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Abstract

In this thesis we investigate the capacity of multi-user wireless communication channels. We

first establish a duality relationship between the Gaussian broadcast and multiple-access

channels. This relationship allows us to characterize the capacity region of the Gaussian

broadcast channel in terms of the dual Gaussian multiple-access channel, and vice versa.

This relationship holds for constant, fading, and multiple antenna channels. We also extend

this duality to a class of deterministic, discrete memoryless channels.

We then consider multiple-antenna multi-user channels, for which the capacity region

is known only for the multiple-access channel. A duality is established between the dirty

paper coding achievable region of the broadcast channel, which is a lower bound to the

capacity region, and the true capacity region of the multiple-access channel. We use duality

to prove that dirty paper coding achieves the sum rate capacity of the multiple-antenna

broadcast channel. Next, we provide an efficient and provably convergent algorithm that

computes the sum rate capacity. Finally, we analytically upper bound the advantage that

dirty paper coding provides over the sub-optimal technique of time division.

Next we consider power allocation for time-varying wireless channels. We propose the

concept of minimum rate capacity, in which average rates are maximized subject to the

constraint that a minimum rate must be maintained for each user in all fading states. We

explicitly characterize the minimum rate capacity and the corresponding optimal power

allocation policies for the fading broadcast channel. We then use duality to characterize

the minimum rate capacity of the dual fading multiple-access channel. Finally, we find

the optimal power allocation policies that maximize ergodic capacity of a fading broadcast

channel with both independent messages and a common, or multicast, message.

In the final chapter, we study the benefits of cooperative communication in an ad-hoc

network. In such a network there are multiple transmitters and multiple receivers. We

consider cooperation schemes within the transmitting and receiving clusters. Using our

earlier work on multiple antenna multi-user channels, we compare achievable rates to those

achievable without cooperation.
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Chapter 1

Introduction

Over the last decade or so, wireless communication has transformed from a niche technology

into an indispensable part of life. Spectacular growth is still occurring in cellular telephony

and wireless networking, with no apparent end in sight. The combination of ubiquitous

cellular phone service and rapid growth of the Internet has created an environment where

consumers desire seamless, high quality connectivity at all times and from virtually all

locations. Though perhaps unrealistic, this is, in essence, a desire to replicate, and perhaps

even surpass, the wired experience in a wireless fashion.

In addition to the traditional network usage of wireless technology, many new appli-

cations of wireless have emerged over the years. Most notably is the idea of distributed

sensing, in which large numbers of cheap, wireless nodes sense some ongoing process and

wirelessly communicate with each other and wired access points. Environmental detection,

surveillance, and health monitoring are just a few of the innumerable potential uses of

distributed sensor networks.

With these visions comes a need for substantial technological improvements. This thesis

studies the fundamental limits of wireless networks, and along the way provides suggestions

for improvements that may allow us to bring many of these visions to fruition. The re-

mainder of this chapter provides necessary background material and outlines the specific

contributions of this thesis.

1.1 Background and Motivation

In this work we study the fundamental system limits, or channel capacity, of wireless commu-

nication systems. The notion of channel capacity was first developed by Claude E. Shannon

in his landmark 1948 paper “A mathematical theory of communication” [59]. Channel ca-

pacity is defined to be the maximum achievable communication rate with arbitrarily small

probability of error. Channel capacity is defined with no limits on computational com-

plexity or delay, and thus is a truly fundamental measure of the performance limits of any

1



Figure 1.1: Cellular channel model

communication system. The additive white Gaussian noise channel is perhaps the simplest

example of a point-to-point channel. In such a channel, the output, denoted by y, is equal

to the sum of the input x and additive Gaussian noise n:

y = x + n. (1.1)

Here the inputs and outputs could be voltages in communication circuitry, and the additive

noise could be thermal noise in the circuitry. By Shannon’s results, the capacity of such a

channel is equal to

C = log(1 + SNR) (1.2)

where the SNR is equal to the ratio of the power of the input signal to the power of the noise.

Thus, asymptotically error-free communication at rates below log(1+SNR) is possible, while

transmission at any rate larger than log(1 + SNR) is guaranteed to have errors.

In this thesis we focus exclusively on multi-user communication networks. Most tradi-

tional wireless systems are based on the cellular methodology, where the area to be covered

is broken into geographical cells. A wired base station or access point is placed in each cell,

and the wireless users in each cell communicate exclusively with the corresponding base

station, which acts as a gateway to the rest of the network. Cellular telephone systems

and wireless local area networks are organized in this manner. Though neighboring cells do

generally interact with one another, it is standard to model interference from neighboring

cells as an additional source of noise. Thus, we concentrate on the single cell model shown

in Figure 1.1, in which there is a single base station and multiple mobile devices.

When the base station is transmitting messages to the mobiles, the channel is referred to

as a downlink or broadcast channel. In the context of a wireless network, the base station

could be transmitting a different voice call to a number of mobiles while simultaneously

transferring data files to other users. Notice that this differs from a TV or radio broadcast, in

2



Figure 1.2: Ad-hoc network

R2

R1

Figure 1.3: Rate region of a two user broadcast channel

which the transmitter sends the same message to each receiver. We are in general interested

in transmission of different messages to each mobile. Conversely, when the mobiles are

transmitting messages to the base station, the channel is referred to as an uplink or multiple-

access channel. Similar to the downlink channel, we are interested in the scenario where

each mobile is transmitting a different message to the base station.

In both point-to-point channels and multi-user channels, using multiple antennas at the

transmitters and/or receivers has been shown to significantly increase data rates [16] [61] [5].

We thus consider the broadcast and multiple-access channels with and without multiple

antennas. In general, the multiple antenna scenario is not nearly as well understood as the

single antenna scenario.

In addition to studying cellular systems, we also study ad-hoc and sensor networks in

which there are many wireless nodes and no wired infrastructure. Such a network is shown
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in Figure 1.2. In these networks, any node can communicate with any other node. When

wireless sensors are placed in an environment and need to communicate with each other

such infrastructure-less networks are required.

In point-to-point systems, the channel capacity is a single number that dictates the

maximum data rate from transmitter to receiver. In a multi-user system such as the broad-

cast channel in Figure 1.1, the transmitter can simultaneously transmit to more than one

user. Thus, the channel capacity is the set of all simultaneously achievable rate vectors.

The capacity region of a two user broadcast channel is shown in Figure 1.3. Notice that

the axes are R1 and R2, or the transmission rates to receivers 1 and 2 respectively. Here,

the capacity region is the set of all achievable rate pairs (R1, R2). Any rate pair not in the

capacity region is not achievable, i.e. transmission at a rate pair not in the region will lead

to errors. Similarly, the rate region for a K-user broadcast channel or a K-user multiple-

access channel is a K-dimensional region. In a K-node ad-hoc network the capacity region

is in fact K(K − 1)-dimensional since the K nodes can each communicate with K − 1 other

nodes.

In this work we study the capacity region of the broadcast channel and multiple-access

channel, and consider the capacity of an ad-hoc network when cooperation between nodes

is allowed. There are a number of motivations for studying channel capacity. First off,

channel capacity by definition establishes limits on the performance of practical communi-

cation systems. These limits provide system benchmarks and allow engineers to easily see

how much improvement is theoretically possible. Second, the process of studying channel

capacity often provides motivation for practical transmission strategies. A prime example

of this is in the development of coding theory for wireline telephone channels. Shannon’s

early channel capacity results established that the capacity of telephone channels was or-

ders of magnitudes greater than the data rates previously thought feasible. Thus, it became

a goal of engineers to develop practical communication systems that came close to Shan-

non’s limits, primarily in the form of advanced channel coding techniques. Over the years,

theoretical ideas such as random coding have influenced the design of practical systems,

and telephone modems have recently approached the channel capacity. Without Shannon’s

ideas, engineers would have no concrete goal to aim at, nor would they have known when

their systems could no longer be significantly improved upon.

A final motivation for the study of channel capacity can be found by examining the

entire network stack (shown in Figure 1.4), which traditionally consists of an application

layer, followed by the transport and network layers, and finally the physical layer. Channel

capacity establishes fundamental limits of the physical/MAC layer of the network architec-

ture. In previous decades, engineers used the network stack architecture to abstract out

the functionality of each layer and study each layer independently. In wireless systems,

however, the prevailing view is that such abstraction is not possible and that the entire
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Figure 1.4: Traditional network stack

communication and network system design needs to be thought of simultaneously, which

is referred to as cross-layer design. From this viewpoint, it is essential to thoroughly un-

derstand performance limits and tradeoffs in the physical layer. Thus, channel capacity is

tremendously valuable from a broad network perspective.

