Optimized Training and Feedback for MIMO
Downlink Channels

Mari Kobayashi Nihar Jindal Giuseppe Caire
SUPELEC University of Minnesota University of Southern California
Gif-sur-Yvette, France Minneapolis MN, 55455 USA Los Angeles CA, 90089 USA

Abstract—We consider a MIMO fading broadcast channel feedback does not add too much additional distortion to the
where channel state information is acquired at user termin&s channel information.

via downlink training and channel feedback is used to provig : - . .
transmitter channel state information (CSIT) to the base sation. In this work, we attempt to determine the optimum fraction

The feedback channel (the corresponding uplink) is modeleds ©Of resources that should be dedicated to training and fedba
an AWGN channel, orthogonal across users. The total bandwith ~ With the criterion being theet spectral efficiency achievable
consumed is the sum of the bandwidth/resources used for down on the downlink. Training consumes downlink bandwidth
link training, channel feedback, and data transmission. Asuming \yhile channel feedback consumes uplink bandwidth. From
that the channel follows a block fading model and that zero- . . : . . -
forcing beamforming is used, we optimize the net achievable a high-level sys_tem perspective, increasing elth_er Imglm_r
rate for unquantized (analog) and quantized (digital) chamel feedback effectively takes away from the bandwidth avéglab
feedback. The optimal number of downlink training pilots is for actual data transmission. The net spectral efficiency is
seen to be essentially the same for both feedback techniquésit  therefore the transmission rate reflecting the overheadaue
digital feedback is shown to provide a larger net rate than aalog  the downlink bandwidth consumed for training and the uplink

feedback. bandwidth used for channel feedback.

. INTRODUCTION We utilize our earlier work in which the downlink spectral
ﬁﬁiciency was tightly bounded as a function of the amount
of training and feedback [1]. This allows the net spectral
efficiency per UT, accounting for training/feedback reses
to be accurately lower bounded as

We consider a MIMO Gaussian broadcast channel modeli
the downlink of a system where a Base Station (BS) Nas
antennas and servd§ single-antenna User Terminals (UTs)
A channel use of such system is described by

ye =hi'x+ 2z, k=1,...,K 1) sz(l_%) (RZF_E) )
wherey; is the channel output at UE, 2z, ~ CN(0, No) is

the corresponding Additive White Gaussian Noise (AWGN)hereT; and Ty, are the number of channel symbols used
h, € (Civ is the vector of channel coefficients from the BSor training and feedback, respectively, per coherencekblo
antenna array to thé-th UT antenna anc is the vector of of length7'.! The quantity R?" denotes the rate achievable
channel input symbols transmitted by the BS, subject to théth ideal CSI while AR is the rate gap due to imperfect
average power constraifit[|x|?] < P. We usep to denote CSI. This rate gap depends on the particular feedback gjrate
the nominal SNRp £ . We assume a block fading modelused, as specified in [1], but is decreasing in ibtrand T,.
i.e., the channel remains constant over a coherence ihterhe objective of this paper is to maximize the net spectral
of T channel uses. Albeit suboptimal, we focus on zere@fficiency with respect td; and Ty, for the cases of analog
forcing (ZF) beamforming witli{ = N, users for its analytical and digital feedback, and to understand how the optimal
tractability. values of Ty} and Ty, as well as the optimized net spectral
In order to perform zero-forcing beamforming (or any othegfficiency depend on various system parameters of interest
multi-user MIMO strategy), the BS must have an accurate edf¢.g., blocklengttl’, signal-to-noise ratio, and/;).
mate of the channel to each UT. Such information is generallyThe present work is an extension of [2], where the same
acquired in a two-step process: each UT first estimates its oaptimization was investigated for the case of analog (ungua
downlink channel during a common downlink training phaseized) feedback over a shared MIMO MAC feedback channel.
after which each UT transmits its channel estimate overGn the other hand, here we consider both analog and digital
feedback channel (on the corresponding uplink) to the Bfeedback techniques and focus primarily on an AWGN model
The rates achievable with zero-forcing beamforming depefar the feedback channel. Interested readers can refer]to [2
critically on the quality of the CSI available to the BS, bufor a discussion of other prior work on this general topic.
high quality CSI can only be achieved if (a) each UT is able

to accurate_ly eStim?te its own channel (i.e., by using @bljit  1ysing 7, and Ty, symbols per length” block is fully equivalent to using
long downlink training phase), and (b) the process of chnnefraction 2t and 2 of the total bandwidth for training and feedback.



