(R1) = E[‖s̃‖2] + min
p(ŝR,12|s̃1)

I(s̃1;ŝR,12)≤R1

E[‖s̃1 − ŝR,12(u1,u2)‖2]. (19)

Notice that the minimization term in (19) is the D-R function for reconstructing the MSE s̃1 with rate

R1. Since s̃1 is Gaussian, we can readily apply rwf to the pre-whitened vector QT
s̃1
s̃1 for determining

¯̄D(R1) and the corresponding test channel that achieves ¯̄D(R1) (c.f. Section III.A). Through the latter,

and considering the eigenvalue decomposition Σs̃1s̃1 = Qs̃1diag(λs̃1,1 · · ·λs̃1,p)QT
s̃1

, we find that the first

encoder’s output that minimizes (13) given side information u2 has the form

u1 = QT
s̃1,k1

L1x1 + ζ1 = Q1x1 + ζ1 (20)

where Qs̃1,k1 denotes the first k1 columns of Qs̃1 , k1 is the number of QT
s̃1
s̃1 entries that are assigned

with non-zero rate, and Q1 := QT
s̃1,k1

L1. The k1 × 1 AWGN ζ1 ∼ N (0,Σζ1ζ1) is uncorrelated with

x1. Additionally, we have [Σζ1ζ1 ]ii = λs̃1,iD
1
i /(λs̃1,i −D1

i ), where D1
i =

(∏k1
i=1 λs̃1,i

)1/k1

2−2R1/k1 , for

i = 1, . . . , k1, and D1
i = λs̃1,i when i = k1 +1, . . . , p. This way, we are able to determine also p(u1|x1).

The reconstruction function has the form

ŝR(u1,u2) = Qs̃1,k1Θ1u1 −Qs̃1,k1Θ1QT
s̃1,k1

L1Σx1u2Σ
−1
u2u2

u2 + L1Σx1u2Σ
−1
u2u2

u2 + L2u2 (21)

where [Θ1]ii = (λs̃1,i − D1
i )/λs̃1,i, and the corresponding MMSE is ¯̄D(R1) =

∑p
j=1 D1

j + E[‖s̃‖2].

Notice that due to the uncorrelatedness of u2 with x1−E[x1|u2], the vector s̃1 can also be expressed as

s̃1 = E[s|x1−E[x1|u2]], and the MMSE estimate ŝ can be rewritten as ŝ = E[s|u2]+E[s|x1−E[x1|u2]].

Interestingly, it can be seen from (19) and the last expressions for s̃1 and ŝ, that the MSE optimal

approach for estimating s with side information u2 is exactly the EC scheme with the difference that in

the compression step we apply rwf to the part of the MMSE estimate ŝ that is formed by the “innovation”

signal x1 − E[x1|u2], namely E[s|x1 − E[x1|u2]]. Note that the optimal encoder for sensor 1 in (20)

has the same structure as the one assumed for the side information u2 at the initialization step. Thus, we

can proceed as described earlier to determine the optimal encoder for sensor 2 after treating u1 in (20)

as side information.

The approach in this subsection can be applied in an alternating fashion from sensor to sensor in order

to determine appropriate p(ui|xi), for i = 1, 2, and ŝR(u1,u2) that at best globally minimize (16). The

importance of the algorithm lies on the fact that it provides a way to numerically tackle (16) and determine

an achievable D-R upper bound when estimating s at the FC based on compressed sensor observations.

The conditional pdfs can be determined by finding the appropriate covariances Σζiζi
. Furthermore, by
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specifying the optimal Q1 and Q2, we have a complete characterization of the encoders’ structure.

Relative to [6], the algorithm here can be applied to derive D-R upper bounds in general estimation

setups where the parameter vector s that the FC wishes to estimate-reconstruct based on compressed

sensor data, is observed at the sensors via xj’s. The scheme in [6] can be viewed as a special case of

the present one corresponding to xj = s. The resultant algorithm is summarized next.

