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Abstract— We consider a MIMO fading broadcast channel
where channel state information is acquired at user terminals
via downlink training and channel feedback is used to provide
transmitter channel state information (CSIT) to the base station.
The feedback channel (the corresponding uplink) is modeledas
an AWGN channel, orthogonal across users. The total bandwidth
consumed is the sum of the bandwidth/resources used for down-
link training, channel feedback, and data transmission. Assuming
that the channel follows a block fading model and that zero-
forcing beamforming is used, we optimize the net achievable
rate for unquantized (analog) and quantized (digital) channel
feedback. The optimal number of downlink training pilots is
seen to be essentially the same for both feedback techniques, but
digital feedback is shown to provide a larger net rate than analog
feedback.

I. I NTRODUCTION

We consider a MIMO Gaussian broadcast channel modeling
the downlink of a system where a Base Station (BS) hasNt

antennas and servesK single-antenna User Terminals (UTs).
A channel use of such system is described by

yk = h
H
k x + zk, k = 1, . . . , K (1)

whereyk is the channel output at UTk, zk ∼ CN(0, N0) is
the corresponding Additive White Gaussian Noise (AWGN),
hk ∈ C

N
t is the vector of channel coefficients from the BS

antenna array to thek-th UT antenna andx is the vector of
channel input symbols transmitted by the BS, subject to the
average power constraintE[|x|2] ≤ P . We useρ to denote
the nominal SNR:ρ , P

N0
. We assume a block fading model,

i.e., the channel remains constant over a coherence interval
of T channel uses. Albeit suboptimal, we focus on zero-
forcing (ZF) beamforming withK = Nt users for its analytical
tractability.

In order to perform zero-forcing beamforming (or any other
multi-user MIMO strategy), the BS must have an accurate esti-
mate of the channel to each UT. Such information is generally
acquired in a two-step process: each UT first estimates its own
downlink channel during a common downlink training phase,
after which each UT transmits its channel estimate over a
feedback channel (on the corresponding uplink) to the BS.
The rates achievable with zero-forcing beamforming depend
critically on the quality of the CSI available to the BS, but
high quality CSI can only be achieved if (a) each UT is able
to accurately estimate its own channel (i.e., by using a suitably
long downlink training phase), and (b) the process of channel

feedback does not add too much additional distortion to the
channel information.

In this work, we attempt to determine the optimum fraction
of resources that should be dedicated to training and feedback
with the criterion being thenet spectral efficiency achievable
on the downlink. Training consumes downlink bandwidth
while channel feedback consumes uplink bandwidth. From
a high-level system perspective, increasing either training or
feedback effectively takes away from the bandwidth available
for actual data transmission. The net spectral efficiency is
therefore the transmission rate reflecting the overhead dueto
the downlink bandwidth consumed for training and the uplink
bandwidth used for channel feedback.

We utilize our earlier work in which the downlink spectral
efficiency was tightly bounded as a function of the amount
of training and feedback [1]. This allows the net spectral
efficiency per UT, accounting for training/feedback resources,
to be accurately lower bounded as

Rk ≥
(

1 − T1 + Tfb

T

)(
RZF − ∆R

)
(2)

whereT1 and Tfb are the number of channel symbols used
for training and feedback, respectively, per coherence block
of length T .1 The quantityRZF denotes the rate achievable
with ideal CSI while∆R is the rate gap due to imperfect
CSI. This rate gap depends on the particular feedback strategy
used, as specified in [1], but is decreasing in bothT1 andTfb.
The objective of this paper is to maximize the net spectral
efficiency with respect toT1 andTfb for the cases of analog
and digital feedback, and to understand how the optimal
values ofT1 and Tfb as well as the optimized net spectral
efficiency depend on various system parameters of interest
(e.g., blocklengthT , signal-to-noise ratio, andNt).

The present work is an extension of [2], where the same
optimization was investigated for the case of analog (unquan-
tized) feedback over a shared MIMO MAC feedback channel.
On the other hand, here we consider both analog and digital
feedback techniques and focus primarily on an AWGN model
for the feedback channel. Interested readers can refer to [2]
for a discussion of other prior work on this general topic.

1UsingT1 andTfb symbols per lengthT block is fully equivalent to using
a fraction T1

T
and Tfb

T
of the total bandwidth for training and feedback.



II. CHANNEL STATE ESTIMATION AND FEEDBACK

In this section we describe the basic training and channel
feedback scheme that allows CSI to be acquired.

