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Abstract� We consider the linear coding of a discrete memory-
less Gaussian source transmitted through a discrete memoryless
fading channel with additive white Gaussian noise (AWGN).
The goal is to minimize the mean squared error (MSE) of the
source reconstruction at the destination subject to an average
power constraint imposed on the channel input symbols. We
show that among all single-letter (or symbol-by-symbol) codes,
linear coding achieves the smallest MSE, and is thus optimal.
But when block length increases, the linear coding still shares
the same performance with the single-letter coding, and thus can
not approach the Shannon's bound. In spite of the suboptimality,
the performance loss of linear coding compared to the optimal
coding can be quantitively bounded in terms of the variance of
the fading gain and the average transmit power. We also show
that for linear coding, when there is no transmitter channel state
information (CSI), uniform power allocation is optimal, and in
the presence of transmitter CSI, the optimal power allocation
can be analytically solved in terms of the channel fading gains
and the average power budget.

I. INTRODUCTION

Shannon has shown in [1, Theorem 21] that in a point-to-
point link, when a discrete memoryless source is transmitted
through a discrete memoryless channel, the optimal tradeoff
between (channel input) cost and (source reconstruction) dis-
tortion can be achieved by separate source and channel coding.
Despite its conceptual beauty, in practice, to approach the
optimal pair of cost and distortion, the separate source and
channel coding leads to high complexity and long delay when
block length increases.

Although joint source-channel coding does not have the sep-
aration property, it sometimes can lead to simple but optimal
coding strategy. A well-known example is when a memory-
less Gaussian source transmitted through an AWGN channel,
an amplify and forward transmission strategy achieves the
optimal power-distortion tradeoff [2], [3]. The perfect match
between the source and channel leads to a very simple but
optimal coding strategy which is both theoretically and prac-
tically appealing. Unfortunately, when source and channel do
not come up with such a natural match, the simple but optimal
coding is not easy to �nd. In this work, we study the case when
the source is still Gaussian but there is fading in the channel.
In such a source-channel communication system, we analyze
the performance of a class of linear coding where the encoder
simply maps the source symbols into the channel symbols by
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a linear mapping. We focus on the following questions: How
optimal is the linear coding? Can linear coding achieve the
Shannon's bound when block length increases? If not, how
can the performance loss be bounded?

Speci�cally, we consider a memoryless Gaussian source
{S(t) : t ∈ Z+} which has instantaneously distribution
N(0, σ2

S), and is transmitted through a discrete memoryless
fading channel

Y (i) = h(i)X(i) + W (i), i = 1, 2, . . . ,

where
i. W (i) are AWGN with unitary variance,

ii. h(i) are i.i.d. fading with known distribution h.

Sn Xn Y n Ŝn

PS(s) PY |X(y|x)f (n) g(n)

Fig. 1. A source-channel coding system where f (n) and g(n) are
encoder and decoder respectively.

A general source-channel coding scheme of block length
n is depicted in Fig. 1, where we adopt the notation Un def=
(U(1), U(2), . . . , U(n)) for any random vector {U(i) : i ∈
Z+}. The encoder f (n) maps source symbols Sn to channel
input symbols Xn. In this problem, we consider the transmit
power consumption and de�ne P (i) def= E(|X(i)|2). The
decoder g(n) generates estimates of the source symbol based
on the received signals Y n, where the mean square error
(MSE) is adopted to be the performance criterion. Speci�cally,
we de�ne the instantaneous MSE D(i) def= E(|S(i)− Ŝ(i)|2).

For any power-distortion pair (P, D), we say (P,D) is
admissible if there are coding schemes (f (n), g(n)) satisfying
the average power constraint

lim
n→∞

1
n

n∑
t=1

Pi ≤ P, (1)

and the achieved average MSE

lim
n→∞

1
n

n∑

i=1

Di ≤ D. (2)

When we limit f (n) to the class of linear encoding, the
encoder is then an n×n matrix which maps the source symbols
Sn to channel input symbols Xn. The optimal decoder is the
mean square error estimator (MMSE) estimating Sn based on
Y n. In next section, we analyze the performance of linear



coding and answer the three questions we proposed at the end
of the second paragraph.

II. LINEAR CODING

In this section we study the linear coding for the source-
channel problem in Fig. 1. The analysis is divided into two
cases: n = 1 or n ≥ 2. We assume that there is receiver
channel state information (CSI), i.e., the realization of h(i) is
known by the decoder.