Il. CHANNEL STATE ESTIMATION AND FEEDBACK The rate gap depends di, Ty, and the feedback strategy.

In this section we describe the basic training and chanrli closed-form expressions are found in [1] for the cases
feedback scheme that allows CSI to be acquired. addressed in this paper.

1) Common downlink trainingZ} shared pilot symbols _ OPTIMIZING TRAINING AND FEEDBACK
(essentiallyjff,—lt pilots per BS antenna) are transmitted to allow
all UTs to estimate their downlink channel vectéts, } based
on the observation

We now consider the problem of interest, which is the
maximization of thenet spectral efficiency:

T + Tty 7F A5
TP 1—-—— ) (R* — AR(T1,T; .
. hy + 2z, () T17be%1?fob§T ( T ) ( (T, ﬂ)))
N, (8)
wherez; ~ CN(0, NoI). Each UT performs linear MMSE of To facilitate solving this optimization, it is useful to weiour
h;, from the observatiosy, which results in a per-coefficientproblem as follows:

S =

estimation error with variance [1, Equation 7] T, + Th, L
1 max  max <1 - 7> (R*F — AR(T\, Tn,)) -
) T;<T Ti+Tew=T: T 9
t Furthermore, we write the rate gap as follows:
2) Channel feedback: Each UT feeds back its channel ——
) RR(T}. Tn) = log (1 + (T3, T) (10)

estimation immediately after the training phase. We foaus o
the scenario where the feedback channel is modeled asvdrere the functiory(-) depends on the feedback strategy and
AWGN channel with the same signal-to-noise ratjadentical is defined later. Because the first multiplicative term isstant

to the nominal downlink SNR. Because UT’'s are assuma&chen T + Ty, = T; , the inner maximization corresponds
to access the feedback channel orthogonally, a totdltef to minimization of the functiory(-) subject to the constraint
channel symbols translates m% feedback channel uses pefl; + Ty, < Ti:

UT. The different feedback strategies are described ini@ect

A .
. g(T;) = i 9(Th, Ty, (11)

From the feedback received from each of the UT’, the Bghile the second step is a maximization of the net spectral

obtains the channel estimate, ..., hy,. The imperfection efficiency overT; (the total training and feedback symbols):
in the CSI available to the BS stems from two sources: the T
t

channel estimation error during the common training phase, max <1 — _> (RZF —log(1+ g(Tt)) . (12)
and the distortion incurred during the feedback phase. For Te: =T T

analog feedback the distortion is due to additive noise @& tin the following this two-step strategy is implemented for
feedback channel, while for digital feedback it consistshef analog feedback, TDD systems with channel reciprocity, and
guantization error as well as possible errors while trattgrgi  digital feedback (with and without feedback channel efjrors
bits over the feedback channel. A. Analog Feedback

If the beamforming vectors/y,..., vy, are selected by
using zero-forcing on the basis of the imperfect channe| W& begin by considering unquantized analog feedback,
estlmateshl, ..., hy,, the following per-UT rate is achlevabIeWhereby the complex amplitude of each discrete-time fegkiba

if equal—power (across UT's) Gaussian inputs are used: ~ Symbol is chosen as the UT's estimate of each complex
channel coefficient. Because each UT is aIIov@@dfeedback

Hygo |2
E |log [ 1+ [y vil” & N, (5) channel uses, this corresponds% feedback channel uses
1+ mzﬁék [hi!v;[2 per channel coefficient (ifly, > Nf, each coefficient is

assuming each UT is aware of its received SiNRiperfect effectively repeate(% times on the feedback channel). This

CSl results in non-zero interference coefficieité v; |, which ~ results in distortion that is inversely proportional g, and
in turn decrease the rate. In [1] it is shown that the rate )n (§1€ resulting rate gap is described as [1, Section IV]:

is accurately lower-bounded by JUNTI N, —1 NN,
_ ganalog (Tla be) — tT’ + t( Tt ) .
- AR (6) 1 fb
We begin by minimizing;(-) subject to a constraint ¢f +
Ty, For the sake of generality, we rewrig¢) as:

analogT T :_ % 14
g ( 1, fb) Tl +T ( )

wherew; = N; — 1 andwg, = Ny(N; — 1). Therefore, the
minimization to be solved is:

(13)

where R%Y is the rate achievable with perfect CSI and?
denotes the rate gap given by