1) Common downlink training:T1 shared pilot symbols
(essentiallyT1

Nt
pilots per BS antenna) are transmitted to allow

all UTs to estimate their downlink channel vectors{hk} based
on the observation

sk =

√
T1P

Nt

hk + zk (3)

wherezk ∼ CN(0, N0I). Each UT performs linear MMSE of
hk from the observationsk, which results in a per-coefficient
estimation error with variance [1, Equation 7]

1

1 +
(

T1

Nt

)
ρ
. (4)

2) Channel feedback: Each UT feeds back its channel
estimation immediately after the training phase. We focus on
the scenario where the feedback channel is modeled as an
AWGN channel with the same signal-to-noise ratioρ, identical
to the nominal downlink SNR. Because UT’s are assumed
to access the feedback channel orthogonally, a total ofTfb

channel symbols translates intoTfb

Nt
feedback channel uses per

UT. The different feedback strategies are described in Section
III.

From the feedback received from each of the UT’, the BS
obtains the channel estimatêh1, . . . , ĥNt

. The imperfection
in the CSI available to the BS stems from two sources: the
channel estimation error during the common training phase,
and the distortion incurred during the feedback phase. For
analog feedback the distortion is due to additive noise in the
feedback channel, while for digital feedback it consists ofthe
quantization error as well as possible errors while transmitting
bits over the feedback channel.

If the beamforming vectorŝv1, . . . , v̂Nt
are selected by

using zero-forcing on the basis of the imperfect channel
estimateŝh1, . . . , ĥNt

, the following per-UT rate is achievable
if equal-power (across UT’s) Gaussian inputs are used:

E

[
log

(
1 +

|hH
k v̂k|2 ρ

Nt

1 + ρ
Nt

∑
j 6=k |hH

k v̂j |2

)]
, (5)

assuming each UT is aware of its received SINR.2 Imperfect
CSI results in non-zero interference coefficients|hH

k v̂j |, which
in turn decrease the rate. In [1] it is shown that the rate in (5)
is accurately lower-bounded by

RZF − ∆R (6)

whereRZF is the rate achievable with perfect CSI and∆R
denotes the rate gap given by

∆R , log


1 +

ρ

Nt

∑

j 6=k

E
[
|hH

k v̂j |2
]

 . (7)

2Such knowledge can be acquired through an additional dedicated training
round as discussed in [1]. This training round does not significantly affect the
present work, and thus is ignored for the sake of simplicity.

The rate gap depends onT1, Tfb and the feedback strategy.
Its closed-form expressions are found in [1] for the cases
addressed in this paper.

III. O PTIMIZING TRAINING AND FEEDBACK

We now consider the problem of interest, which is the
maximization of thenet spectral efficiency:

max
T1,Tfb:T1+Tfb≤T

(
1 − T1 + Tfb

T

)(
RZF − ∆R(T1, Tfb)

)
.

(8)
To facilitate solving this optimization, it is useful to write our
problem as follows:

max
Tt≤T

max
T1+Tfb=Tt

(
1 − T1 + Tfb

T

)(
RZF − ∆R(T1, Tfb)

)
.

(9)
Furthermore, we write the rate gap as follows:

∆R(T1, Tfb) = log (1 + g(T1, Tfb)) (10)

where the functiong(·) depends on the feedback strategy and
is defined later. Because the first multiplicative term is constant
when T1 + Tfb = Tt , the inner maximization corresponds
to minimization of the functiong(·) subject to the constraint
T1 + Tfb ≤ Tt:

g(Tt) , min
T1+Tfb≤Tt

g(T1, Tfb), (11)

while the second step is a maximization of the net spectral
efficiency overTt (the total training and feedback symbols):

max
Tt: Tt≤T

(
1 − Tt

T

)(
RZF − log(1 + g(Tt)

)
. (12)

In the following this two-step strategy is implemented for
analog feedback, TDD systems with channel reciprocity, and
digital feedback (with and without feedback channel errors).

A. Analog Feedback

We begin by considering unquantized analog feedback,
whereby the complex amplitude of each discrete-time feedback
symbol is chosen as the UT’s estimate of each complex
channel coefficient. Because each UT is allowedTfb

Nt
feedback

channel uses, this corresponds toTfb

N2
t

feedback channel uses

per channel coefficient (ifTfb > N2
t , each coefficient is

effectively repeatedTfb

N2
t

times on the feedback channel). This

results in distortion that is inversely proportional toρTfb

N2
t

, and
the resulting rate gap is described as [1, Section IV]:

ganalog(T1, Tfb) =
Nt − 1

T1
+

Nt(Nt − 1)

Tfb
. (13)

