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Abstract— Abstract

I. INTRODUCTION

Cognitive radios [1]–[4] are encouraging solutions to im-
prove the utilization of the radio spectrum. The main idea in
cognitive radio is to periodically monitor the radio spectrum,
intelligently detect occupancy in the different parts (channels)
of the spectrum and then opportunistically communicate over
unused channels (spectrum holes) with minimal interference to
the active licensed (primary) users. Cognitive radio, however,
is still an emerging technology and faces a number of chal-
lenges in how the radio learns and adapts to the local spectral
activity at each end of the cognitive link.
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Fig. 1: Different Perspectives on Local Spectral Activity at
Cognitive Radio Transmitter T and Receiver R

Due to the physical separation of the secondary1 transmitter
and receiver, the spectral holes sensed by the transmitter may
not be identical to those sensed by the receiver. Consider
the conceptual depiction of a cognitive radio link shown in
Figure 1. The white nodes marked T and R represent the
cognitive radio transmitter and receiver respectively while the
black nodes marked A, B and C are primary users occupying
different parts of the spectrum. The dotted regions around the
cognitive radio transmitter and receiver are the boundaries of
the respective sensing regions - spectral activity can only be
sensed within these regions. Because of the different sensing
regions at the secondary transmitter and the receiver, the
communication opportunities detected at the transmitter T and
receiver R are in general correlated but may not be identical
[5]. As the primary user activity changes with time, such
opportunities have to be re-evaluated periodically. We use the
term distributed to indicate the different views of local spectral
activity at the cognitive transmitter T and receiver R. The term
‘dynamic’ refers to the time varying nature of the problem.

1Opportunistic access is only used by the cognitive (secondary) users in
the system.

Following the
Once the detection of the spectral holes is complete, the

secondary transmitter picks one of the holes (if any) and
exploits it for secondary communication. Similarly at the
cognitive receiver, one of the spectral segments identified to
be locally free is chosen to be monitored for secondary trans-
missions. Due to the distributed nature of the cognitive link,
any communication scheme between the secondary transmitter
and receiver is faced with two important issues:

1) Matching problem: Are the spectral holes chosen
for communication by the transmitter and the receiver
matched ? In other words, is the spectral segment picked
by the secondary transmitter the same as that chosen to
be monitored at the cognitive receiver ?

2) Tracking problem: If the transmitter and the receiver are
indeed matched to the same spectral segment, does the
cognitive receiver know that they are matched ?

These issues necessitate a handshake between the transmit-
ter and the receiver before the beginning of communication.
Such a handshake is associated with two overheads - one
on the forward link from the transmitter to the receiver
and the other, on the reverse link from the receiver to the
transmitter. Notice that the two overheads are closely linked
to the matching problem and the tracking problem.

An obvious solution to eliminate both the overheads is to
have an ‘offline’ scheme where a pre-determined sequence of
frequency bands is known to both the secondary transmitter
and receiver. During any time slot n, the secondary transmitter
monitors the nth frequency band in the sequence, fn and uses
it for communication if it is primary user free. The receiver
is always matched with the transmitter because it monitors
the same frequency segment fn for secondary transmissions.
The drawback of the offline scheme is that it does not take
advantage of the real-time ‘online’ information obtained about
the channel at the cognitive receiver. For example, consider a
scenario where the primary users’ transmissions are long and
infrequent, i.e. the primary users’ occupancy is characterized
by extended periods of activity followed by long periods where
the primary user is inactive. Channels (frequency bands) that
are free in a particular time slot are therefore more likely to be
unoccupied even in the next time slot. Since the offline scheme
does not allow the secondary transmitter to stay in the same
channel for more than one time slot, frequency bands that are
free are not reused. In this light, we note that it may be possible
to use occupancy information of the past to predict current
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Fig. 2: Part (A) illustrates the system model. RS denotes a random source. At the time instant considered, we have S1
PU (n) = 0,

S2
PU (n) = 1, ST (n) = 2 and SR (n) = 2. Part (B) shows the Markov chain for the primary user occupancies S1

PU (n) and
S2

PU (n) in the two channels. Part (C) is the Q-ary symmetric channel.

occupancies, identify more communication opportunities and
consequently perform better despite the overheads involved.