1.2 Overview of Contributions

We address the following specific questions in this thesis:

1. Are the multiple-access channel and broadcast channel related?

2. What are the fundamental capacity limits of the multiple antenna broadcast channel?

3. How should rate and power be optimally allocated for fading multi-user channels?

4. Can cooperation provide significant gains in terms of data rate in an ad-hoc network?

We begin by providing the fundamental capacity results known for the multiple-access

channel and the broadcast channel in Chapter 2. We define the precise system models for

both channels, and present expressions for the capacity regions for both discrete memory-

less channels and Gaussian channels. Within the class of Gaussian channels, we consider

constant, or AWGN channels, fading channels, and multiple-antenna channels.

The broadcast channel was first introduced by Cover in the 1970’s [9], whereas the

multiple-access channel dates back to the days of Shannon [58, pp. 641]. While the capacity

region of the general multiple-access channel is known [1] [44], the same cannot be said

for the broadcast channel. The capacity region of the general broadcast channel remains

unknown, but the capacity region of the single antenna Gaussian noise broadcast channel,

which we study extensively, was determined by Bergmans [2].

In Chapter 3 we derive a fundamental result relating the broadcast channel and the

multiple-access channel. Though the capacity regions for the Gaussian versions of these

channels have been known for years, no previous relationship has been established between

the uplink and downlink channels. We first consider Gaussian channels and show that
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the capacity region of the broadcast channel can be characterized in terms of the capacity

region of what we refer to as the dual multiple-access channel, and vice versa. The dual

multiple-access channel is arrived at by converting the transmitter in the broadcast channel

into a receiver and by converting all receivers in the broadcast channel into transmitters.

In addition, the dual multiple-access channel has the same channel gains as the broadcast

channel and the noise power at the multiple-access receiver is the same as the noise power

in each of the broadcast channel receivers. If the uplink and downlink channels in Figure

1.1 are operated on the same frequencies, we would expect them to be duals of each other.

We first establish a capacity region relationship for AWGN broadcast and multiple-

access channels and then show it can be extended to fading channels. We then consider

Gaussian multiple-antenna broadcast and multiple-access channels. We establish a duality

relationship between a lower bound to the capacity region of the multiple-antenna broadcast

channel and the actual capacity region of the multiple-antenna multiple-access channel. We

later see that this result is crucial in establishing the sum rate capacity of the multiple-

antenna broadcast channel. We also attempt to generalize this duality result by considering

discrete memoryless broadcast and multiple-access channels. We propose a framework for a

duality between discrete memoryless broadcast and multiple-access channels, and we estab-

lish a duality relationship between a limited class of deterministic, or noiseless, channels.

However, we also prove a negative result by providing an example of a broadcast channel

for which no dual multiple-access channel exists within our framework.

In Chapter 4 we consider a multiple antenna broadcast channel, for which the capacity

region was previously unknown. Multiple-antenna point-to-point channels were first studied

by Foschini and Gans [16] and Telatar [61] in the mid 1990’s. In their seminal work, it

was shown that adding multiple transmit and receive antennas can lead to spectacular

increases in capacity without increasing either power or bandwidth. In fact, capacity grows

approximately linearly with the number of antennas. Thus, doubling the number of receive

and transmit antennas can theoretically double data rates without an increase in power.

This spectacular result has attracted a great deal of interest in industry and in the research

community. In our work, we consider the use of multiple antennas in a multiple-user setting

instead of a point-to-point setting.

The single-antenna broadcast channel falls into the class of degraded broadcast channels,

for which the capacity region is known. Roughly speaking, a broadcast channel is degraded if

the users can be absolutely ordered in terms of received signal quality. The multiple-antenna

broadcast channel, however, is not a degraded broadcast channel because the channels of

each user is described by a matrix of channel gains instead of a single scalar value. Caire

and Shamai first applied the concept of dirty paper coding [8] to the multiple antenna

broadcast channel [5]. Dirty paper coding is a technique that reduces interference seen at

each receiver by pre-subtracting interference at the transmitter. Using dirty paper coding,
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Caire and Shamai established an achievable rate region, which is a lower bound to the

capacity region by definition, and showed that this rate region actually achieves the sum

rate capacity of the multiple antenna broadcast channel for a two user channel in which

only the transmitter has multiple antennas.

In this thesis, we extend and build upon this work in a number of different ways. First,

we establish a duality between the capacity region of the multiple-access channel and the

dirty paper coding achievable rate region of the broadcast channel. We then use this duality

to show that dirty paper coding achieves the sum rate capacity of the multiple antenna

broadcast channel with an arbitrary number of users and an arbitrary number of transmit

and receive antennas. From this result, the sum rate capacity is characterized in terms

of a high-dimensional maximization problem. We then propose an efficient and provably

convergent algorithm that computes the sum rate capacity of the multiple antenna broadcast

channel and the corresponding optimal transmission strategy. Finally, we compare the sum

rate capacity of the multiple antenna broadcast channel, achievable through use of dirty

paper coding, to the maximum sum rate achievable using time-division multiple-access,

a sub-optimal but more practical transmission scheme. This allows us to quantify the

advantage that the complex but capacity achieving strategy of dirty paper coding provides

over simpler schemes.

In Chapter 5 we consider the problem of optimally allocating rate and power to a fading

broadcast channel. Goldsmith and Varaiya first characterized the optimal power allocation

policy for a fading single-user channel in [20]. The optimal power policy maximizes the

long-term average rates achievable in this channel when both the transmitter and receiver

are able to perfectly track the instantaneous channel conditions. This work was extended

to the fading broadcast channel in [41, 63] and to the multiple-access channel in [62]. As

intuition would suggest, the optimal rate and power policy allocates a large amount of

rate to users with strong channels. An unfortunate consequence of focusing exclusively on

average rate is that users with poor channels may be allocated very little (or possibly even

zero) rate. This is unacceptable for certain delay-sensitive applications such as video, which

require a non-negligible instantaneous rate. We therefore find the optimal rate and power

allocation policy for the broadcast channel that maximizes long-term average rates subject

to a minimum rate constraint for each user in every fading state. This ensures that some

minimum level of service can be guaranteed to each user, regardless of channel conditions,

while at the same time taking advantage of channel variation. We term this the minimum

rate capacity region. Furthermore, we are able to show that the minimum rate capacity

achieving power policy can be interpreted in terms of the ergodic capacity (i.e. long-term

average rates only) achieving power policy of a related channel.

Finding the optimal rate and power policy for the same performance metric for the

fading multiple-access channel seems very difficult. However, we are able to circumvent
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this difficulty by using the duality relationship established in Chapter 3 to characterize the

minimum rate capacity region of the multiple-access channel in terms of the minimum rate

capacity region of the dual broadcast channel.

We also consider fading broadcast channels in which the transmitter wishes to send

a common, i.e. multicast, message in addition to independent messages to each user. A

common message must be decodable by all users. A fading broadcast channel is essentially

a parallel set of broadcast channels, one for each fading state. Each of these broadcast

channels is a degraded broadcast channel, for which we know the capacity region. However,

in general, the same user does not have the strongest channel in every fading state. Thus,

the channel is not degraded in the same direction in each fading state. Such a channel is

referred to as a mismatched broadcast channel or a reversely degraded broadcast channel.

El Gamal derived the capacity region (with respect only to average rates) of such a channel

in the late 1970’s in [18]. The given expression for the capacity region is quite difficult to

manipulate. In our work, we derive an alternative formulation for the capacity region that

is much more amenable to optimization and then find the optimal power allocation policies

that maximize average rates. We find the optimal solution to be quite different than the

optimal power allocation policies found in [41, 63] when there is no common message. In

addition, we also consider multiple antenna broadcast channels with common messages.

The capacity of such a channel is unknown, but we propose a dirty-paper coding based

achievable region. This region is an intuitive extension of the dirty paper coding region,

but it appears quite difficult to determine whether the region is actually the capacity region.

In Chapter 6 we consider an ad-hoc network in which there are multiple transmitters

and multiple receivers. We measure the performance gain of using cooperation in such an

environment, i.e. we quantify the increase in data rates possible by allowing the transmitters

and/or receivers to cooperate. Sendonaris et. al. [57] considered the rates achievable in a

channel with two cooperative transmitters and a single receiver. Laneman, Tse, and Wornell

considered a model similar to ours, but studied only the effect of cooperation on channel

outage, instead of channel capacity, in a fading environment [40]. Host-Madsen has also

analyzed a two transmitter, two receiver channel in terms of channel capacity, but only

with respect transmitter cooperation [24]. In our work, we study cooperation at both the

transmitter and receiver sides in a non-fading environment in terms of data rate increases

. We consider different cooperation schemes and show that using transmitter cooperation

can yield significant data rate increases over non-cooperation.