We begin by minimizingg(·) subject to a constraint onT1+
Tfb. For the sake of generality, we rewriteg() as:

ganalog(T1, Tfb) =
w1

T1
+

wfb

Tfb
. (14)

wherew1 = Nt − 1 and wfb = Nt(Nt − 1). Therefore, the
minimization to be solved is:

min w1

T1
+ w2

Tfb
(15)

subject to T1 + Tfb ≤ Tt. (16)



This is readily seen to be a convex optimization, and can be
solved by forming the Lagrangian:

L(T1, Tfb, µ) = g(T1, Tfb) +
1

µ2
(T1 + Tfb)

whereµ > 0 is the Lagrangian multiplier. The KKT condition
yields the following solution

T ⋆
1 =

√
w1µ, T ⋆

fb =
√

wfbµ. (17)

In terms ofTt, these can be written as

T ⋆
1 =

√
w1

K
Tt, T ⋆

fb =

√
wfb

K
Tt (18)

where we letK = (
√

w1 +
√

wfb)
2, while the objective value

is given by

g(Tt) =
K

Tt

(19)

It is clear thatTt is shared between training and feedback
proportional to the square root of the weightsw1 andwfb.

Using (19), the overall optimization can now be character-
ized in terms of a single variableTt. Namely the second step
of the proposed optimization corresponds to maximizing

f(Tt) =

(
1 − Tt

T

)[
RZF − log

(
1 +

K

Tt

)]
(20)

Becausef is concave inTt, the optimalT ⋆
t can be found by

numerically solving for ∂f
∂Tt

= 0 where

∂f

∂Tt

=
K
(
1 − Tt

T

)

T 2
t

(
1 + K

Tt

) − 1

T

[
RZF − log

(
1 +

K

Tt

)]
. (21)

Although a closed-form solution forT ⋆
t does not exist, it is

possible to compute how this quantity scales with blocklength
T . From (21), the optimalT ⋆

t satisfies the following equality

K(T − Tt)

T 2
t

(
1 + K

Tt

) = RZF
k − log

(
1 +

K

Tt

)
(22)

It is easy to see that the derivative in (21) is upperbounded by
1
T

f̃(Tt), where

f̃(Tt) =
K (T − Tt)

T 2
t

−
[
RZF − K

Tt

]
(23)

Since f is concave, it follows that the solutioñTt of the
equationf̃(Tt) = 0 is an upper bound to the optimal value
T ⋆

t . Solving f̃(Tt) = 0 we find

T ⋆
t ≤ T̃t =

√
KT

RZF
(24)

Furthermore, when the rate gap is small such that
log
(
1 + K

Tt

)
≈ K

Tt
(which becomes accurate for largeT ),

the upperbound also becomes a very good approximation.
The upperbound (24) yields two interesting behaviors: 1)

for a fixed SNR (i.e., constantRZF) T ⋆
t increases asO(

√
T )

asT → ∞; 2) for a fixed coherence intervalT , T ⋆
t decreases

asO(1/
√

RZF) for large SNR, or equivalently, it decreases as

O(1/
√

log(SNR)) sinceRZF = log(SNR) + O(1) for large
SNR.

In addition, an upper bound onT ⋆
1 can be reached by

combining (24) with (18):

T̃1 =

√
w1

K
T̃t =

√
w1T

RZF
=

√
(Nt − 1)T

RZF
. (25)

According to this approximation, the optimal downlink train-
ing is independent ofwfb, and thus of the efficiency of the
feedback channel.

Next, we examine the impact ofT ⋆
t on the achievable rate.

Using the upperbound (24) into (20), the objective value can
be approximated as

f(T̃t) =

(
1 −

√
K

RZFT

)[
RZF − log

(
1 +

√
KRZF

T

)]

After some manipulation, it can be shown that the resulting
effective rate gap with respect toRZF is given by

RZF − f(T ⋆
t ) ≤ RZF − f(T̃t) ≈ 2

√
KRZF

T
(26)

Thus, the gap to a perfect CSI system decreases roughly as
O(1/

√
T ) asT increases.