In order to evaluate the cost of the overhead information and
to determine the benefits of these overheads to the cognitive
user, a capacity perspective would be immensely helpful.
Our goal in this paper is to characterize the fundamental
limitations on the capacity of the cognitive user in a distributed
environment. We begin with the system model in Section II.

II. SYSTEM AND CHANNEL MODEL

Our system model is defined on a spectrum pool consisting
of L channels assigned for use to different primary users.
For simplicity of exposition, we will only deal with L = 2
channels in this work - analysis of cases where L ≥ 2 will
be postponed to [6]. We consider a secondary (cognitive)
transmitter-receiver pair trying to communicate with one an-
other using the two channels as shown in Figure 2 (A).

1) Channel Availability Model: The primary user occupan-
cies on the two channels at time n are collected in the binary
random processes S1

PU (n) ∈ {0, 1} and S2
PU (n) ∈ {0, 1}.

A value of Sl
PU (n) = 0 indicates that a primary user is

actively transmitting on channel l at time n. Similarly, a value
of Sl

PU (n) = 1 implies that channel l is free for secondary
transmissions. We model the occupancy processes S1

PU (n)
and S2

PU (n) with independent and identical Markov chains
as shown in Figure 2 (B).

2) Cognitive Transmitter:: The secondary transmitter mon-
itors the two channels every time slot to determine whether or
not it is in use by the primary radios. When one or more of the
two channels is/are deemed temporally unoccupied, it chooses
one of the available channels for secondary transmissions.
If neither of the two channels is detected to be free, the
secondary transmitter does not transmit and goes to the idle
state. Therefore in any time slot the cognitive transmitter is
in one of three states - it is idle (no transmission), transmits
on channel 1 or transmits on channel 2. We capture this state
information in the variable ST (n) ∈ {0, 1, 2}.

3) Input Alphabet and Probability of error: The input
alphabet used by the cognitive transmitter is assumed to be
a Q-ary constellation with equiprobable symbols. We further
assume that the two channels are Q-ary symmetric with a
symbol error probability of ε as shown in Figure 2 (C). The
discrete symmetric channels can be thought of as arising due
to hard decision decoding at the secondary receiver. ε is a
function of the constellation size Q and the constellation power
used at the secondary/primary transmitters.

4) Cognitive Receiver: The secondary receiver, at any given
time, is only able to scan a single channel for secondary
transmissions. It picks the channel which it considers will
be used by the secondary transmitter in the next time slot
and then listens to the corresponding frequency for secondary
transmissions. We represent the receiver state at time n, i.e.
the channel the receiver chooses to monitor during time slot
n, by the variable SR (n) ∈ {1, 2}.

For simplicity of analysis, we make the optimistic assump-
tion that during each time slot, the secondary transmitter and
receiver have accurate information of the presence/absence of
primary users in both the channels in their local vicinities,
i.e., no errors are made in the detection of spectral holes. We
analyze and discuss the effect of missed detection and false
alarm [7] on the capacity in [6].

We denote the symbol transmitted from the cognitive trans-
mitter (if any) at time n by X (n) and the corresponding signal
received by Y (n). When the transmitter and receiver states
are matched (ST (n) = SR (n)), Y (n) and X (n) are related
through the probability of error distribution dictated by the Q-
ary symmetric channel (QSC) model. On the other hand, when
ST (n) 6= SR (n) (includes ST (n) = 0), the cognitive receiver
only sees random signals (if the primary user is transmitting)
or noise - both of which we assume are demodulated to one
of the Q constellation symbols with equal likelihood.

The transmitter only has knowledge of its state ST (n)
and similarly the receiver only about its own state SR (n).



Communication during time slot n is feasible only if the sec-
ondary transmitter state matches that of the secondary receiver,
i.e., ST (n) = SR (n). The receiver, therefore, has to track
the transmitter state before it can monitor the corresponding
channel and then decode the received signals.