S(i)−→ f(i) −→X(i)−→ channel −→Y (i)−→ g(i) −→Ŝ(i)

Fig. 2. A linear coding system with block length n = 1.

A. Linear Coding with Block Length n = 1

The source-channel coding system of block length n = 1
is given in Fig. 2. In this case, the encoders are simply
scalar multipliers f(i) which scale S(i) to satisfy the power
constraint. Since P (i) = E(|X(i)|2), the encoder is given as

X(i) =

√
P (i)
σ2

s

S(i). (3)

The decoder is the MMSE estimator

Ŝ(i) = E(S(i)|Y i) = E(S(i)|Y (i)) =
P (i)|h(i)|2

P (i)|h(i)|2 + 1
Y (i),

(4)
which is also linear. It is easy to calculate that with power
constraint P (i), the instantaneous MSE

D(i) def= E(|S(i)− Ŝ(i)|2) = σ2
SEh(i)

{
1

1 + |h(i)|2P (i)

}

= σ2
SEh

{
1

1 + |h|2P (i)

}
. (5)

Without limiting {f(i), g(i)} to the class of linear functions,
{f(i), g(i)} can be any functions that map S(i) → X(i) and
Y (i) → Ŝ(i) respectively. However, we have the following
theorem for the optimality of linear encoding among all single-
letter codes.

Theorem 1: Assume the power allocation P (i) is given
for all i. Then among all single-letter (or symbol-by-symbol)
codes, the linear coding given in (3)-(4) is optimal.

Before proving the above theorem, we need the following
lemma.

Lemma 2: Let S be a Gaussian random variable with vari-
ance σ2

S , and Ŝ be any random variable jointly distributed with
S. Then

E(|S − Ŝ|2)
σ2

S

≥ exp
(
−2I(S; Ŝ)

)
.

Proof: We have the following chain of inequalities:

I(S; Ŝ) = h(S)− h(S|Ŝ)
= h(S)− h(S − Ŝ|Ŝ)
≥ h(S)− h(S − Ŝ)

≥ h(S)− 1
2

log
(
2πeE(|S − Ŝ|2)

)

=
1
2

log(2πeσ2
S)− 1

2
log

(
2πeE(|S − Ŝ|2)

)

=
1
2

log
σ2

S

E(|S − Ŝ|2) .

The proof is thus complete.
Proof of Theorem 1: For any single-letter codes {f(i), g(i)}

with X(i) = f(S(i)) and Ŝ(i) = g(Y (i)), we have the
following Markov chain for any i:

S(i)−→X(i)−→Y (i)−→Ŝ(i).

It follows from the data processing inequality that

I(S(i); Ŝ(i)) ≤ I(X(i); Y (i)) ≤ 1
2

log(1+ |h(i)|2P (i)). (6)

Combing (6) and Lemma 2, we obtain that

E
(
|S(i)− Ŝ(i)|2

∣∣∣ h(i)
)
≥ σ2

S exp
(
−2I(S(i); Ŝ(i))

)

≥ σ2
S

1 + |h(i)|2P (i)
.

Therefore,

E(|S(i)− Ŝ(i)|2) = Eh(i)

{
E

(
|S(i)− Ŝ(i)|2

∣∣∣ h(i)
)}

≥ σ2
SEh(i)

{
1

1 + |h(i)|2P (i)

}
.

It is easy to see that the equality is obtained by linear coding
(c.f. (5)). Therefore among all single-letter codes, linear coding
is optimal.

We have shown the optimality of linear codes among all
single-letter codes when the power allocation {P (i) : i ∈ Z+}
is given. Since only an average power constraint is imposed
on the channel input symbols, we can potentially perform
power allocation (along the time index i) to optimize the
performance. We have the following theorem for the optimal
power allocation.

Theorem 3: When there is no transmitter CSI, uniform
power allocation is optimal. The achieved MSE

Dl(P ; no Tx CSI) = σ2
SEh

{
1

1 + |h|2P
}

. (7)

When there is transmitter CSI, i.e., the realization of h(i) is
known by the encoder, then the optimal power allocation is
given by

P (i)∗ =
1

|h(i)|
(

µ− 1
|h(i)|

)+

,

where µ is a common threshold for all h(i), and is decided
by the average power constraint P and the statistics of h
(c.f. (15)). The corresponding achieved MSE is given in (16).