Algorithm:

Initialize Q(0)
1 ,Q(0)

2 ,Σ(0)
ζ1ζ1

,Σ(0)
ζ2ζ2

by applying optimal D-R encoding to each sensor’s test channel in-

dependently. For a total rate R, generate M random increments {r(m)}M
m=0, such that 0 ≤ r(m) ≤ R

and
∑M

m=0 r(m) = R. Set R1(0) = R2(0) = 0, and for j = 1, . . . ,M , set R(j) =
∑j

l=0 r(l).

for i = 1, 2

ī = mod (i, 2) + 1 %The complementary index

R0(j) = I(x;u(j)

ī
) % u(j)

ī
is the side information provided by the īth sensor

Use Q(j−1)

ī
,Σ(j−1)

ζīζī
, R(j), R0(j) to determine Q(j)

i , Σ(j)
ζiζi

and distortion ¯̄D(Ri(j))

from (20) and (21).

end

Update the matrices Q(j)
l ,Σ(j)

ζlζl
that result the smallest distortion ¯̄D(Rl(j)), with l ∈ [1, 2]

Set Rl(j) = R(j)− I(x;u(j)

l̄
) and Rl̄(j) = I(x;u(j)

l̄
).

In Fig. 4, we plot the non-achievable lower bound which corresponds to one sensor having available the

entire x and using the optimal EC scheme. The same figure also depicts an achievable D-R upper bound

determined by letting the i-th sensor form its local estimate ŝi = E[s|xi], and then apply optimal D-R

encoding to ŝi. If ŝR,1 and ŝR,2 are the reconstructed versions of ŝ1 and ŝ2, respectively, then the decoder

at the FC forms the final estimate as ŝR = E[s|ŝR,1, ŝR,2]. We refer to this approach as the decoupled EC

scheme. We also plot the achievable D-R region determined numerically by the alternating algorithm. For

each rate, we keep the smallest distortion returned after 500 executions of the algorithm simulated with

Σss = Ip, p = 4, and N1 = N2 = 20, at SNR = 2. We observe that the proposed algorithm provides a

tighter upper bound for the achievable D-R region than the one obtained using the decoupled EC strategy.

This is expected since the proposed algorithm takes into account the cross-correlations among the sensor

data when determining the encoders, whereas the decoupled EC approach does not. This way the rate

wasted to encode redundant information is reduced. Using also the non-achievable lower bound (solid

line), we have effectively reduced the ‘uncertainty region’ where the D-R function lies.
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Fig. 4. Distortion-rate bounds for estimating s in a two-sensor setup, where SNR = 2, N1 = N2 = 20 and p = 4.

V. CONCLUSIONS

We derived inner and outer D-R bounds for the generalized Gaussian CEO problem. Specifically, we

determined the D-R function for estimating a random vector in a single-sensor setup and established

optimality of an estimate-first compress-afterwards (EC) approach along with the (sub)optimality of a

compress-first estimate-afterwards (CE) alternative. When it comes to estimation using multiple sensors,

the corresponding D-R function can be bounded from below using the single-sensor D-R function

achieved using the EC scheme. An alternating algorithm was also derived for determining numerically

an achievable D-R upper bound in the distributed multi-sensor setup. Simulations demonstrated that the

numerically determined upper bound is more tight than analytically found alternatives (cf. the decoupled

EC scheme), which is expected since the novel algorithm accounts for the cross-correlations among sensor

data during the design of the encoders.

Issues of interest not accounted by this paper’s analysis include general (possibly non-linear) dynamical

data models where the distribution of the observation data is no longer stationary or Gaussian.1
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APPENDIX

A. Proof of Equation (7)

Using (6) we find that the covariance matrix of s̃ce is given by Σs̃ces̃ce
= Σss −Σsx̌1Σ

−1
x̌1x̌1

Σx̌1s. From

the definition of x̌1, it also follows that

Σsx̌1 = ΣsxQx,kce
Θce, Σx̌1x̌1 = Θ2

ce(Λx,kce
+ Σζceζce

) (22)

where Λx,kce
denotes the first kce diagonal entries of Λx. Apparently, the kce × kce matrix Σx̌1x̌1 is

diagonal with entries [Σx̌1x̌1 ]ii = [Θ]2ii([Λ]ii + [Σζceζce
]ii) = λx,i − Dce

i . Let us define the diagonal

matrix Dce := diag(Dce
1 , · · · , Dce

N ) and let Dce
kce

denote the upper left kce × kce submatrix of Dce. We

then have Σx̌1x̌1 = Λx,kce
−Dce

kce
using which we can write

Σsx̌1Σ
−1
x̌1x̌1

Σx̌1s = ΣsxQx,kce
Θce(Λx,kce

−Dce
kce

)−1ΘceQT
x,kce

Σxs

= ΣsxQx,kce
Λ−2

x,kce
(Λx,kce

−Dce
kce

)QT
x,kce

Σxs. (23)