III. CAPACITY PERSPECTIVE

In a single user point-to-point scenario with different causal
side information at the transmitter and the receiver, the system
capacity is the solution to the following optimization problem
[8]:

C = max
pu(U), X=f(U ; ST )

I (U ; Y, SR) , (1)

where X and Y represent the input and the output, ST

and SR denote the side information at the transmitter and the
receiver and U is an auxiliary random variable independent of
ST . The basic premise of the capacity definition of equation
(1) is that the channel definition Prob [Y, SR |X, ST ] is
known.

One might be tempted to use equation (1) to determine
the capacity of the cognitive link in the system model of
Section II. However, it should be noted that the channel
definition Prob [Y (n) , SR (n) |X (n) , ST (n) ] in the model
is not complete because it critically depends on the following:
• Transmitter strategy: The strategy used at the transmit-

ter to choose the channel for transmission when more
than one spectral hole is detected.

• Receiver strategy: The strategy used at the receiver to
track the transmitter state ST (n).

Consequently equation (1) cannot be used for our purposes2.
In the sequel, we assume that the transmitter strategy is

known. Note, however, that this assumption does not simplify
our problem - since the receiver strategy is not known, to
apply equation (1) warrants a maximization of the mutual
information over all possible receiver strategies. This is math-
ematically intractable and consequently we discount bounding
the system capacity by the conventional mutual information
optimization. We approach the problem instead through the
notion of matching probability which, as we show, can be
used to bound the system capacity given only the transmitter
strategy.

We define the matching probability α as the average fraction
of time the secondary transmitter and receiver are, as the name
implies, matched to the same channel, i.e.,

α = lim
N→∞

∑N
n=1 I [ST (n) = SR (n)]

N
, (2)

where N is the codeword duration and I [· ] denotes the
indicator function. If both the transmitter and the receiver
strategies are known, the computation of the matching proba-
bility α is straightforward. However, as we pointed out earlier,

2If both the transmitter and receiver strategies are known, the channel
characterization is complete and equation (1) can be used to obtain the
capacity for the corresponding strategies.

we only assume that the transmitter strategy is given. Using
the concept of matching probability, we now discuss how
upper and lower bounds on the system capacity (for the given
transmit strategy) can be derived.

A. Upper Bounds

For every set of transmitter and receiver strategies, there
exists a corresponding matching probability α. It is easy
to see that the capacity (for the given transmitter receiver
strategies) cannot exceed α·CQSC (Q), where CQSC (Q) is the
capacity of the Q-ary symmetric channel. Suppose we fix the
transmitter strategy and determine an upperbound β on α such
that α ≤ β for all possible receiver strategies. Let CST ,SR be
the capacity of the system of Section II for a given transmitter
strategy. Clearly β can be used to upperbound this capacity
because

α ≤ β ⇒ CST ,SR
≤ α · CQSC (Q) ≤ β · CQSC (Q) . (3)

Using this idea, we will calculate different upperbounds on
the capacity for an important transmit strategy in Section IV-C.

B. Lower Bounds

Any achievable scheme provides a lower bound on the
capacity. A trivial lower bound would be the offline scheme
discussed in Section I. Since the transmitter and the receiver
are always matched, the receiver only needs to determine if
the transmitter is active or idle. Using the genie bound [9],
where the genie provides this information to the receiver, a
lowerbound on the capacity of the cognitive link easily follows
[6]:

CST , SR
≥ Prob

(
S1

PU (n) = 1
) · CQSC (Q)−H (G) , (4)

where Prob
(
S1

PU (n) = 1
)

= Prob
(
S2

PU (n) = 1
)

is the
steady state probability of the channel being free of primary
users and H (G) is the entropy measure of the genie infor-
mation provided to the receiver. This is also essentially the
i.i.d scheme discussed in [5]. More sophisticated lower bounds
can also be derived with achievable transmitter and receiver
strategies. As an example, consider a scenario where the trans-
mitter sends training symbols between the data symbols to help
the receiver track the transmitter state. Capacity expressions
similar to equation (4) can be derived even in this case. To
summarize, given an achievable scheme the corresponding
matching probability and the genie bound [9] can be used
to derive a lower bound on the capacity.