Finally, we discuss conclusions and possible extensions of this thesis in Chapter 7. The

following table lists some abbreviations used throughout the thesis.
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AWGN Additive White Gaussian Noise

MAC Multiple-Access Channel

BC Broadcast Channel

DMC Discrete Memoryless Channel

MIMO Multiple Input Multiple Output (Multiple Antenna)

DPC Dirty Paper Coding

TDMA Time-Division Multiple Access

CSI Channel State Information

TX Transmitter

RX Receiver

Table 1.1: Table of abbreviations.
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Chapter 2

Capacity of Broadcast and

Multiple-Access Channels

This chapter introduces the two most heavily studied multi-user channels: the broadcast

channel and the multiple-access channel. The broadcast channel was introduced by Cover in

the early 1970’s [9], whereas the multiple-access channel dates back to Shannon [58, pp. 641].

We state the basic system models for both discrete memoryless and Gaussian broadcast and

multiple-access channels, along with known capacity results.

2.1 Discrete Memoryless Channels

In the broadcast channel, there is a single transmitter and multiple receivers. The transmit-

ter wishes to send a separate message to each of the receivers1. For simplicity, we consider

only two user broadcast channels in this section. A two-user discrete memoryless broadcast

channel consists of three finite sets X, Y, Z and probability distributions p(y, z|x) on Y ×Z

for every x ∈ X.

The capacity region of the general broadcast channel remains unknown, and the best

known achievable region was given by Marton [50]. However, the capacity region is known

for a number of classes of broadcast channels. Of particular interest for this thesis is the

class of degraded broadcast channels. A broadcast channel is degraded if there exists a

channel p′(z|y) such that Z can be written as the output of a composite channel from Y to

Z, i.e. p(z|x) =
∑

y∈Y p(y|x)p′(z|y). The capacity region of a degraded broadcast channel

was shown by Gallager [17] to equal the closure of the convex hull of all (R1, R2) that satisfy:

R1 ≤ I(X; Y |U) (2.1)

R2 ≤ I(U ; Z) (2.2)

1In Chapter 5 we also consider the scenario where the transmitter also sends a common message that
must be decoded by every receiver.
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for some distribution p(u)p(x|u)p(y, z|x) [13]. Rate vectors in the capacity region can be

achieved through use of superposition coding, which was first proposed in [9]. In superpo-

sition coding, codewords are first chosen for Receiver Z via the auxiliary random variable

U , and codewords for Receiver Y (the stronger of the two receivers) are superimposed on

U via the distribution p(x|u). Receiver Z decodes only the codeword intended for him,

while Receiver Y first decodes the Z codeword and then decodes the codeword intended for

himself.

2.1.1 Multiple-Access Channel

A multiple-access channel is a channel in which multiple transmitters wish to send inde-

pendent messages to a single receiver. Such a channel consists of three finite alphabets

X1, X2, Y and probability distributions p(y|x1, x2) on Y for each (x1, x2) ∈ X1 ×X2. In [1]

and [44], the capacity region of the multiple-access channel was shown to equal the closure

of the convex hull of all rate pairs (R1, R2) that satisfy

R1 ≤ I(X1; Y |X2) (2.3)

R2 ≤ I(X2; Y |X1) (2.4)

R1 + R2 ≤ I(X1, X2; Y ) (2.5)

for some product distribution p(x1)p(x2) [13]. Each input distribution p(x1)p(x2) corre-

sponds to a pentagon region, described by the above inequalities, and corner points of the

pentagon can be achieved by using successive decoding at the receiver, i.e. by decoding the

codeword from one of the users first, and then decoding the other codeword.

2.2 Gaussian Channels

Throughout this thesis we consider discrete-time Gaussian channels, which are continuous

input-continuous output channels where the received signal is equal to a scaled version of

the transmitted signal and additive Gaussian noise. We consider both the broadcast and

multiple-access versions of the Gaussian channel, which are commonly used to model the

downlink and uplink channels, respectively, of cellular systems.

2.2.1 AWGN Broadcast Channel

In the Gaussian broadcast channel, the transmitter sends independent information to each

receiver by broadcasting a complex signal X[i] to K different receivers simultaneously. Here

i denotes the time index. Notice that X[i] contains information for all K receivers, i.e. some

part of it is intended for user 1, another part for user 2, etc. Each receiver is assumed to

suffer from flat-fading, i.e. the desired signal X[i] is multiplied by a channel gain hj , and
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Figure 2.1: System Models

white Gaussian noise nj [i] is added to the received signal. It is easy to show that the

capacity region of the single-antenna broadcast channel only depends on the norm of the

channel gain hj . Thus, for simplicity we will assume that all channel gains are real in

the single antenna scenario for both the broadcast channel and multiple-access channel.

We let h = (h1, . . . , hK) denote the vector of channel gains, which are fixed for all time.

Mathematically, the j-th received signal in the broadcast channel can be described by:

Yj[i] =
√

hjX[i] + nj [i] j = 1, . . . , K

where nj [i] is normally distributed with unit variance2. The broadcast channel is illustrated

in the left side of Fig. 2.1. The transmitter is subject to an average power constraint P ,

i.e. the input signal X[i] must satisfy E[X2] ≤ P .

In [2], Bergmans showed that the capacity region of the Gaussian BC with channel gains

h = (h1, . . . , hK) and power constraint P , denoted CBC(h, P ), is given by the rate vectors

satisfying

Rj ≤ log

(

1 +
hjP

B
j

1 + hj
∑K

k=1 PB
k 1[hk > hj ]

)

j = 1, . . . , K (2.6)

for any power allocation PB
1 , . . . , PB

K satisfying
∑K

j=1 PB
j = P . Additionally, any rate vector

taking the form of (2.6) with equality lies on the boundary of the capacity region.

Any set of rates in the capacity region is achievable using successive decoding, in which

2Throughout this work we assume additive Gaussian noise has variance one for simplicity. If the noise
variance is not equal to one, the channel gains can be normalized such that the noise variance is unity.
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users decode and subtract out signals intended for other users before decoding their own

signal. To achieve the boundary points of the BC capacity region, the signals are encoded

such that the strongest user can decode all users’ signals, the second strongest user can

decode all users’ signals except for the strongest user’s signal, etc. The “strongest” user

refers to the user with the largest channel gain hi.

As seen in [81], the capacity region of the broadcast channel is also achievable via

“dirty-paper coding”, in which the transmitter “pre-subtracts” (similar to pre-coding for

inter-symbol interference mitigation) certain users’ codewords instead of receivers decoding

and subtracting out other users’ signals. When users are encoded in order of increasing

channel gains, this technique achieves capacity and is equivalent to successive decoding.

Though sub-optimal, dirty paper coding can be performed using any other encoding order

as well3. Assuming encoding order (π(1), π(2), . . . , π(K)) in which the codeword of User

π(1) is encoded first, the rates achieved in the BC are:

RB
π(j) =

1

2
log

(

1 +
hπ(j)P

B
π(j)

1 + hπ(j)

∑K
i=j+1 PB

π(i)

)

. (2.7)

Clearly these rates are achievable and thus are in the BC capacity region. In fact, any

rates of the form of (2.7) for any encoding order π(·) and any power allocation such that
∑N

i=1 PB
i = P lie in CBC(h, P ). We will make extensive use of this fact in proofs in Chapter

3. Note that if π(·) is in order of increasing channel gains, then the rate vector (2.7) lies on

the boundary of the capacity region.

2.2.2 AWGN Multiple-Access Channel

In the Gaussian multiple-access channel, each transmitter transmits a complex-valued input

(subject to an average power constraint) and the received signal is equal to the sum of the

transmitted signals and additive Gaussian noise. Similar to the broadcast channel, each

user is assumed to suffer from flat-fading, i.e. the j-th transmit signal Xj is multiplied

by
√

hj . As noted in the earlier description of the AWGN broadcast channel in Chapter

2.2.1, without loss of generality we assume that each of the channel gains is purely real.

Mathematically, the received signal in the multiple-access channel is equal to:

Y [i] =
K
∑

j=1

√

hjXj [i] + n[i] (2.8)

3Note that with successive decoding, when a sub-optimal decoding order is used it must be ensured that
all users who are supposed to decode and subtract out a certain user’s signal have a large enough channel
gain to do so. This limits the rates achievable using successive decoding with a sub-optimal decoding order.
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where n[i] is normally distributed with unit variance. Here i again represents the time index.