Let Dce
N−kce

and Λx,N−kce
denote the lower right submatrix of Dce and Λx, respectively; and similarly,

let Qx,N−kce
be formed by the last N − kce columns of Qx. Because the last N − kce entries of QT

x x

are not assigned any rate, we have Dce
N−kce

= Λx,N−kce
. Adding and subtracting from (23) the matrix

ΣsxQx,N−kce
Λ−2

x,N−kce
Dce

N−kce
QT

x,N−kce
Σxs and also adding the matrix Σss, we arrive at the RHS of

(7). ¤

B. Proof of Equation (9)

Starting from the definition of the covariance matrix of s̃ec, we have Σs̃ecs̃ec
:= E[(s− ŝec)(s− ŝec)T ] =

Σss−Σsŝec
−Σŝecs +Σŝecŝec

. An expression that will prove useful result for our subsequent analysis is

Σsŝ = E[sŝT ] = ΣsxΣ−1
xx Σxs = Σŝŝ = QŝΛŝQT

ŝ . (24)

Furthermore, we will use the (cross-)covariance matrices

Σsŝec
= ΣsŝQŝ,kec

ΘecQT
ŝ,kec

= Qŝ,kec
Λŝ,kec

ΘecQT
ŝ,kec

(25)

Σŝecŝec
= Qŝ,kec

Θ2
ec(Λŝ,kec

+ Σζecζec
)QT

ŝ,kec
. (26)
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Substituting (25) and (26) into Σs̃ecs̃ec
, we obtain

Σs̃ecs̃ec
= Σss + Qŝ,kec

ΩQT
ŝ,kec

(27)

where Ω := Θ2
ec(Λŝ,kec

+ Σζecζec
) − 2Λŝ,kec

Θec = ∆ec,kec
−Λŝ,kec

, and ∆ec,kec
denotes the kec × kec

upper left submatrix of ∆ec. Since Dec
i = λŝ,i for i = kec+1, . . . , p, we have Λŝ,p−kec

= ∆ec,p−kec
, where

Λŝ,p−kec
and ∆ec,p−kec

denote the (p−kec)×(p−kec) lower right submatrices of Λŝ and ∆ec, respectively.

Adding and subtracting the matrix Qŝ,p−kec
Λŝ,p−kec

QT
ŝ,p−kec

from (27), where Qŝ,p−kec
is formed by the

last p−kec columns of Qŝ, we arrive at (9). ¤

C. Proof of Theorem 1

Consider first the CE scheme with kce = N . In this case, the rwf threshold is given by

dce(N, R) = Dce
i =

(
ρ∏

i=1

λx,i

)1/N

(σ2)(N−ρ)/N2−2R/N , i = 1, . . . , N. (28)

Since for kce = N all entries of QT
x x are assigned with non-zero rate, we infer that dce(N, R) < σ2, or,

equivalently

R > (1/2) log2

((
ρ∏

i=1

λx,i

)
/(σ2)ρ

)
:= Rce. (29)

Focusing on the EC scheme for kec = ρ, we have

dec(ρ,R) = Dec
i =

(
ρ∏

i=1

λŝ,i

)1/ρ

2−2R/ρ, i = 1, . . . , ρ. (30)

When kec = ρ, all entries of QT
ŝ ŝ are assigned with non-zero rate. The latter implies that dec(ρ,R) < λŝ,ρ,

which translates into

R > (1/2) log2

((
ρ∏

i=1

λŝ,i

)
/(λŝ,ρ)ρ

)
:= Rec. (31)

If R > max(Rce, Rec), then we have kce = N and kec = ρ. Additionally, we can easily obtain