In this light, the problem of bounding the capacity reduces
to finding good upper bounds for the matching probability and
tight achievable capacity inner bounds.

IV. BOUNDS ON α FOR THE PREFERENCE STRATEGY

In this section we consider the ‘preference strategy’ at the
transmitter and present some outer bounds on the matching
probability α. While the upperbound calculations are specific
to the preference scheme, the technique employed is general
and can be used for any transmitter strategy.



A. Preference Transmitter Strategy

In this strategy, the secondary transmitter prefers one of the
two channels over the other. Without any loss of generality, we
assume that the preferred channel is channel l = 1. Under this
policy, if both the channels are unoccupied, channel 1 is used.
Table I lists the transmitter states depending on the primary
user occupancies in the two channels.

S1
PU (n) S2

PU (n) ST (n)
0 0 0
1 0 1
1 1 1
0 1 2

TABLE I: State choices for the preference policy.

The Markov chain for the transmitter state ST (n) can
be easily derived from the Markov chains of the underlying
channels S1

PU (n) and S2
PU (n) and is shown in Figure 3.
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Fig. 3: Equivalent Markov chain for the transmitter state
ST (n) for the preference strategy of Section IV-A.

B. Upper Bounds on α

1) Delayed Side Information at Receiver (αdelayed):
Delayed side information at the receiver refers to the case
where the receiver has knowledge of the transmitter state in
the previous time slot, i.e., at time n, the receiver chooses the
channel to monitor in the next time slot, SR (n + 1), using
the knowledge of ST (n). The decision taken by the receiver
is based on the maximum likelihood rule, i.e.,

k∗ = arg max
k∈{1, 2}

Prob [ST (n) = k |ST (n− 1) ] (5)

The receiver decision rule therefore reduces to picking the
non-zero state that has the highest transition probability from
ST (n). Since the receiver has additional information about
the previous state at the transmitter, it is easy to see that
αdelayed ≥ α.

When a = b, the preference policy yields steady state
probabilities independent of a, given by

{
1
4 , 1

2 , 1
4

}
for the

transmitter states {0, 1, 2} respectively. In such a scenario it
can be shown [6] that

αdelayed (1) =





3−3·a+a2

4 a ≤
(

3−√5
2

)

1
2

(
3−√5

2

)
≤ a ≤ 2

3
3·a
4 a ≥ 2

3

(6)

2) All Y Information (αY): Consider a scenario where the
secondary receiver is able to monitor the received signals on
both the channels. At the end of the time slot, however, it is
required to output the estimate of the transmitter state in the
next time slot, i.e., at the end of time slot n, the receiver has
knowledge of Y (n) = {Y (0) , Y (1) , · · · , Y (n)} where
Y (i) = [Y1 (i) Y2 (i)] is the received vector at time i. Based
on Y (n) it has to determine SR (n + 1). The optimal receiver
strategy [6] in this case is to estimate the subsequent state
SR (n + 1) to be

k∗ = arg max
k∈{1, 2}

Prob [ST (n + 1) = k |Y (n) ] (7)

The corresponding matching probability αY is therefore an
upperbound to α.

C. Achievable α Bounds

1) Offline Bound: For the offline scheme discussed earlier,
the transmitter and the receiver are always matched. The best
posible matching probability that can be achieved in this case
is equal to the steady state probability of any of the identical
channels being free.

For the (a = b) case, αoffline = 0.5 [6]. Since αdelayed is

an upperbound on α, equation (6) shows that for all 3−√5
2 ≤

a ≤ 2
3 , the offline scheme is optimal in terms of achieving the

best possible matching probability. The corresponding capacity
bounds, however, differ in the genie information H (G).