B. Time-Division Duplexing

The analysis from the previous subsection can also be used
to optimize the amount of uplink training performed in a time-
division-duplexed (TDD) system with perfect channel reci-
procity (i.e., the downlink and uplink channels are identical).3

Note that no feedback is necessary in such case. In [1, Remark
4.2] the rate gap for a TDD system that usesTTDD uplink
training symbols (TTDD

Nt
per MS) is given:

∆R = log

(
1 +

Nt − 1

TTDD

)
. (27)

The optimization overTTDD is

max
TTDD≤T

(
1 − TTDD

T

)[
RZF − log

(
1 +

Nt − 1

TTDD

)]
, (28)

which is clearly equivalent to the optimization in (20) with
Tt = TTDD and K = Nt − 1. As a result, the analysis and
approximations from the previous subsection carry over. By
adapting (24) we have

T ⋆
TDD ≤ T̃TDD =

√
(Nt − 1)T

RZF
, (29)

which is the same as the approximation toT ⋆
1 (the number of

downlink training symbols) for analog feedback in (25).
Based upon the expression for the approximate rate gap in

(26), by comparing the value ofK for analog feedback and
for TDD we see that the rate gap for analog feedback is a
factor 1 +

√
Nt larger than for TDD.

For future reference it is also worthwhile to notice that the
TDD setting corresponds to the non-TDD setting with perfect

3Note that a similar optimization is considered in [3], although in that work
analysis of this optimization is not performed.



feedback (i.e., the BS knows the UT channel estimates, or
equivalentlywFB = 0 in Section III-A). As a result, the net
rate achievable with TDD serves as an upper bound to that
achievable with training and channel feedback.

C. Error-Free Digital Feedback

We now analyze digital feedback techniques, whereby each
UT quantizes its vector channel estimate toB bits and then
maps these bits intoTfb

Nt
transmit symbols. For the quantization

step we consider a family of random vector quantization
(RVQ) schemes. Assuming the feedback bits are received
error-free, in [1, Section V] it is shown that the rate gap is

∆R = log

(
1 +

Nt − 1

T1
+ ρ 2−

B
Nt−1

)
(30)

where the distortion error is expressed in terms of bits. In this
section we assume unrealistically that error-free communica-
tion is possible over the feedback channel at its underlying
capacity of log2

(
1 + P

N0

)
bits per channel use. Each of

the Nt UT’s utilize Tfb

Nt
channel uses, and thereforeB =

Tfb

Nt
log2 (1 + ρ). As a result, we obtain

gdigital(T1, Tfb) =
Nt − 1

T1
+ ρ (1 + ρ)

− Tfb
Nt(Nt−1) . (31)

The first step is the minimization of the above function subject
to the constraintT1 + Tfb ≤ Tt. Sincegdigital is convex in
T1, Tfb, we form the Lagrangian and readily obtain

T1 = µ
√

Nt − 1 (32)

Tfb = Nt(Nt − 1)
2 ln(µ) + ln

(
ρ ln(1+ρ)
Nt(Nt−1)

)

ln(1 + ρ)
(33)

Note that the feedback length grows asO (lnµ), much slower
than the linear increase (inµ) for the common training.

Contrary to the earlier analog feedback case,gdigital cannot
be expressed as a closed form ofTt but instead must be
expressed as a function ofµ. However, for the sake of com-
parison with analog feedback we perform this optimization in
terms ofT1 rather thanµ. Based upon (32) we can express
Tfb as a function ofT1:

Tfb = Nt(Nt − 1)
2 ln(T1) + ln

(
ρ ln(1+ρ)

Nt(Nt−1)2

)

ln(1 + ρ)
, (34)

and thus the net spectral efficiency can be written as:


1 −

T1 + Nt(Nt − 1)
2 ln(T1)+ln

“

ρ ln(1+ρ)

Nt(Nt−1)2

”

ln(1+ρ)

T


×

[
RZF − log

(
1 +

Nt − 1

T1
+

Nt(Nt − 1)2

(T1)2 ln(1 + ρ)

)]
. (35)

BecauseTfb increases logarithmically withT1, its effect on the
maximization is rather minimal. As a result, the maximization
of T1 is very similar to the maximization ofTTDD in the TDD
setting, which is in turn similar to the maximization ofT1 in
the presence of analog feedback.

D. Digital Feedback with Errors

Rather than assuming (unrealistically) that the feedback
channel operates at channel capacity and error-free, in this
section we analyze a system where uncoded QAM is used
to transmit each UT’s quantized channel vector over the
feedback channel. Each UT utilizesTfb

Nt
feedback channel

uses. Assuming that quantization bits are arbitrarily mapped
to channel symbols, one or more symbol errors (among the
Tfb

Nt
channel uses) makes the feedback from a particular UT

effectively useless and thus leads to a rate effectively of zero.
Under this assumption, the achievable net rate is given by:

(
1 − T1 + Tfb

T

)
(1 − P e,fb)

[
RZF

k − ∆R
]

(36)

where∆R is defined in (30). Because each UT utilizesTfb

Nt

complex channel symbols, the number of feedback bits per
userB = Tfb

Nt
log2 M whereM is the number of constellation

points. The per-symbol QAM error probability is given by

Ps = 1 −
(

1 − 2

(
1 − 1√

M

)
Q

(
3(P/N0)