∆ce = 2−2R/Nα1diag(λ−2
x,1, · · · , λ−2

x,N ), ∆ec = diag(2−2R/ρα2Iρ,0) (32)

where α1 := (
∏ρ

i=1 λx,i)
1/N (σ2)(N−ρ)/N and α2 := (

∏ρ
i=1 λŝ,i)

1/ρ. Since α1, α2, Qx, Qŝ, and {λx,i}N
i=1

do not depend on R, it follows readily that εce(R) = tr(ΣsxQx∆ceQT
x Σxs) = γ12−2R/N and εec(R) =

tr(Qŝ∆ecQT
ŝ ) = γ22−2R/ρ, where γ1, γ2 are constants, not dependent on R. ¤

D. Proof of Proposition 1

For the CE scheme, ∆ce = σ−2
x 2−2R = (h2σ2

s + σ2
n)−12−2R while the variance of s̃ce is σ2

s̃ce
=

Jo + (E[sx])2∆ce = σ2
s − h2σ4

s(σ
2
x)−1 + h2σ4

s∆ce; or, equivalently

σ2
s̃ce

= σ2
s − h2σ4

sσ
−2
x + h2σ4

s(h
2σ2

s + σ2
n)−12−2R. (33)
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Likewise, we have for the EC scheme that ∆ec = σ2
ŝ2
−2R = h2σ4

sσ
−2
x 2−2R, while σ2

s̃ec
= Jo + ∆ec, or,

σ2
s̃ec

= σ2
s − h2σ4

sσ
−2
x + h2σ4

s(h
2σ2

s + σ2
n)−12−2R. (34)

It then follows readily from (33) and (34) that σ2
s̃ce

= σ2
s̃ec

. ¤

E. Proof of Proposition 2

Using the vector model x = hs + n, we can easily verify that Λx = diag
(
σ2 + σ2

s‖h‖2, σ2, · · · , σ2
)

and Qx = [qx,1, · · · ,qx,N ], where qx,1 = (h/‖h‖). In the CE scheme, if dce(kce, R) ≥ σ2 then only

the first entry of QT
x x is assigned with positive rate; while if dce(kce, R) < σ2, then all the elements of

QT
x x are assigned with non-zero rate. Thus, kce can be either 1, or, N . When kce = 1, the rwf threshold

is given by dce(1, R) = (σ2
s‖h‖2 + σ2)2−2R. Because for kce = 1 we must have dce(1, R) ≥ σ2, we

deduce that

R ≤ (1/2) log2

(
1 + (σ2

s‖h‖2)/σ2
)

:= Rth. (35)

If R > Rth, we have kce = N and the threshold is dce(N, R) = (σ2
s‖h‖2+σ2)(1/N)

(
σ2

)(1−1/N) 2−2R/N ,

while the distortion term εce(R) = tr
(
ΣsxQx∆ceQT

x Σxs

)
is given by

εce(R) = tr(σ4
sh

TQx∆ceQT
x h) =





β2−2R, R ≤ Rth

β
(
σ2(σ2

s‖h‖2 + σ2)−1
)(1−1/N) 2−2R/N , R > Rth

(36)

where β = σ4
s‖h‖2(σ2

s‖h‖2 +σ2)−1. For the EC scheme, we obtain σ2
ŝ = σ4

sh
TQxΛ−1

x QT
x h = β. Since

in the EC scheme we compress the MMSE estimate ŝ, we have εec(R) = β2−2R, ∀ R. The result now

follows immediately after direct comparison of εce(R) with εec(R) when R ≤ Rt, and when R > Rt,

respectively. ¤

F. Proof of Proposition 3

From the matrix-vector model x = Hs+n, it follows immediately that Qx = Uh and Λx = diag(σ2
sσ

2
h,1+

σ2, · · · , σ2
sσ

2
h,ρ + σ2, σ2, · · · , σ2). The covariance of ŝ can be written as Σŝŝ = σ2

sVhΣT
h (σ2

sΣhΣT
h

+σ2I)−1ΣhVT
h . Furthermore, we can easily verify that Qŝ = Vh, and

Λŝ = diag
(
(σ4

sσ
2
h,1)(σ

2
sσ

2
h,1 + σ2)−1, · · · , (σ4

sσ
2
h,ρ)(σ

2
sσ

2
h,ρ + σ2)−1, 0, · · · , 0

)
.