The multiple-access channel is illustrated in the right side of Fig. 2.1. Each transmitter is

subject to an average power constraint P j , i.e. the input signal Xj [i] must satisfy E[X2
j ] ≤

P j for j = 1, . . . , K. From [13], the capacity region of a Gaussian multiple-access channel

with channel gains h = (h1, . . . , hK) and power constraints P = (P1, . . . , PK), denoted by

CMAC(h, P ) is given by:

CMAC(h, P ) =







R :
∑

j∈S

Rj ≤ log



1 +
∑

j∈S

hjP j



 ∀S ⊆ {1, . . . , K}







. (2.9)

The capacity region of the constant MAC is a K-dimensional polyhedron, and succes-

sive decoding with interference cancellation can achieve all corner points of the capacity

region [13]. There are K! corner points in the capacity region, and every decoding or-

der corresponds to a different corner point of the capacity region. Given a decoding order

(π(1), π(2), . . . , π(K)) in which User π(1) is decoded first, User π(2) is decoded second, etc.,

the rates of the corresponding corner point are:

Rπ(j) = I(Xπ(j); Y |Xπ(1), . . . , Xπ(j−1)) (2.10)

= log

(

1 +
hπ(j)P π(j)

1 +
∑K

i=j+1 hπ(i)P π(i)

)

j = 1, . . . , K. (2.11)

We will use this form of the rates throughout this work. The capacity region of the MAC

is in fact equal to the convex hull of these K! corner points and all other rate vectors that

lie below this convex hull (i.e. are component-wise less than or equal to a rate vector in the

convex hull).

2.2.3 Fading Broadcast Channel

In a flat-fading broadcast channel, the channel gains hj [i] vary over time according to

some jointly stationary and ergodic fading process H = (H1, . . . ,HK). The mathematical

description therefore is:

Yj[i] =
√

hj [i]X[i] + nj [i] j = 1, . . . , K.

The only difference from the AWGN model in (2.6) is that the channel gain hj [i] changes

according to an ergodic fading process. We consider the scenario where the transmitter and

all receivers have perfect CSI (channel state knowledge), i.e. each transmitter and receiver

has perfect and instantaneous knowledge of the fading state h[i] = (h1[i], . . . , hK [i]).

In order to determine the ergodic capacity of this channel, which is the set of all achiev-

able long-term average rates, we must consider power policies. A power policy PBC is a
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function that maps from a joint fading state h = (h1, . . . , hK) to the transmitted power

PB
j (h) for each user. Let FBC denote the set of all power policies satisfying the average

power constraint: FBC = {PBC : EH[
∑K

j=1 PB
j (h)] ≤ P}. From Theorem 1 of [41], the

ergodic capacity region of the BC with perfect CSI and power constraint P is the union

over all power policies in FBC :

CBC(H , P ) =
⋃

PBC∈FBC

CBC(H ,PBC) (2.12)

where CBC(H ,PBC) are the rates achievable using power policy PBC :

CBC(H ,PBC) =
{

R : Rj ≤ EH

[

log

(

1 +
hjP

B
j (h)

1 + hj
∑K

k=1 PB
k (h)1[hk > hj ]

)]

, j = 1, . . . , K

}

.

From this definition it follows that a rate vector R is in CBC(H , P ) if and only if there

exists a mapping from joint fading states to rate vectors R(h) and a power policy P B(h)

in FBC such that R ≤ EH[R(h)] with R(h) ∈ CBC(
∑K

i=1 P B
i (h); h) for all fading states h.

2.2.4 Fading Multiple-Access Channel

In a flat-fading multiple-access channel, the channel gains hj [i] vary according to a jointly

stationary and ergodic fading process H = (H1, . . . ,HK). The received signal therefore is

given by:

Y [i] =
K
∑

j=1

√

hj [i]Xj[i] + n[i]. (2.13)

The only difference from the AWGN model in (2.8) is that the channel gain hj[i] changes ac-

cording to an ergodic fading process. We consider the scenario where the transmitter and all

receivers have perfect CSI, i.e. each transmitter and receiver has perfect and instantaneous

knowledge of the fading state h[i] = (h1[i], . . . , hK [i]).

In order to determine the ergodic capacity of the fading MAC, we must consider power

policies. Similar to the fading broadcast channel, a power policy PMAC is a map from

fading states h = (h1, . . . , hK) to the transmitted power PM
j (h) for each user. Let FMAC

denote the set of all power policies satisfying the K individual average power constraints:

FMAC = {PMAC : EH[PM
j (h)] ≤ P j 1 ≤ j ≤ K}.

From Theorem 2.1 of [62], the ergodic capacity region of the multiple-access channel

with perfect CSI and power constraints P = (P 1, . . . , PK) is:

CMAC(H , P ) =
⋃

PMAC∈FMAC

CMAC(H ,PMAC), (2.14)
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Figure 2.2: System models of the MIMO BC(left) and the MIMO MAC
(right) channels

where CMAC(H ,PMAC) is defined as:

CMAC(H ,PMAC) =







R :
∑

j∈S

Rj ≤ EH



log



1 +
∑

j∈S

hjP j







 ∀S ⊆ {1, . . . , K}







.

By Lemma 3.8 of [62], CMAC(H ,PMAC) can alternatively be defined as:

CMAC(H ,PMAC) = {EH[R(h)] : R(h) ∈ CMAC(P M (h); h) ∀h}. (2.15)

where R(h) is the rate vector of all K users as a function of the joint fading state and

CMAC(h, P M (h)) is the constant MAC capacity region.

2.2.5 MIMO Broadcast Channel

In a multiple-input, multiple-output (MIMO) broadcast channel, the transmitter and the

receivers have multiple antennas. We also loosely use the term MIMO to refer to the case

where the transmitter has multiple antennas and the receivers may each only have single

antennas. This channel differs from the AWGN broadcast channel described in Chapter

2.2.1 in that the input is vector-valued and the received signal is equal to the product of

the channel gain matrix and the vector input, plus additive Gaussian noise on each receive

antenna component. We consider a MIMO broadcast channel with an M transmit antennas

and K receivers with r1, . . . , rK receive antennas, respectively. As in the AWGN channel,

the transmitter sends independent information to each receiver. The broadcast channel is

the system on the left in Fig. 2.2.

Let x ∈ C
M×1 be the transmitted vector signal and let Hk ∈ C

rk×M be the channel

matrix of receiver k where Hk(i, j) represents the channel gain from transmit antenna j
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to antenna i of receiver k. Unlike the scalar broadcast and multiple-access channel, we

cannot assume without loss of generality that the channel matrix is purely real. Thus, we

explicitly deal with complex quantities throughout all discussions of MIMO channels. The

circularly symmetric complex Gaussian noise at receiver k is represented by nk ∈ C
rk×1

where nk ∼ N(0, I). Notice that each receive antenna component suffers from additive

complex Gaussian noise of variance one. Let yk ∈ C
rk×1 be the received signal at receiver

k. The received signals are given by:









y1

...

yK









= Hx +









n1

...

nk









where H =









H1

...

HK









. (2.16)

The matrix H represents the channel gains of all receivers. The covariance matrix of the

input signal is Σx , E[xx†]. The transmitter is subject to an average power constraint P ,

which implies Tr(Σx) ≤ P . We assume the channel matrix H is constant and is known

perfectly at the transmitter and at all receivers.

Unlike the scalar AWGN broadcast channel described earlier, the MIMO broadcast

channel is in general not a degraded broadcast channel. For the scalar channel, users can

be absolutely ordered in terms of their channel norms. For the MIMO case, it is not in

general possible to order all channels. Thus, the capacity region of the MIMO broadcast

channel is not known in general.

An achievable region for the MIMO BC was first obtained in [5]. In [81], the region

was extended to the more general multiple-user, multiple-antenna case using the following

extension of dirty paper coding [8] to the vector case:

Lemma 2.1 [Yu, Cioffi] Consider a channel with yk = Hkxk + sk + nk, where yk is the

received vector, xk the transmitted vector, sk the vector Gaussian interference, and nk the

vector white Gaussian noise. If sk and nk are independent and non-causal knowledge of sk

is available at the transmitter but not at the receiver, then the capacity of the channel is the

same as if sk is not present.

In the MIMO BC, this result can be applied at the transmitter when choosing codewords

for different receivers. The transmitter first picks a codeword for receiver 1. The transmitter

then chooses a codeword for receiver 2 with full (non-causal) knowledge of the codeword

intended for receiver 1. Therefore receiver 2 does not see the codeword intended for receiver

1 as interference. Similarly, the codeword for receiver 3 is chosen such that receiver 3 does

not see the signals intended for receivers 1 and 2 as interference. This process continues

for all K receivers. Receiver 1 subsequently sees the signals intended for all other users

as interference, Receiver 2 sees the signals intended for Users 3 through K as interference,

etc. Since the ordering of the users clearly matters in such a procedure, the following is an
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achievable rate vector:

Rπ(i) = log

∣

∣

∣I + Hπ(i)(
∑

j≥i Σπ(j))H
†
π(i)

∣

∣

∣

∣

∣

∣I + Hπ(i)(
∑

j>i Σπ(j))H
†
π(i)

∣

∣

∣

i = 1, . . . , K. (2.17)

where π is any permutation of 1, . . . , K. The rate in (2.17) corresponds to the rates achieved

by encoding user π(1) first, followed by π(2), etc. Thus, user π(i) employs dirty paper cod-

ing to eliminate interference from the codewords intended for users π(1) through π(i − 1).