The proof of Theorem 3 is given in the Appendix.

B. Linear Coding of Finite Block Length
In this section we consider the linear coding with block

length n ≥ 2. The encoder is given by a n×n matrix F , and
the decoder is the MMSE decoder (see Fig. 3). Let ΩS

def=
E(S(n)S(n)T

), and H
def= diag(h(n)), then we have

X(n) = FS(n),



S(n)−→ F −→X(n)−→ channel −→Y (n)−→ MMSE −→Ŝ(n)

Fig. 3. A linear coding system with block length n ≥ 2.

Y (n) = X(n) + W (n) = HFS(n) + W (n),

Ŝ(n) =
(
HFΩSFT HT + I

)−1
HFΩSFT HT Y (n).

The achieved MSE, in terms of the encoding matrix F and
channel matrix H , can be expressed as:

D(F,H) def=
1
n

tr
{

E
(
(S(n) − Ŝ(n))(S(n) − Ŝ(n))T

)}

=
1
n

tr
{(

HFΩSFT HT + I
)−1

ΩS

}
. (8)

The power constraint implies

tr(FΩSFT ) ≤ nP.

Thus, introducing Q = FFT , and noticing ΩS = σ2
SI , we

can solve the following problem to obtain the optimal Q∗, and
get the optimal encoding matrix F ∗:

min EH

{
tr

(
HQHT + σ−2

S I
)−1

}
(9)

s. t. tr(Q) ≤ nP

σ2
S

.

To solve (9), we quote the following two lemmas in matrix
algebra [4] without proof.

Lemma 4: For any square matrix R Â 0, it holds that
tr(R−1) ≥ ∑n

i=1 R−1
ii , and equality holds iff R is diagonal.

Lemma 5: For any square matrices A and B, it holds that
tr(I + AB)−1 = tr(I + BA)−1.

We have the following theorem regarding the performance
of linear coding when block length n increases.

Theorem 6: For the source-channel coding of a Gaussian
source transmitted through an AWGN fading channel, any
linear coding with �nite block length can be performed in
single-letter form without performance loss.

Proof: To solve (9), we �rst apply Lemma 4 and obtain
tr

(
HQHT + σ−2

S I
)−1

= tr
(
QHT H + σ−2

S I
)−1 for any H .

Then by Lemma 5, we obtain

tr
(
QHT H + σ−2

S I
)−1 ≥

n∑

i=1

1
Qii|h(i)|2 + σ−2

S

, (10)

where equality holds iff Q is diagonal. Therefore, the optimal
solution gives diagonal Q∗ = FFT . Thus, any F ∗ =

√
Q∗U

where U is unitary is an optimal solution. Speci�cally, if we
take U = I , we can obtain a diagonal F ∗. So any linear coding
can be achieved in a single-letter form without performance
loss.

C. Comparison of the Performance of Linear Coding with the
Shannon's Bound

In this section we compare the performance of linear coding
with the Shannon's bound, which is the theoretical benchmark.
According to the separation theorem, the Shannon's bound
can be obtained by combining the rate-distortion function and

channel capacity. In the rest of this paper we consider the case
when there is receiver CSI only. The analysis for the case with
transmitter CSI can be done analogously.

The rate-distortion function of a memoryless Gaussian
source with variance σ2

S is

R(D) =
1
2

log+ σ2
S

D
. (11)

Combining it with the channel capacity (when there is receiver
CSI only and the average power constraint is P )

C(P ) = Eh

{
1
2

log(1 + |h|2P )
}

,

we obtain that the best achievable distortion in terms of P is

D∗(P ; no Tx CSI) = σ2
S exp

(
Eh

{
log

1
1 + |h|2P

})
. (12)

Recalling (7), it is easy to see that Dl(P ; no Tx CSI) ≥
D∗(P ; no Tx CSI) from concavity of the log-function. The
equality holds iff

Eh

{
log

1
1 + |h|2P

}
= log

(
Eh

{
1

1 + |h|2P
})

,

which is equivalent to claiming that 1/(1 + |h|2P ), or |h|2 is
a constant.

Therefore, we see that linear coding is optimal only if h ≡
± c when h is real, or h is distributed on a circle when h is
complex. For all other cases, linear coding is suboptimal, and
can not achieve Shannon's bound. In what follows, we bound
the performance gap in terms of P and the statistic of h.