Focusing on the CE scheme, we have ΣsxQx∆ceQT
x Σxs = σ4

sVhΣT
h ∆ceΣhVT

h and the trace of the

last matrix is εce(R) = σ4
s

∑ρ
i=1(σ

2
h,iD

ce
i )(σ2

sσ
2
h,i + σ2)−2. When kce = N , all the components in QT

x x

are assigned with non-zero rate and the rwf threshold is

dce(N, R) = Dce
i =

(
ρ∏

i=1

(σ2
sσ

2
h,i + σ2)

)1/N

(σ2)(N−ρ)/N2−2R/N , i = 1, . . . , N. (37)
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Notice also that dce(N, R) < σ2 implies

R > (1/2) log2

(
ρ∏

i=1

(1 + (σ2
sσ

2
h,i)σ

−2)

)
:= Rce. (38)

In the EC scheme, the trace of Qŝ∆ecQT
ŝ is equal to εec(R) = tr(∆ec) =

∑ρ
i=1 Dec

i . When kec = ρ,

the corresponding rwf threshold is given by

dec(ρ,R) = Dec
i =




ρ∏

j=1

(σ4
sσ

2
h,i)(σ

2
sσ

2
h,i + σ2)−1




1/ρ

2−2R/ρ, i = 1, . . . , ρ. (39)

The equality kec = ρ is satisfied when dec(ρ,R) < (σ4
sσ

2
h,ρ)(σ

2
sσ

2
h,ρ + σ2)−1, which yields the rate

constraint
R > (1/2) log2

(∏ρ
i=1 σ2

h,i(σ
2
h,iσ

2
s + σ2)−1

(σ2
h,ρ)

ρ(σ2
h,ρσ

2
s + σ2)−ρ

)
:= Rec. (40)

Notice that when R > max(Rce, Rec), we have kce = N, kec = ρ, while

εce(R) = σ4
sσ

22−2R/N (
ρ∏

j=1

((σ2
sσ

2
h,j)σ

−2 + 1))1/N
ρ∑

i=1

σ2
h,i(σ

2
sσ

2
h,i + σ2)−2, (41)

εec(R) = ρσ4
s2
−2R/ρ(

ρ∏

j=1

σ2
h,j(σ

2
sσ

2
h,j + σ2)−1)1/ρ. (42)

For N > ρ and after some algebraic manipulations, we conclude that for εce(R) > εec(R) to hold, we

must have

R > (1/2) log2(
ρ∏

i=1

(1 + (σ2
sσ

2
h,i)σ

−2)) + Nρ(2(N − ρ))−1 log2 γ := R̄, (43)

where

γ = (
ρ∏

i=1

σ2
h,i(σ

2
h,iσ

2
s + σ2)−2)1/ρ(ρ−1

ρ∑

i=1

(σ2
h,i(σ

2
h,iσ

2
s + σ2)−2))−1.

From the arithmetic mean-geometric mean inequality, we further deduce that γ ≤ 1, which in turn implies

that max(Rce, Rec) > R̄. Thus, εce(R) > εec(R), when N > ρ and R > max(Rce, Rec). When N = ρ,

it follows readily from (41) and (42) that if σh,i = σh for i = 1, . . . , ρ, then εce(R) = εec(R) ∀R;

otherwise, εce(R) > εec(R) ∀R. ¤

G. Proof of Theorem 2

Using the orthogonality principle, we can write s = ŝ + s̃, where s̃ is independent of x; thus

E[‖s− ŝR‖2] = E[‖ŝ− ŝR‖2] + E[‖s̃‖2] (44)

which stems directly from the fact that ŝ and ŝR are independent of s̃ since they are functions of x. In

order to arrive at (12), it suffices to show that I(x; ŝR) = I(ŝ; ŝR).