However, the codewords intended for user π(i + 1) through π(K) are treated as interfer-

ence at receiver π(i). Thus, the effective noise (i.e. noise plus interference) at receiver

π(i) has covariance I + Hπ(i)(
∑

j>i Σπ(j))H
†
π(i), while the intended signal has covariance

Hπ(i)Σπ(i)H
†
π(i). By whitening the effective noise, it is apparent that the transmission rate

to receiver π(i) is given by:

Rπ(i) = log

∣

∣

∣

∣

∣

∣

I +



I + Hπ(i)





∑

j>i

Σπ(j)



H†
π(i)





−1

Hπ(i)Σπ(i)H
†
π(i)

∣

∣

∣

∣

∣

∣

, (2.18)

which by simple manipulation is equal to the expression in (2.17).

The dirty-paper region CDPC(H1, . . . ,HK , P ) is defined to equal the convex hull of the

union of all such rates vectors over all positive semi-definite covariance matrices Σ1, . . . ,ΣK

such that Tr(Σ1 + . . .ΣK) = Tr(Σx) ≤ P and over all permutations π:

CDPC(H1, . . . ,HK , P ) , Co





⋃

π,Σi

R(π,Σi)



 (2.19)

where R(π,Σi) is given by (2.17). The transmitted signal is x = x1+ . . .+xK and the input

covariance matrices are of the form Σi = E[xixi
†]. The dirty paper-coding procedure yields

statistically independent signals x1, . . .xK , from which it follows that Σx = Σ1 + . . .ΣK .

One important feature to notice about the dirty paper rate equations in (2.17) is that

the rate equations are neither a concave nor convex function of the covariance matrices

Σ1, . . . ,ΣK . This makes finding the dirty paper region very difficult, because generally

the entire space of covariance matrices which meet the power constraint must be searched

over. In this thesis we consider the dirty paper region subject to a transmit power con-

straint. Recent work [39] has characterized the dirty paper region subject to individual rate

constraints (i.e. minimizing the transmit power required to achieve a certain set of rates).

2.2.6 MIMO Multiple-Access Channel

In a MIMO multiple-access channel, each of the transmitters and the receiver possibly have

multiple antennas. We consider a MAC where the j-th transmitter has rj antennas, and
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the receiver has M antennas.

Let xk ∈ C
rk×1 denote the transmitted signal of transmitter k. Let yMAC ∈ C

M×1

be the received signal and n ∈ C
M×1 the noise vector where n ∼ N(0, I). We also use

Hk ∈ C
M×rk to denote the channel matrix from the k-th transmitter to the receiver (notice

that the channel matrix dimensions are opposite those in the MIMO broadcast channel).

The received signal is mathematically represented as

yMAC = H1x1 + . . . + HKxK + n

= H









x1

...

xK









+ n where H = [H1 . . . HK ] .

Each transmitter is subject to an individual power constraint of P1, . . . , PK . The channel

matrices H1, . . . ,HK are assumed to be fixed and known at all transmitters and receivers.

The MIMO MAC is shown in the right half of Fig. 2.2.

The capacity region of the MIMO MAC, which we denote as

CMAC(H1, . . . ,HK , P1, . . . , PK), was obtained in [61, 66, 83]:

CMAC(H1, . . . ,HK , P1, . . . , PK) ,
⋃

{Qi≥0, Tr(Qi)≤Pi ∀i}

{

(R1, . . . , RK) : (2.20)

∑

i∈S

Ri ≤ log

∣

∣

∣

∣

∣

I +
∑

i∈S

HiQiH
†
i

∣

∣

∣

∣

∣

∀S ⊆ {1, . . . , K}
}

.

For each set of covariance matrices Q1, . . . ,QK the set of achievable rates is equal to a

K-dimensional polyhedron that is similar in shape to the AWGN MAC capacity region.

Successive decoding with interference cancellation can achieve all corner points of the poly-

hedron. Every decoding order corresponds to a different corner point of the capacity region,

and consequently there are K! corner points in the polyhedron. Given a decoding order

(π(1), π(2), . . . , π(K)) in which User π(1) is decoded first, User π(2) is decoded second, etc.,

the rates of the corresponding corner point are:

Rπ(j) = I(Xπ(j); Y |Xπ(1), . . . , Xπ(j−1))

= log

∣

∣

∣

∣

∣

∣

I +

K
∑

i=j

(HiQiH
†
i )

∣

∣

∣

∣

∣

∣

− log

∣

∣

∣

∣

∣

∣

I +

K
∑

i=j+1

(HiQiH
†
i )

∣

∣

∣

∣

∣

∣

= log

∣

∣

∣

∣

∣

∣

I +



I +

K
∑

i=j+1

(HiQiH
†
i )





−1

HjQjH
†
j

∣

∣

∣

∣

∣

∣

(2.21)

These successive decoding rate vectors correspond to the corner points of the K-dimension

polyhedron, and can be used to fully characterize the region. Unlike the scalar MAC, the
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capacity region of the MIMO MAC is equal to a union of such polyhedrons, where the union

is taken over all input covariance matrices, each corresponding to a different polyhedron.

Later in this thesis we deal heavily with the sum rate capacity of the MIMO multiple-

access channel, denoted Csumrate
MAC , which is defined as:

Csumrate
MAC (H1, . . . ,HK , P1, . . . , PK) , max

R1,...,RK∈CMAC(H1,...,HK ,P1,...,PK )

K
∑

i=1

Ri

= max
Tr(Qi)≤Pi

log

∣

∣

∣

∣

∣

I +
K
∑

i=1

HiQiH
†
i

∣

∣

∣

∣

∣

(2.22)

2.3 Summary

In this chapter we reviewed known results about the broadcast channel and the multiple-

access channel. We purposely studied these channels in a parallel fashion to emphasize the

natural symmetry in the two channel models. In the following chapter, we will see that the

Gaussian broadcast and multiple-access channels are closely related through their capacity

regions, and that there may be a more fundamental relationship between general discrete

memoryless broadcast and multiple-access channels.
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Chapter 3

Duality of Broadcast and

Multiple-Access Channels

In this chapter we establish a fundamental relationship between the multiple-access channel

and the broadcast channel. We first examine Gaussian channels (AWGN, fading, and MIMO

versions) and show that the broadcast and multiple-access channel capacity regions are

exactly equal for what we term dual channels, subject to a slight change in the power

constraint structure for the multiple-access channel. We then attempt to generalize this

notion of multiple-access/broadcast duality to the broader class of discrete memoryless

channels. We focus on deterministic, or noiseless, broadcast and multiple-access channels,

and show that we can establish a notion of duality for a limited class of deterministic

channels. However, we also describe a broadcast channel for which no dual multiple-access

channel can exist within our framework.

Establishing a relationship between the multiple-access and broadcast channels is sig-

nificant for a number of different reasons. First off, establishing such a relationship gives

us insight into fundamental connections in multi-user information theory. A connection be-

tween channel coding and rate distortion [10] has been known for many decades, and there

are a number of other interesting dualities in information theory [52] [13, Section 14.5].

Exploring these connections adds to our general understanding of information theory, and

secondly, can also allow us to establish new information theoretic results. This is perhaps

the most significant aspect of the MAC-BC duality established in this chapter. In Chapter

3.1.4, a duality is established between the MIMO broadcast and MAC. In Chapter 4.2 of

this thesis, this duality result is used to establish the sum rate capacity of a general MIMO

broadcast channel, which was previously unknown. In addition, there turn out to be a

number of numerical advantages to the dual MIMO MAC, which are further explored in

Chapter 4.3. The work in Chapter 3.1 is also published in [35] [36] [38] [68] [69]. Many of

the results of Chapter 3.2 appear in [37].
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3.1 Gaussian Channels

In this section we show that an inherent duality exists between the Gaussian multiple-

access and broadcast channel. Given a broadcast channel, we define the dual multiple-

access channel to be the same channel with all transmitters converted into receivers and all

receivers converted into transmitters, and with the same noise power at the multiple-access

channel receiver as in each of the broadcast channel receivers. We can similarly consider the

dual of a multiple-access channel, and it is easy to see that this relationship is reciprocal,

i.e. that the dual to the dual of a broadcast channel is the original broadcast channel. For

AWGN and fading channels, the dual broadcast and multiple-access channels have exactly

the same channel gains. For MIMO channels, the channel matrices describing the dual

channel are the transpose of the channel matrices describing the original channel.