Theorem 7: When there is no transmitter CSI, the MSE
performance of linear coding can be bounded away from the
theoretically best achievable MSE (i.e., the Shannon's bound)
as follows:

0 ≤ γ(P, h) ≤ P
√

Var(|h|2),
where

γ(P, h) def=
Dl(P )−D∗(P )

D∗(P )
,

and for simplicity, Dl(P ) := Dl(P ; no Tx CSI); D∗(P ) :=
D∗(P ; no Tx CSI).

Proof: Introducing h0 =
√

E(|h|2), then from (12) we
obtain

D∗(P ) = σ2
S exp

(
Eh

{
log

1
1 + |h|2P

})

≥ σ2
S

1
1 + h2

0P

def= D0(P ).

Notice that the right term in the above formula is the best
achievable performance when channel is AWGN with the same
average path gain, thus it is a natural performance bound for
the fading case. Recalling (7), we obtain

0 ≤ γ(h, P ) =
Dl(P )−D∗(P )

D∗(P )
≤ Dl(P )−D0(P )

D0(P )

= Eh

{
(h2

0 − |h|2)P
1 + |h|2P

}
≤ Eh

{||h|2 − h2
0|P

}

= P
√

Var(|h|2).
The proof is complete.
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Fig. 4. MSE performance as P or Var(|h|2) increases. In the top
plot, we assume h is Rayleigh fading with Var(|h|2) = 1, but the
transmit power P increases. In the bottom plot, we assume P=15dB,
and h is Rician fading with increasing variance Var(|h|2) (by taking
different Rician factors).

III. NUMERICAL RESULTS

From Theorem 7 we can see that if the performance of linear
coding is close to Shannon's bound the product P

√
Var(|h|2)

is small. Thus the linear coding is well suited for the source-
channel communication applications in an energy-constrained
network (which includes the wireless sensor network as an
example) [5], where the stringent power constraint usually
leads to small transmit power budget P . In what follows, we
show some plots to demonstrate the performance gap of linear
coding compared to the Shannon's bound for different fading
distributions and power budget.

The plot of the MSE performance in the case of Rayleigh
fading with increasing power (when the fading distribution h is
�xed), or Rician fading with increasing variance (when power
P is �xed) are plotted in Fig. 4. We can see that when either
the transmit power or the variance of fading gain is relatively
small, the MSE performance gap is negligible. In Fig. 5,
we numerically examine the behavior of the gap coef�cient
γ(P, h) for different fading distributions. We conclude that
the gap coef�cients γ(P, h) from both theory and experiments
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Fig. 5. Performance gap of linear coding compared to the Shannon's
bound. The red curves are the universal bound of the gap γ(P, h)
given in Theorem 7 for all possible distributions. In addition, in the
top plot, we assume P = 0dB, and h is Rician fading with increasing
Var(|h|2) (by taking different Rician factors); in the bottom plot, we
assume P = 0dB, and h is on-off fading with increasing Var(|h|2).

are small (¿ 1).

IV. CONCLUSION AND FUTURE WORK

We have studied the performance linear coding of a discrete
memoryless Gaussian source transmitted through a discrete
memoryless fading channel. We show that linear coding is
optimal among all single-letter codes, but the performance of
linear coding can not be improved by increasing the block
length. Thus, in general, the linear coding can not achieve the
Shannon's bound unless the magnitude of the fading gain is
a constant. We bound the performance gap of linear coding
from the optimal coding in terms of the variance of the fading
gain and transmit power budget. Both theoretical analysis and
simulation show that the gap is negligible if either transmit
power is or the variance of fading gain is relatively small.

As future directions, we plan to investigate simple joint
source-channel codes that can approach or obtain the Shan-
non's bound for transmission of Gaussian sources through
the fading channels. We have shown in this paper that linear
coding is suboptimal, thus, other simple but optimal coding



schemes need to be proposed. We have also shown that linear
coding is optimal among all single-letter codes. In general, it
is worthwhile to �nd the best coding schemes among source-
channel codes with �xed block length. We are interested in
characterizing necessary/suf�cient conditions for such coding
schemes for general source-channel pairs.