AR 2 log 1+—ZE hfv;?] | . (7
btk
2Such knowledge can be acquired through an additional dedidaaining

min w 15
round as discussed in [1]. This training round does not Begmitly affect the ) Ty t7 be ( )
present work, and thus is ignored for the sake of simplicity. subject to Ty + Ty, < Ty. (16)



This is readily seen to be a convex optimization, and can bB&1/,/log(SNR)) since R“Y = log(SNR) + O(1) for large

solved by forming the Lagrangian: SNR.
1 In addition, an upper bound off} can be reached by
L(Ty, Tro, 1) = 9(T1, Thy) + ?(Tl + Th,) combining (24) with (18):
wherep > 0 is the Lagrangian multiplier. The KKT condition T — Wig \/wlT _ \/(Nt -1)T (25)
yields the following solution Vx ™t RZF RZE
x _— According to this approximation, the optimal downlink trai
T = Vwip, T =/ . 17) Y o
! s b o (7 ing is independent ofvg,, and thus of the efficiency of the
In terms of T3, these can be written as feedback channel.
w o Next, we examine the impact @& on the achievable rate.
Ty = \/%Tt, Ty = \/?Tt (18) Using the upperbound (24) into (20), the objective value can

be approximated as
where we letK = (/w1 + /wm)?, while the objective value

is given by (L) = <1 —\/ Z_Jg)
9(Th) = % (19) "

fKRZF
R*Y —log (1 + T )

After some manipulation, it can be shown that the resulting
It is clear thatT; is shared between training and feedbacksfective rate gap with respect ®%" is given by

proportional to the square root of the weights and wy,.
. .. . - :KRZF
Using (19), the overall optimization can now be character- R _ f(T¥) < R™ _ f(T,)~2 / (26)
ized in terms of a single variablE,. Namely the second step o T
of the proposed optimization corresponds to maximizing Thus, the gap to a perfect CSI system decreases roughly as

T, » % O(1/V/T) asT increases.
f(T) = (1 - T) {R — log (1 + fﬁ)} (20) B. Time-Division Duplexing

Becausef is concave inT;, the optimal7;* can be found by The analysis from the previous subsection can also be used
numerically solving fora‘a—Tft =0 where to optimize the amount of uplink training performed in a time
division-duplexed (TDD) system with perfect channel reci-
of  XK(1-F) 1 {RZF b (1 N Kﬂ (21) Procity (i.e., the downlink and uplink channels are ideaié
T, T? (1 + Tx) T & T )| Note that no feedback is necessary in such case. In [1, Remark
¢ 4.2] the rate gap for a TDD system that usBspp uplink
Although a closed-form solution fdf; does not exist, it is training symbols }%D per MS) is given:
possible to compute how this quantity scales with blockikeng

T. From (21), the optimal’}* satisfies the following equality AR =log (1 4 N — 1) . (27)
TDD
X(T — T, X . .
Xr-n) _ RZ¥ _log <1 + —> (22) The optimization ovefl'rpp is
Tt2 (1 _|_ %) Tt
) ' o . max 1—m RZF—log 1+ e~ 1 , (28)

It is easy to see that the derivative in (21) is upperbounged b Trop<T T Trpp

+f(T:), where which is clearly equivalent to the optimization in (20) with
~ K(T —T,) e T, = Trpp andX = N, — 1. As a result, the analysis and
[(Ty) = — R — (23) approximations from the previous subsection carry over. By

B adapting (24) we have
Since f is concave, it follows that the solutiofi; of the

equationf(7;) = 0 is an upper bound to the optimal value Tipp < Trpp = w7 (29)
Ty. Solving f(T;) = 0 we find R
which is the same as the approximatioriftp (the number of
TF < T, = % (24) downlink training symbols) _for analog feedba_ck in (25). .
R Based upon the expression for the approximate rate gap in

Furthermore, when the rate gap is small such th&6), by comparing the value ok for analog feedback and
log (1+ %) ~ & (which becomes accurate for larg®), for TDD we see that the rate gap for analog feedback is a

the upperbound also becomes a very good approximation.factor1 + VN larger than for TDD.