To this end, consider the SVD of Σsx = UsxSsxVT
sx, where Vsx is an N ×N unitary matrix. Further,

recall that ρ = rank(Σsx), and we define the N ×N matrix T := [(QT
ŝ,ρΣsxΣ−1

xx )T ,Vsx,N−ρ]T , where
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Vsx,N−ρ contains the last N − ρ columns of Vsx. Note, that VT
sx,N−ρΣ

T
sx = 0N−ρ×p. We will prove

by contradiction that T is invertible. Suppose that there exists an N × 1 nonzero vector u such that

uTT = 0T ; i.e., assume that u := [uT
1 uT

2 ]T satisfies

uT
1 QT

ŝ,ρΣsxΣ−1
xx + uT

2 VT
sx,N−ρ = 0T . (45)

If u1 = 0, or, u2 = 0, then (45) yields uT
2 VT

sx,N−ρ = 0T , or, uT
1 QT

ŝ,ρΣsxΣ−1
xx = 0T respectively. Note

that uT
2 VT

sx,N−ρ = 0T cannot be true for u2 6= 0 since VT
sx,N−ρ is a full row rank matrix. Similarly,

uT
1 QT

ŝ,ρΣsxΣ−1
xx = 0T requires uT

1 QT
ŝ,ρΣsx = 0T which is impossible for uT

1 6= 0T because the columns

of Qŝ,ρ are orthogonal to the nullspace of ΣT
sx. Consider next the case where both u1 and u2 are

nonzero. Upon defining u′1 := ΣT
sxQŝ,ρu1 and u′2 := Vsx,N−ρu2, it can be readily seen that u′1 and u′2

are orthogonal; while u′1 cannot be zero for u1 6= 0, since the columns of Qŝ,ρ are orthogonal to the

nullspace of ΣT
sx. Thus, from (45) we arrive at

(u′1)
TΣ−1

xx + (u′2)
T = 0 (46)

which further implies that (u′1)
TΣ−1

xx u′1 = 0. Since Σxx is full rank the latter leads to a contradiction

which establishes that T is invertible.

Upon multiplying T with the observation vector x, we obtain

Tx = [(QT
ŝ,ρΣsxΣ−1

xx x)T (VT
sx,N−ρx)T ]T = [(QT

ŝ,ρŝ)
T (VT

sx,N−ρx)T ]T (47)

where the second inequality in (47) holds because ŝ = ΣsxΣ−1
xx x. Further, the cross-correlation matrix

of QT
ŝ,ρŝ with VT

sx,N−px, is given by

QT
ŝ,ρE[ŝxT ]Vsx,N−ρ = QT

ŝ,ρΣsxVsx,N−ρ = 0ρ×N−ρ. (48)

The uncorrelatedness in (48) implies that the Gaussian vectors QT
ŝ,ρŝ and VT

sx,N−ρx are independent.

Using the invertibility of T, we obtain

I(x; ŝR) = I(Tx; ŝR) = I(VT
sx,N−ρx; ŝR) + I(QT

ŝ,ρŝ; ŝR|VT
sx,N−ρx).

Now, the optimal estimate ŝR can be independent of VT
sx,N−ρx without affecting the distortion, since

the second is uncorrelated with s and does not contain any information relevant to the estimation of s;

thus, we have that I(ŝR;VT
sx,N−ρx) = 0. Since QT

ŝ,ρŝ and VT
sx,N−ρx are independent, we obtain that

I(QT
ŝ,ρŝ; ŝR|VT

sx,N−px) = I(QT
ŝ,ρŝ; ŝR), which implies that

I(x; ŝR) = I(QT
ŝ,ρŝ; ŝR) = I(QT

ŝ,ρŝ; ŝR) + I(QT
ŝ,p−ρŝ; ŝR|QT

ŝ,ρŝ) = I(QT
ŝ ŝ; ŝR) = I(ŝ; ŝR) (49)

where the second equality in (49) holds because QT
ŝ,p−ρŝ offers no information for estimating s, and ŝR

and QT
ŝ,ρŝ are independent of QT

ŝ,p−ρŝ. ¤
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H. Proof of Equation (15)

After expressing Σ−1
ψψ in terms of Σx1x1 ,Σx1u2 ,Σu2u2 we find that

L1 =
(
Σsx1 −Σsu2Σ

−1
u2u2

Σu2x1

) (
Σx1x1 −Σx1u2Σ

−1
u2u2

Σu2x1

)−1
. (50)