M − 1

))2

, (37)

while the probability of a feedback error,P e,fb, is the proba-
bility that any of the symbols are received incorrectly:

P e,fb = 1 − (1 − Ps)
Tfb
Nt . (38)

In order to allow for a two-step optimization, we rewrite
the objective in (36) as:

(
1 − Tt

T

)[
RZF

k − h(Tt)
]

(39)

where the effective rate-lossh(Tt) incorporates the loss due
to feedback error is defined as:

h(Tt) = min
T1,Tfb:T1+Tfb≤Tt

w(T1, Tfb) (40)

with

w(T1, Tfb)=
(
1 − P e,fb

)
log

(
1 +

Nt − 1

T1
+ ρM− Tfb

Nt(Nt−1
)

)

+P e,fbRZF
k . (41)

If a reasonable constellation size is used, the probability
of feedback error is quite small even when the number of
feedback bits per users is relatively large (e.g., forNt = 4
at 10 dB with B = 25 and 4-QAM, P e,fb = 0.038). As
a result, the minimization ofw(T1, Tfb) is very similar to
the minimization ofgdigital(T1, Tfb) for error-free feedback in
(31), but with a constellation of sizeM rather than1+ρ. When
computed numerically, an optimization over the constellation
size is also performed.

IV. N UMERICAL EXAMPLES & D ISCUSSION

This section provides some numerical examples to illustrate
the analysis of the previous section. The system parameters,
unless otherwise specified, areNt = 4 and ρ = 10 dB.
In all cases the previously stated optimizations have been
numerically computed withT1 andTfb restricted to integers,
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Fig. 1. Optimum number of feedback symbols (Tfb) versus total training +
feedback (Tt).

subject to the constraintsT1 ≥ Nt (to ensure at least one
training symbol per channel coefficient) andTfb ≥ N2

t for
analog feedback (one feedback symbol per channel coefficient)
andTfb ≥ Nt for digital feedback (one FB symbol per UT).

In Fig. 1 the optimum number of feedback symbols (Tfb)
is plotted versusTt, the total training & feedback budget, for
analog feedback, digital feedback, and digital feedback with
errors (uncoded QAM). For analog feedback the number of
feedback symbols grows linearly withTt with slope Tfb =√

Nt

1+
√

Nt
, while for digital feedbackTfb increases withTt at

a much slower rate (approximately logarithmically). The rate
of increase forTfb is particularly slow beyondTt = 100. At
this point digital feedback without errors corresponds to10
symbols per user and thus nearly35 bits (B). At this point the
distortion due to quantization (2−

B
Nt−1 ) is less than10−3 and

the gains in increasingB beyond this point are very negligible.
Even when feedback using uncoded 4-QAM is considered,
each user is quantizing to28 bits atTt = 100. The abrupt shift
for digital feedback with errors occurs when the constellation
changes from 4-QAM to BPSK: when the number of feedback
symbols becomes too large (whenTt is sufficiently large)
the probability of feedback error becomes significant and it
becomes more efficient to reduce this error probability by
reducing the constellation to BPSK while keeping the number
of bits (B) nearly the same. This is a consequence of using
uncoded transmission on the FB channel.

In Fig. 2 the optimal values ofT1 andTfb are plotted versus
blocklengthT for analog, digital, and digital w/ errors;TTDD

is also plotted for TDD. Most striking is the fact that the
optimal values ofT1 and the optimalTTDD are essentially
identical for the three feedback techniques as well as for TDD.
Furthermore, although not shown here, the optimizing values

of T1 are very well approximated by
√

(Nt−1)T
RZF as in (25).

On the other hand, the number of feedback symbols depends
critically on the feedback method. Because analog feedback
is so inefficient, a large number of feedback symbols are used
so that the rate gap due to feedback is not too large. On the
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other hand, digital feedback is very efficient and a relatively
small number of feedback symbols is required.

In Fig. 3 the net achievable rate is plotted versus blocklength
T . For analog and TDD the rate approximations based upon
(26) are indicated with dotted lines and are seen to become
increasingly accurate asT is increased. Analog feedback is
outperformed by digital feedback, with or without errors, for
all blocklengths. This is because digital feedback offers a
significantly smaller distortion as compared to analog when-
ever Tfb is larger than (approximately)N2

t (i.e., one symbol
per channel coefficient) [1, Section VI], and for reasonable
blocklengths it is optimal to useTfb larger thanN2

t (Fig. 2).
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