The upperbound (24) yields two interesting behaviors: 1 For futgre reference(ijt is alrs]o worthwhile to.notic_ehthat ]:[he
for a fixed SNR (i.e., constari®?F) T} increases aé)(\/T) DD setting corresponds to the non-TDD setting with perfect

asT — oo; 2) for a fixed coherence |_ntervﬁl, Tt* decreases  syote that a similar optimization is considered in [3], aligh in that work
asO(1/v R?F) for large SNR, or equivalently, it decreases aanalysis of this optimization is not performed.



feedback (i.e., the BS knows the UT channel estimates, DBr Digital Feedback with Errors

equivalentlywrg = 0 in Section Ill-A). As a result, the net  Rather than assuming (unrealistically) that the feedback
rate achievable with TDD serves as an upper bound to th@fannel operates at channel capacity and error-free, & thi
achievable with training and channel feedback. section we analyze a system where uncoded QAM is used
C. Error-Free Digital Feedback to transmit each UT’'s quantized channel vector over the
T
We now analyze digital feedback techniques, whereby ea]c&?dba‘:k chz?mnel. Each UT gtmze% feedchk _channel
uses. Assuming that quantization bits are arbitrarily negpp

UT quantizes its vector channel estimateRobits and then © ch | bol bol th
maps these bits int§§£ transmit symbols. For the quantizationg channet Symbois, one or more Symbol errors (among €
¢ = channel uses) makes the feedback from a particular UT

step we consider a family of random vector quantizatiofy; ~. .
(RVQ) schemes. Assuming the feedback bits are receiv ctively useless and thus leads to a rate effectivelyeod.z

Under this assumption, the achievable net rate is given by:

_ — T+ Thw — IF s
AR = log (1 + NtT Ly Q—Nf]) (30) (1 - T) (1—Pes) [RY" — AR] (36)
1

where the distortion error is expressed in terms of bitshis t where AR is defined in (30). Because each UT utilizgs
section we assume unrealistically that error-free comoasni complex channel symbols, the number of feedback bits per
tion is possible over the feedback channel at its underlyitger B = <& log, M whereM is the number of constellation
capacity of log, (1 + N%) bits per channel use. Each ofoints. The per-symbol QAM error probability is given by

tThfbe N; UT’s utilize % channel uses, and thereforg = Po—1_ <1 _q <1 1 >Q <3(P/N0)>)27 (37)
> log, (1 + p). As a result, we obtain VM M-1

error-free, in [1, Section V] it is shown that the rate gap is

igite Ny —1 - Tm hile the probability of a feedback erraP, is the proba-
digital _ t Ny (N =D W p y ve,fb p
9 (T1, Tro) T +p(l+p) - G bility that any of the symbols are received incorrectly:
The first step is the minimization of the above function sabje = T,
to the constraintl}, + Ty, < T;. Since g%i#*a! is convex in Pem=1—(1-F)". (38)
Ty, Ty, we form the Lagrangian and readily obtain In order to allow for a two-step optimization, we rewrite
T = Mm (32) the objective in (36) as:
n T;
21n(pu) + In (%) (1 = —t) [RZF — n(Ty)] (39)
+(N¢—1) k t
Ty, = Ni(N;—1) (33) T
In(1 + p)

where the effective rate-logs(7T;) incorporates the loss due
Note that the feedback length grows@sln 1), much slower . taqback error is defined as:

than the linear increase (jm) for the common training.
Contrary to the earlier analog feedback cagésita! cannot WTy =, . min _ w(i,Tn) (40)
be expressed as a closed form Bf but instead must be DT =
expressed as a function of However, for the sake of com- With
parison with analog feedback we perform this optimization i (Th, Th) = (1 B ngﬂ)) log (1 n NtT— 1 n pM_Nt(Tjgzl))
1

terms of Ty rather thanu. Based upon (32) we can expres%u
Ty, as a function off: +P. o R%F. (41)

2In(Ty) + In (%E&fgg)

In(1+ p) ’
and thus the net spectral efficiency can be written as:

If a reasonable constellation size is used, the probability
of feedback error is quite small even when the number of
feedback bits per users is relatively large (e.g., fgr= 4

at 10 dB with B = 25 and 4-QAM, P, 5, = 0.038). As

a result, the minimization ofv(T%, T ) is very similar to
the minimization ofgdi8!* (T} Ty,) for error-free feedback in

X (31), but with a constellation of siz&l rather tharl+p. When
computed numerically, an optimization over the constelfat

size is also performed.
RZF _log (14 D21 Nu(N, — 1)° (35) P
T (T1)?1In(1 + p) V. NUMERICAL EXAMPLES & DISCUSSION