APPENDIX: OPTIMAL POWER LOADING

We �rst show that uniform power allocation is optimal when
there is no transmitter CSI. Suppose P is the average power
budget. The mean square distortion averaged over time is

E(|S − Ŝ|2) def= lim
n→∞

1
n

n∑

i=1

E(|S(i)− Ŝ(i)|2

= lim
n→∞

1
n

n∑

i=1

Eh(i)

{
σ2

S

1 + |h(i)|2P (i)

}

= lim
n→∞

1
n

n∑

i=1

Eh

{
σ2

S

1 + |h|2P (i)

}

≥ σ2
SEh

{
1

1 + |h|2P
}

,

where the last step is due to the convexity of the function
Eh

{
σ2

S

1+|h|2P (i)

}
in terms of P (i), and the equality holds iff

P (i) = P for all i. Thus when there is no transmitter CSI,
uniform power allocation is optimal, and the corresponding
achieved MSE

Dl(P ; no Tx CSI) = σ2
SEh

{
1

1 + |h|2P
}

. (13)

If there is CSI at the transmitter, the optimal power loading
(along the time i) is not uniform anymore. Instead, the
power can be loaded according to the CSI to achieve better
distortion performance. Suppose when the channel state is h,
the corresponding power loading is P (h). Then the achieved
average distortion is

D = Eh

{
σ2

s

1 + |h|2P2(h)

}
.

The optimal power loading P ∗(h) can be solved from the
following problem.

min Eh

{
σ2

s

1 + |h|2P2(h)

}

s.t. Eh{P (h)} = P, P (h) ≥ 0.

Due to the concavity of the function σ2
s

1+|h|2P2(h) in terms of
P (h), we obtain that for all h that have the same magnitude,
the optimal power loading P ∗(h) should also be the same, i.e.,
P ∗(h) is only a function of |h|. We thus can do the power
loading according to |h| without loss of optimality. If |h| has
�nite states, assuming P (|h| = gi) = fi, i = 1, 2, . . . , L, we
have

min
L∑

i=1

σ2
s

1 + g2
i Pi

fi

s.t.
L∑

i=1

Pifi = P, Pi ≥ 0.

The Lagrangian is

G(P, µ, λ)=
L∑

i=1

σ2
s

1 + g2
i Pi

fi + µ

(
L∑

i=1

Pifi − P

)
−

L∑

i=1

λiPi.

We obtain the following Karush-Kuhn-Tucker (KKT) condi-
tions [6]:

∂G

∂Pi
= − σ2

sg2
i

(1 + g2
i Pi)2

fi + µfi − λi = 0,

Piλi = 0, i = 1, 2, . . . L,
L∑

i=1

Pifi = P.

For all those Pi 6= 0, we have λi = 0, and σ2
sg2

i

(1+g2
i Pi)2

= µ.

Therefore,

P ∗i =
1
gi

(
µ− 1

gi

)+

,

where µ is a common threshold for all states, and can be
solved from

L∑

i=1

P ∗i fi =
L∑

i=1

1
gi

(
µ− 1

gi

)+

fi = P.

If |h| has a non-discrete pdf, then by discretizing the pdf and
taking the limit, we can obtain

P ∗(|h|) =
1
|h|

(
µ− 1

|h|
)+

, (14)

where µ is solved from
∫ ∞

0

P ∗(|h|)f(|h|)d|h| =
∫ ∞

1
µ

1
|h|

(
µ− 1

|h|
)

f(|h|)d|h|

= P. (15)

With this power allocation strategy, the achieved average MSE

Dl(P ; with Tx CSI) = σ2
SEh

{
1

1 + |h|2P ∗(|h|)
}

. (16)

REFERENCES

[1] C. E. Shannon, �A mathematical theory of communication,� Bell System
Technical Journal, vol. 27, pp. 379-423, 623-656, 1948.

[2] T. J. Goblick, �Theoretical limitations on the transmission of data from
analog sources,� IEEE Transactions on Information Theory, vol. 11, pp.
558-567, Oct. 1965.

[3] M. Gastpar, B. Rimoldi, and M. Vetterli, �To code, or not to code:
lossy source channel communication revisited�, IEEE Transactions on
Information Theory, Vol. 49, pp. 1147-1158, May 2003.

[4] K. M. Abadir, Matrix algebra, Cambridge University Press, New York,
2005.

[5] A. J. Goldsmith and S. B. Wicker, �Design challenges for energy-
constrained ad hoc wireless networks,� IEEE Wireless Communication
Magazine, pp. 8-27, Aug. 2002.

[6] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge Univ.
Press, Cambridge, U.K., 2003.