2) Training Bound (α∗training): Consider the case where
the secondary transmitter sends a known training symbol
to the receiver once every N time slots (symbol periods).
The training symbol is sent to help the secondary receiver
track the state information of the secondary transmitter more
reliably. Without any loss of generality, we assume that the
training symbol sent is the first constellation symbol q0, i.e.,
X (k ·N) = q0 ∀ k ∈ {1, 2, · · · }. Based on its state
at n = k · N , SR (k ·N) and the received signal y (k ·N)
the receiver decides either to continue monitoring the same
channel or switch to the other channel. Between the training
symbol time slots, the receiver is not allowed to change states
and monitors the same channel chosen in the previous training
symbol time slot. The resulting matching probability (not
counting training symbols) can be used to lower bound the
capacity.

Note that the matching probability αtraining (N) is a func-
tion of the training delay N . if N is too small, due to the
training overhead, αtraining (N) is small. On the other hand
when N is too large, since the receiver is not allowed to
switch states between training symbols, the receiver cannot



follow the transmitter state accurately. Consequently the re-
sulting αtraining (N) is low. There is therefore a tradeoff
between the training delay and the matching probability. We
define α∗training as the maximum possible achievable matching
probability and the corresponding optimal delay by N∗.

V. SIMULATION RESULTS

In this section, we will provide numerical results on the
capacity for the cognitive link of the system model of Section
II. For our simulations we assume symmetric Markov chains
for the primary user occupancy process, i.e., a = b.

Figure 4 plots the upper and lower bounds on the matching
probability as a function of the loop probability of the primary
user occupancy ā = (1− a) for Q = 8 and ε = 0.01.
The plot for αdelayed obtained from simulation follows that
obtained from the analytical result of equation (6). We note
here that the offline lower bound αoffline and αdelayed
are defined to be independent of the constellation size Q
and the error probability ε. Botht the plots therefore remain
constant with increasing ā. The offline lower bound remains
at the steady state probability Prob

[
S1

PU (n) = 1
]

= 0.5.
As ā increases, the memory in the primary user occupancy
process increases and the primary user states Sl

PU (n) vary
very slowly. Consequently it is easier to track the transmitter
state in the training scheme discussed in Section IV-C.2. The
corresponding matching probability α∗training consequently
increases. A similar argument holds for the increase of αY

with ā. Notice that the gap between αdelayed and αY is very
small - at the very low (ε = 0.01) error probabilities involved,
the performance of the corresponding schemes is almost the
same.
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Fig. 4: Upper and achievable bounds on α with increasing ā
for Q = 8 and ε = 0.01.

Similar plots for Q = 2 and ε = 0.2 are shown in Figure 5.
Since the probability of error ε = 0.2 is higher, the matching

probability seperation between αdelayed and αY increases.
Consider the upperbound plot αY and the achievable lower-
bound αoffline. The small gap indicates that for scenarios with
high error probabilities ε, the offline scheme is fairly robust
since if offers nearly the same matching probability as that
possible in the upperbound (Equation (6) already shows that
the offline scheme is α-optimal for a ∈ {0.3821, 0.666}.).
The matching probability achieved by the training scheme
suffers due to the fairly high error probability involved.
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Fig. 5: Upper and achievable bounds on α with increasing ā
for Q = 2 and ε = 0.2.

Other numerical results including capacity bounds for the
above scenarios and matching probability/capacity plots for
situations where a 6= b are presented in [6]. For lack of
space we also postpone the numerical analysis of the influence
of the constellation power (which affects the resulting error
probability) to [6].

VI. CONCLUSIONS

We explore the capacity of a cognitive radio system in
a spectrum pool consisting of two channels with indepen-
dent and identically distributed occupancy processes. The
distributed channel information at either end of the cognitive
link can be modeled with multi-state switches at the transmitter
and receiver. The formulation of the problem precludes trying
to determine the capacity by the conventional mutual infor-
mation maximization. Using the probability of the receiver
and transmitter being matched to the same state, we derive
both upper and lower bounds on the system capacity given the
transmitter switching strategy through corresponding bounds
on the matching probability. Using these bounds we explore
the benefits and costs associated with the forward and feedback
overheads. We see that in high error probability scenarios the
offline scheme discussed is very close to achieving the optimal
matching probability.
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