Becausdly, increases logarithmically witld}, its effect onthe  This section provides some numerical examples to illustrat
maximization is rather minimal. As a result, the maximiaati the analysis of the previous section. The system parameters
of T} is very similar to the maximization dfrpp in the TDD unless otherwise specified, aré, = 4 and p = 10 dB.
setting, which is in turn similar to the maximization @f in In all cases the previously stated optimizations have been
the presence of analog feedback. numerically computed witll; and T}, restricted to integers,

T, = Ni(Ny — 1)

(34)

21a(rs i tteet )

In(14p)

) T1 + Ny(Ny — 1)

T
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Fig. 1. Optimum number of feedback symbdl&;() versus total training + Fig. 2. Optimum number of feedback symbol&y) and training symbols
feedback T3). (T4) versus blocklengthT().

subject to the constraint; > N, (to ensure at least one o

training symbol per channel coefficient) afi@, > N? for Digital FB 0D Perfect CSI

analog feedback (one feedback symbol per channel coefiicien

and Ty, > N; for digital feedback (one FB symbol per UT).
In Fig. 1 the optimum number of feedback symbdlg,}]

is plotted versudy, the total training & feedback budget, for

I~
>
T

=
N
T

Rate/User (bps/Hz)
-

analog feedback, digital feedback, and digital feedbadk wi 081/ /)" pigitai FB wi Arelco T8
errors (uncoded QAM). For analog feedback the number of osf- Emors

feedback symbols grows linearly with; with slope Ty, = oalt

1%, while for digital feedbacKly, increases withl; at 0_2,‘,‘

a much slower rate (approximately logarithmically). Theera ol : ‘ ‘ ‘

of increase forTy, is particularly slow beyond’; = 100. At 0 1000 Blocklength (1) #o00 5000

this point digital feedback without errors correspondsl o
symbols per user and thus nea3ly bits (B). At this point the
distortion due to quantizatior?(%) is less tharl0—2 and
the gains in increasin§ beyond this point are very negligible.

Even when feedback using uncoded 4-QAM is consideregner hand, digital feedback is very efficient and a reldive
each user is quantizing & bits at7; = 100. The abrupt shift sma|| number of feedback symbols is required.

for digital feedback with errors occurs when the consteltat |, Fig. 3 the net achievable rate is plotted versus blockteng
changes from 4-QAM to BPSK: when the number of feedback For analog and TDD the rate approximations based upon
symbols becomes too large (whéf is sufficiently large) (26) are indicated with dotted lines and are seen to become
the probability of feedback error becomes significant and j{creasingly accurate &8 is increased. Analog feedback is
becomes more efficient to reduce this error probability tb(utperformed by digital feedback, with or without errorsy f
reducing the constellation to BPSK while keeping the numbgyj piockiengths. This is because digital feedback offers a
of bits (B) nearly the same. This is a consequence of usiRgynificantly smaller distortion as compared to analog when
uncoded transmission on the FB channel. ever Ty, is larger than (approximatelyy? (i.e., one symbol

In Fig. 2 the optimal values df; andTf, are plotted versus per channel coefficient) [1, Section VI], and for reasonable
blocklengthT" for analog, digital, and digital w/ error§irpp  blocklengths it is optimal to us@, larger thanN? (Fig. 2).
is also plotted for TDD. Most striking is the fact that the
optimal values ofT} and the optimall’'rpp are essentially REFERENCES
identical for the three feedback techniques as well as fdDTDI[1] G. Caire, N. Jindal, M. Kobayashi, and N. Ravindran, “kuser MIMO

Furthermore, although not shown here, the optimizing wlue Dov_vnlin_k Made Practical : Achievablg Rateslwith Simple QhelrState
Estimation and Feedback Scheme&kiv preprint ¢s.IT/0710.2642.

of Ty are very well approximated bx/ (N}'é;z;)T as in (25). [2] M. Kobayashi, G. Caire, and N. Jindal, “How much trainiaigd feedback

On the other hand, the number of feedback symbols dependsare needed in MIMO broadcast channels?"phoceedings of IEEE Int.

.. Symp. on Inform. theory, ISIT, Toronto, Canada, 2008.
critically on the feedback method. Because analog feedbagk j. jose, A. Ashikhmin, P. Whiting, and S. Vishwanath, H&guling

is so inefficient, a large number of feedback symbols are used and Precoding in Multi-User Multiple Antenna Time Divisidbuplex
so that the rate gap due to feedback is not too large. On the Systems"Aniv preprint cs.IT/0812.0621.

Fig. 3. Achievable sum rate vs. blocklength)(