We show that the capacity regions of the dual channels as defined above are intimately

related. First, we show that the broadcast channel capacity region is equal to the union of

the capacity regions of the dual multiple-access channel, where the union is taken over all

power constraint vectors that sum up to the broadcast channel power constraint. Secondly,

we show that the capacity region of the multiple-access channel is equal to the intersection

of the capacity regions of the dual broadcast channels, where the intersection is taken over

different scaled versions of the dual broadcast channel. We are able to prove this duality

relationship for AWGN channels, fading channels for ergodic and outage capacity, and

MIMO channels. For the case of the MIMO broadcast channel, we work with the dirty

paper coding achievable region instead of the capacity region.

In the following sections, we first state and prove duality results for AWGN broadcast

and multiple-access channels. We then consider flat-fading channels, which can essentially

be decomposed into an infinite set of AWGN channels, one for each fading state. This

decomposition allows us to use the duality of the AWGN channels to prove duality holds for

fading channels, both for ergodic capacity and outage capacity. Next, we consider MIMO

channels, for which the proofs of duality are significantly more involved than for AWGN

channels, but the basic methodology is quite similar. Finally, we address the possible

extension of duality to multi-terminal Gaussian networks.

3.1.1 AWGN MAC and BC

In this section we establish a duality connection between the AWGN MAC and BC, which

are described in Section 2.2.1 and 2.2.2, respectively. We consider a broadcast channel

with fixed channel gains h = h1, . . . , hK and power constraint P . The dual multiple-access

channel, which is arrived at by converting all transmitters into receivers and all receivers into

transmitters, also has channel gains h = h1, . . . , hK . The dual channels can mathematically
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be expressed as:

BC: Yj [i] =
√

hjX[i] + nj [i], j = 1, . . . , K

MAC: Y [i] =
K
∑

j=1

√

hjXj [i] + n[i],

where ni and n are unit variance Gaussian noise components. In this section we relate the

capacity regions of the two channels described above.

Though our motivation for considering the dual multiple-access channel is theoretical,

it is interesting to note that the dual broadcast and multiple-access channels can be viewed

as the uplink and downlink of a time-division duplexed cellular system. In such a system,

the channel is used in a downlink fashion (base station to mobiles, or broadcast channel) for

some fraction of time and is used in an uplink fashion (mobiles to base station, or multiple-

access channel) for the remaining period of time, and the channel gains are assumed to be

fixed over time. Since the same carrier frequency is used for the uplink and downlink in a

time-division duplexed system, the channel gains on the uplink and downlink are the same.

The assumption of noise powers being the same in all receivers (i.e. unit variance) also

seems reasonable assuming that similar receiver structures are used in all devices.

In Theorem 3.1, we show that the capacity region of the AWGN broadcast channel can

be characterized simply in terms of the capacity region of the dual multiple-access channel.

Then, in Theorem 3.3, we show that the capacity region of the AWGN multiple-access

channel can be characterized in terms of the capacity region of the dual broadcast channel.

Theorem 3.1 The capacity region of a constant Gaussian BC with power constraint P is

equal to the union of capacity regions of the dual MAC with power constraints (P1, . . . , PK)

such that
∑K

j=1 Pj = P :

CBC(h, P ) =
⋃

{P : 1·P=P}

CMAC(h, P ). (3.1)

Proof: We first show that every corner point of the dual MAC capacity region for

every set of powers is in the dual BC capacity region with the same sum power. Since the

capacity region of the MAC is equal to the convex hull of the corner points of the region

(see Chapter 2.2.2), this suffices to prove
⋃

{P : 1·P=P} CMAC(h, P ) ⊆ CBC(h, P ). We then

show that every point on the boundary of the BC capacity region is a corner point of the

dual MAC capacity region for some set of powers with the same sum power, which gives us

the inequality in the other direction and leads to the final result.

Let us consider the successive decoding point of the MAC with power constraints

(PM
1 , . . . , PM

K ) corresponding to decoding order (π(1), . . . , π(K)) for some permutation π(·)
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of (1, . . . , K). The rate of User π(j) in the MAC at this successive decoding point is

RM
π(j) = log

(

1 +
hπ(j)P

M
π(j)

1 +
∑K

i=j+1 hπ(i)P
M
π(i)

)

.

Assuming that the opposite encoding order is used in the BC (i.e. User π(1) encoded last,

etc.), the rate of User π(j) in the dual BC when powers (PB
1 , . . . , PB

K ) are used is

RB
π(j) = log

(

1 +
hπ(j)P

B
π(j)

1 + hπ(j)

∑j−1
i=1 PB

π(i)

)

.

By defining Aj and Bj as

Aj = 1 + hπ(j)

j−1
∑

i=1

PB
π(i), Bj = 1 +

K
∑

i=j+1

hπ(i)P
M
π(i), (3.2)

we can rewrite the rates in the MAC and BC as

RM
π(j) = log

(

1 +
hπ(j)P

M
π(j)

Bj

)

(3.3)

RB
π(j) = log

(

1 +
hπ(j)P

B
π(j)

Aj

)

. (3.4)

Thus, if the powers satisfy

PB
π(j)

Aj
=

PM
π(j)

Bj
, j = 1, . . . , K (3.5)

then the rates in the MAC using powers (PM
1 , . . . , PM

K ) and decoding order (π(1), . . . , π(K))

are the same as the rates in the BC using powers (PB
1 , . . . , PB

K ) and encoding order

(π(K), . . . , π(1)). In Chapter 3.4.1 we show that if the powers satisfy (3.5), then
∑K

j=1 PM
j =

∑K
j=1 PB

j .

We now need only show that given a set of MAC powers and a MAC decoding order,

there exist a set of BC powers satisfying (3.5), and vice versa. To compute BC powers from

MAC powers, the relationship in (3.5) must be evaluated in numerical order, starting with
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user π(1):

PB
π(1) = PM

π(1)

1

1 +
∑K

i=2 hπ(i)P
M
π(i)

PB
π(2) = PM

π(2)

1 + hπ(2)P
B
π(1)

1 +
∑K

i=3 hπ(i)P
M
π(i)

. . .

PB
π(K) = PM

π(K)

(

1 + hπ(K)

K−1
∑

i=1

PB
π(i)

)

. (3.6)

Notice that PB
π(1) depends only on the MAC powers, PB

π(2) depends on the MAC powers

and PB
π(1), etc. Therefore, any successive decoding point of the MAC region for any set of

powers (PM
1 , . . . , PM

K ) with
∑K

i=1 PM
i = P is in the dual BC capacity region.

Similarly, MAC powers can be derived from BC powers starting with User π(K) down-

wards:

PM
π(K) = PB

π(K)

1

1 + hπ(K)

∑K−1
i=1 PB

π(i)

PM
π(K−1) = PB

π(K−1)

1 + hπ(K)P
M
π(K)

1 + hπ(K−1)

∑K−2
i=1 PB

π(i)
. . .

PM
π(1) = PB

π(K)

(

1 +
K
∑

i=2

hπ(i)P
M
π(i)

)

. (3.7)

If we consider only permutations corresponding to encoding in order of increasing channel

gain, we see that any point on the boundary of the BC capacity region is in the dual MAC

region for some set of MAC powers with the same sum power. �

Note that we refer to (3.6) and (3.7) as the MAC-BC transformations and BC-MAC

transformations, respectively,

Corollary 3.1 The capacity region of a constant Gaussian MAC with power constraints

P = (P1, . . . , PK) is a subset of the capacity region of the dual BC with power constraint

P = 1 · P :

CMAC(h, P ) ⊆ CBC(h,1·P ). (3.8)

Furthermore, the boundaries of the two regions intersect at exactly one point if the channel

gains of all K users are distinct (hi 6= hj for all i 6= j).

Proof: See Chapter 3.4.2.�

Theorem 3.1 is illustrated in Fig. 3.1, where CMAC(h1, h2, P1, P − P1) is plotted for

different values of P1. The BC capacity region boundary is shown in bold in the figure.

Notice that each MAC capacity region boundary touches the BC capacity region boundary
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Figure 3.1: Constant BC capacity in terms of the dual MAC

at a different point, as specified by Corollary 3.1.

If we carefully examine the union expression in the characterization of the BC in terms

of the dual MAC in (3.1), it is easy to see that the union of MAC’s is equal to the capacity

region of the MAC with a sum power constraint P =
∑K

i=1 Pi instead of individual power

constraints (P1, . . . , PK). This is the channel where the transmitters are not allowed to

transmit cooperatively (i.e each transmitter transmits an independent message) but the

transmitters are allowed to draw from a common power source. Therefore, Theorem 3.1

implies that the capacity region of the MAC with sum power constraint P equals the capacity

region of the dual BC with power constraint P .