Let rank(H1) = ρ1 and consider the SVD H1 = Uh1Σh1V
T
h1

. Also, let Uh1 := [Uh1,ρ1
Uh1,N1−ρ1

] and

Σh1,ρ1 denote the upper left ρ1 × ρ1 diagonal submatrix of Σh1 which contains the ρ1 positive singular

values of H1. Based on these definitions, we can re-express the matrices inside the parentheses in (50)

as
Σsx1 −Σsu2Σ

−1
u2u2

Σu2x1 = (Σss −Σsu2Σ
−1
u2u2

Σu2s)H
T
1

= (Σss −Σsu2Σ
−1
u2u2

Σu2s)Vh1,ρ1Σh1,ρ1U
T
h1,ρ1

(51)

and

Σx1x1 −Σx1u2Σ
−1
u2u2

Σu2x1 = Uh1,ρ1Σh1,ρ1V
T
h1,ρ1

(Σss −Σsu2Σ
−1
u2u2

Σu2s)Vh1,ρ1Σh1,ρ1U
T
h1,ρ1

+ σ2Uh1U
T
h1

= Uh1diag(Ω, σ2IN1−ρ1)U
T
h1

(52)

where Ω := Σh1,ρ1V
T
h1,ρ1

(Σss−Σsu2Σ
−1
u2u2

Σu2s)Vh1,ρ1Σh1,ρ1 +σ2Iρ1 . Upon substituting (51) and (52)

into (50), we obtain

L1 = (Σss −Σsu2Σ
−1
u2u2

Σu2s)Vh1,ρ1Σh1,ρ1Ω
−1UT

h1,ρ1
. (53)

To proceed, we assume that rank(Σss−Σsu2Σ
−1
u2u2

Σu2s) = p. If this is not the case, we can use instead

as side information the random vector ũ2 = u2 + ṽ, where ṽ is white noise with very small power. In

so doing, we ensure that rank(L1) = ρ1 and range(LT
1 ) = span(Uh1,ρ1). The next step is to show that

I(x1;u1) = I(L1x1;u1). To this end, let L1Σx1x1L
T
1 = QL1ΛL1Q

T
L1

be the eigenvalue decomposition

of the matrix L1Σx1x1L
T
1 . As in Appendix G, we will consider the N1 × N1 invertible matrix T1 =

[(QT
L1,ρ1

L1)T Uh1,N1−ρ1 ]
T . Multiplying T1 with x1, we obtain T1x1 = [(QT

L1,ρ1
L1x1)T (UT

h1,N1−ρ1
n1)T ]T ;

and based on the latter, we obtain

I(x1;u1) = I(T1x1;u1)

= I(QT
L1,ρ1

L1x1,UT
h1,N1−ρ1

n1;u1)

= I(UT
h1,N1−ρ1

n1;u1) + I(QT
L1,ρ1

L1x1;u1|UT
h1,N1−ρ1

n1)

= I(QT
L1,ρ1

L1x1;u1) (54)

where (54) follows because: (i) vectors UT
h1,N1−ρ1

n1 and QT
L1,ρ1

L1x1 are independent; and (ii) u1 can

also be independent of UT
h1,N1−ρ1

n1 without affecting the resulting distortion. Evaluating (54) in terms
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of the mutual information I(L1x1;u1), we find

I(L1x1;u1) = I(QT
L1

L1x1;u1)

= I(QT
L1,ρ1

L1x1;u1) + I(QT
L1,p−ρ1

L1x1;u1|QT
L1,ρ1

L1x1)

= I(QT
L1,ρ1

L1x1;u1) + h(u1|QT
L1,ρ1

L1x1)− h(u1|QT
L1,ρ1

L1x1,QT
L1,p−ρ1

L1x1)

= I(QT
L1,ρ1

L1x1;u1) (55)

where (55) follows since QT
L1,p−ρ1

L1x1 does not convey additional information about u1, beyond what

is provided by QT
L1,ρ1

L1x1. Combining (54) and (55), we conclude that I(x1;u1) = I(L1x1;u1). ¤
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