Though the capacity regions of the sum power constraint uplink (MAC) and downlink

(BC) are equivalent, the optimal decoding orders on the downlink and uplink are the oppo-

site of each other. From the BC-MAC transformations and from Theorem 3.1, we discover

that boundary points of the BC capacity region are achievable in the MAC using successive

decoding in order of decreasing channel gains. In the BC, it is optimal to give maximum

priority (i.e. encode last) to the strongest user, whereas in the sum power MAC, it is optimal

to give priority (i.e. decode last) to the weakest user.

We now show that the multiple-access capacity region with individual power constraints

can be expressed in terms of the capacity region of the dual broadcast channel. In order to

establish this relationship, we make use of a concept called channel scaling. Since hj and Pj

always appear as a product in the constant MAC capacity expression (2.9), we can scale hj

by any positive constant αj and scale Pj by the inverse of αj without affecting the capacity

region. Therefore, CMAC(h, P ) = CMAC

(

αh, P

α

)

for any vector of positive constants α > 0.

The scaled dual channels are shown in Fig. 3.2. The scaling of the channel and the power

constraints clearly negate each other in the multiple-access channel. However, the dual BC

is affected by channel scaling and the capacity region of the scaled BC is a function of α

since channel scaling affects the power constraint as well as the channel gains of each user
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Figure 3.2: Scaled dual channels

relative to all other users. By applying Corollary 3.1 to the scaled MAC and the scaled BC,

we find that

CMAC(h, P ) = CMAC

(

αh,
P

α

)

⊆ CBC

(

αh,1·P
α

)

∀α > 0 (3.9)

and the boundaries of the MAC capacity region and each scaled BC capacity region in-

tersect. In fact, CMAC(h, P ) and CBC(αh,1·P
α

) intersect at the corner point of the MAC

corresponding to decoding in decreasing order of scaled gains αihi, opposite the optimal

decoding order of the scaled BC.

In order to characterize the capacity region of the MAC in terms of the BC, we first

establish a general theorem (Theorem 3.2 below) that characterizes individual transmit

power constraint rate regions of a Gaussian multiple-access channel in terms of sum transmit

power constraint rate regions. We could directly establish a relationship between the MAC

and the scaled BC for the constant channel. However, we present a more general theorem

here that is applicable to fading channels as well. Before stating the theorem, we first define

the notion of a rate region and the conditions that the rate regions must satisfy in order for

the theorems to hold.

Definition 3.1 Let a K-dimensional rate vector be written as R = (R1, . . . , RK) where

Rj is the rate of transmitter j. Let P = (P1, . . . , PK) be the vector of transmit power

constraints and let α = (α1, . . . , αK) be a vector of scaling constants. We define a rate

region R(P ) as a mapping from a power constraint vector P to a set in RK
+ that satisfies

the conditions stated in Definition 3.2 below. The α-scaled version of the channel is the

channel in which the channel gain from transmitter i to the receiver is scaled by αi. We

denote the rate region of the scaled channel as Rα(P ).

Definition 3.2 We consider K-dimensional rate regions R(P ) ⊆ RK
+ that satisfy the fol-

lowing conditions:
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1. R(P ) = Rα(P

α
) ∀ α > 0, P > 0.

2. S = {(R, P )|P ∈ RK
+ , R ∈ R(P )} is a convex set.

3. For all P ∈ RK
+ , R(P ) is a closed, convex region.

4. If P1 ≥ P2 then R(P1) ⊇ R(P2).

5. If (R1, . . . RK) ∈ R(P1, P2, . . . , PK), then for any i,

(R1, . . . , Ri−1, 0, Ri+1, . . . , RK) ∈ R(P1, . . . , Pi−1, 0, Pi+1, . . . , PK).

6. If R ∈ R(P ) and R′ ≤ R, then R′ ∈ R(P ).

7. R(P ) is unbounded in every direction as P increases, or maxRj∈R(P ) Rj → ∞ as

Pj → ∞ for all j.

8. R(P ) is finite for all P > 0.

These conditions on the rate region R(P ) are very general and are satisfied by nearly

any capacity region or rate region. Finally, we define the notion of a sum power constraint

rate region.

Definition 3.3 For any scaling α,we define the sum power constraint rate region Rsum
α (Psum)

as:

Rsum
α (Psum) ,

⋃

{P | P∈RK
+, 1·P≤Psum}

Rα(P ). (3.10)

Having established these definitions, we now state a theorem about rate regions and

channel scaling.

Theorem 3.2 Any rate region R(P ) satisfying the conditions of Definition 3.2 is equal to

the intersection over all strictly positive scalings of the sum power constraint rate regions

for any strictly positive power constraint vector P :

R(P ) =
⋂

α>0

Rsum
α

(

1·P
α

)

. (3.11)

Proof: See Chapter 3.4.3. �

We now apply Theorem 3.2 to the capacity region of the constant MAC:

Theorem 3.3 The capacity region of a constant Gaussian MAC is equal to the intersection

of the capacity regions of the scaled dual BC over all possible channel scalings:

CMAC(h, P ) =
⋂

α>0

CBC

(

αh,1·P
α

)

. (3.12)
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Proof: In Chapter 3.4.4 we show that the region CMAC(P ; h) satisfies the conditions of

Definition 3.2. Therefore, by Theorem 3.2 we get:

CMAC(P ; h) =
⋂

α>0

Csum
MAC

(

1·P
α

; αh

)

. (3.13)

By Theorem 3.1, Csum
MAC

(

αh,1·P
α

)

= CBC

(

αh,1·P
α

)

for any α > 0. Thus, the result follows.

�

Theorem 3.3 is illustrated for a 2-user channel in Fig. 3.3. Although we consider channel

scaling of all K users in Theorem 3.2, scaling K−1 users is sufficient because scaling by α =

(α1, . . . , αK−1, αK) is equivalent to scaling by ( α1
αK

, . . . ,
αK−1

αK
, 1). We therefore let α2 = 1

and only let α1 (denoted by α in the figure) vary. In the figure we plot CBC(αh1, h2,
P1
α +P2)

for a range of values of α > 0. Since the constant MAC region is a pentagon, the BC

characterized by α = (h2/h1) and the limit of the broadcast channels as α → 0 and α → ∞
are sufficient to form the pentagon. When α = (h2/h1), the channel gains of both users

are the same and the BC capacity region is bounded by a straight line segment because

the capacity region can be achieved by time-sharing between single-user transmission. This

line segment corresponds exactly with the forty-five degree line bounding the MAC capacity

region. As α → 0, the total transmit power P1
α + P2 tends to infinity but the channel gain

of User 1 goes to zero. These effects negate each other and cause R1 → log(1 + h1P1) and

R2 → ∞. As α → ∞, the total amount of power converges to P2 and the channel gain of

User 1 becomes infinite. This causes R1 → ∞ and R2 → log(1 + h2P2). These two limiting

capacity regions bound the vertical and horizontal line segments, respectively, of the MAC

capacity region boundary.

Additionally, by Corollary 3.1, all scaled BC capacity regions except the channel corre-

sponding to α = (h2/h1) intersect the MAC at exactly one of the two corner points of the

MAC region. Scaled BC capacity regions with α > (h2/h1) intersect the MAC at the point

where user 2 is decoded last in the MAC (i.e. upper left corner), and all scaled BC capacity

regions with α < (h2/h1) intersect the MAC at the corner point where user 1 is decoded

last (i.e. the lower right corner).

A general K-user constant MAC capacity region is the intersection of 2K−1 hyperplanes,

each corresponding to a different subset of {1, . . . , K}. Therefore, in general, only 2K − 1

different scaled BC capacity regions are needed to get the MAC capacity region. One of

these regions corresponds to α such that αihi = αjhj for all i, j. The other necessary

scalings correspond to limiting capacity regions as one or more of the components of α are

taken to infinity.
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Figure 3.3: Constant MAC capacity in terms of the dual BC

3.1.2 Fading MAC and BC

In this section we show that the duality relationship established for the AWGN broadcast

and multiple-access channels also extends to the ergodic capacity of flat-fading broadcast

and multiple-access channels. Expressions for the ergodic capacity region of the broadcast

and multiple-access channel are given in Chapters 2.2.3 and 2.2.4, respectively. Flat-fading

channels can be decomposed into an infinite set of parallel, independent channels, one for

each joint fading state. The ergodic capacity for both the MAC and the BC is roughly

equal to the average of the capacities of each of these independent channels. We can then

use the duality of the MAC and BC for each fading state to show that duality holds for the

ergodic capacity region as well.

We consider a fading broadcast channel where the channel gains (h1[i], . . . , hK [i]) change

according to some ergodic and stationary fading process denoted by

H = (H1, . . . , HK). The dual fading multiple-access channel has channel gains that also

vary according to the process H . Mathematically, we have

BC: Yj [i] =
√

hj [i]X[i] + nj [i], j = 1, . . . , K

MAC: Y [i] =
K
∑

j=1

√

hj [i]Xj [i] + n[i],

where the processes governing the fading gains h[i] in the MAC and BC are the same. We

now show that Theorems 3.1 and 3.3, which applied to AWGN channels, can be extended

to flat-fading channels.

Theorem 3.4 The ergodic capacity region of a fading Gaussian BC with power constraint

P is equal to the union of ergodic capacity regions of the dual MAC with power constraints
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Figure 3.4: Duality of the fading MAC and BC

(P1, . . . , PK) such that 1·P = P :

CBC(H , P ) =
⋃

1·P=P

CMAC(H , P ). (3.14)

Proof: We show that any rate vector in the union of MAC regions is in the dual BC

capacity region, and vice versa. By the definition of CMAC(H , P ), a rate vector R is

in the ergodic capacity region of the MAC if and only if R = EH[R(h)] for some R(h)

such that R(h) ∈ CMAC(h, P M (h)) for all h. By Theorem 3.1, R(h) ∈ CMAC(h, P M (h))

implies R(h) ∈ CBC(h,
∑K

i=1 P M
i (h)) for all h. Therefore, by the definition of CBC(H , P ),

R ∈ CBC(H , P ).

Similarly, a rate vector R is in the ergodic capacity region of the BC if and only if

there exists R(h) such that R ≤ EH[R(h)] with R(h) ∈ CBC(h,
∑K

i=1 P B
i (h)) ∀h for

some P B(h) in FBC . Applying Theorem 3.1 to each fading state, we get that R(h) ∈
CMAC(h, P M (h)) for some P M (h) such that

∑K
i=1 P M

i (h) =
∑K

i=1 P B
i (h) for each h.

Therefore, EH[
∑K

i=1 P M
i (h)] = EH[

∑K
i=1 P B

i (h)] = P . If we let Qi = EH[P M
i (h)], then

R ∈ CMAC(Q1, . . . , QK ; H) ∈
⋃

1·P=P CMAC(H , P ) since
∑K

i=1 Qi = P . �

Intuitively, for any MAC power policy, we can use the MAC-BC transformations in each

fading state to find a BC power policy that achieves the same rates in each fading state, and

therefore the same average rates, using the same sum power in each state. Alternatively, for

any BC power policy, we can find a dual MAC power policy that achieves the same rates

in each fading state while using the same sum power.

Fig. 3.4(a) illustrates Theorem 3.4. The pentagon-like regions are the dual MAC ergodic

capacity regions, while the region denoted with a bold line is the BC ergodic capacity region.

As we saw for constant channels, we find that the ergodic capacity region of the MAC with

a sum power constraint P equals the ergodic capacity region of the dual BC with power
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constraint P .

Corollary 3.2 The ergodic capacity region of a flat-fading Gaussian MAC with power con-

straints P = (P 1, . . . , PK) is a subset of the ergodic capacity region of the dual BC with

power constraint P = 1 · P :

CMAC(H , P ) ⊆ CBC(H ,1·P ). (3.15)

Proof: This result is a direct consequence of Theorem 3.4. We conjecture that the bound-

aries of the ergodic capacity region of the MAC and of the dual BC meet at one point,

as they do for the constant channel case (Corollary 3.1). We are able to show this for the

K = 2 case, but not for arbitrary K. �

Fig. 3.5 illustrates the subset relationship established in Corollary 3.2 for the ergodic

capacity regions of the dual flat-fading MAC and BC for a 2-user channel. Due to the fading,

the ergodic capacity region of the MAC is bounded by straight line segments connected by

a curved section as opposed to the pentagon-like capacity region of the constant MAC. The

BC and MAC intersect in the curved portion of the MAC boundary.

We now establish a characterization of the ergodic capacity region of the MAC in terms

of the ergodic capacity region of the dual BC. In order to do so, we again use channel

scaling. Channel scaling by the factor α for fading channels refers to the ergodic capacity

of a channel with power constraints P

α
and the fading distribution defined as H̃ = αH . It

is easy to see that channel scaling does not affect the ergodic capacity region of a fading

MAC, or that CMAC(H , P ) = CMAC(αH , P

α
) for all α > 0. Using Theorem 3.2, we can

find an expression for the ergodic capacity region of the MAC in terms of the dual BC.

Theorem 3.5 The ergodic capacity region of a fading MAC is equal to the intersection of

the ergodic capacity regions of the dual BC over all scalings:

CMAC(H , P ) =
⋂

α>0

CBC

(

αH ,1·P
α

)

(3.16)

Proof: The proof of this is identical to the proof for the constant channel version of this in

Theorem 3.3. The fact that the ergodic capacity region of the MAC satisfies the conditions

of Theorem 3.2 can be verified by the same arguments used for the constant MAC capacity

region in Chapter 3.4.4. �

Theorem 3.5 is illustrated in Figure 3.4(b). The MAC ergodic capacity region cannot

be characterized by a finite number of BC regions as was the case for the AWGN MAC

capacity region in Chapter 3.1.1. The BC capacity regions where α → 0 and α → ∞ still

limit the vertical and horizontal line segments of the MAC ergodic capacity region. The

curved section of the MAC boundary, however, is intersected by many different scaled BC

ergodic capacity regions.
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Convex Optimization Interpretation

If we consider the boundary points of CMAC(H , P ) from a convex optimization viewpoint,

we can gain some additional insight into the MAC-BC duality and Theorem 3.5. Since

the region CMAC(H , P ) is closed and convex, we can fully characterize the region by the

following convex maximization:

max
R∈CMAC(H,P )

µ · R such that: P ≤ P (3.17)

over all non-negative priority vectors µ = (µ1, . . . , µK) such that µ · 1 = 1. Since (3.17) is

a convex problem, we know that the solution to the original optimization also maximizes

the Lagrangian function µ · R −
∑K

i=1 λi(Pi − P i) for the optimal Lagrangian multipliers

λ∗ = (λ∗
1, . . . , λ

∗
K). The optimal Lagrange multipliers λ∗ can be interpreted as the power

prices of the K users, or alternatively λ∗
i is the sensitivity of the maximum of µ · R to a

change in the power constraint Pi.

For each non-negative priority vector µ, there exists an optimum Lagrange multiplier

λ∗. If for some µ we have λ∗
1 > λ∗

2, then constraint P 1 is more restrictive than constraint P 2.

In this scenario, increasing P 1 while decreasing P 2 by the same amount would lead to an

increase in the maximum weighted sum rate µ·R. On the other hand, if λ∗
1 = λ∗

2 = · · · = λ∗
K ,

then each power constraint is equally “hard” and no trade-off of power between different

users would increase the maximum. Thus, the solution is sum-power optimal in the sense

that having individual power constraints (P 1, . . . , PK) is no more restrictive than having a

sum power constraint
∑K

i=1 P i. Therefore, the maximum value of µ · R in the sum power

constraint MAC capacity region and in the individual power constraint MAC capacity

region are equal for any µ such that the optimal Lagrangian multipliers are all equal. Since

the capacity regions of the sum power constraint MAC and the dual BC are equivalent as

established in Theorem 3.4, this implies that the boundaries of the MAC (with individual

power constraints) and the dual BC touch at any point on the MAC boundary where

λ∗
1 = λ∗

2 = · · · = λ∗
K .

33



-

6

R1

R2

?

MAC Boundary

� µ · R
@

@
@

@
@

@

Figure 3.6: MAC capacity region optimization

By scaling the channel gains, we can force the Lagrangians to be equal. If λ∗ is the

optimal Lagrange multiplier for some priority vector µ for the unscaled MAC, then αλ∗

is the optimal Lagrange multiplier for the MAC scaled by α. Therefore we can scale the

channel appropriately so that αiλ
∗
i are equal for all i. Using this method, every point on the

boundary of CMAC(H , P ) can be shown to be on the boundary of the sum power MAC (and

therefore of the dual BC) for some scaling vector. The proof of Theorem 3.2 in Chapter

3.4.3 is based on this idea.

If we examine the points where the MAC and BC capacity region boundaries touch,

we find that there is also a fundamental relationship between the power policies used to

achieve these points. The optimal power policies (i.e. boundary achieving power policies)

for the fading MAC and BC are established in [62] and [41] respectively. Given a priority

vector µ, it is possible to find the optimal power policy that maximizes µ · R in both the

MAC and the BC. Due to the duality of these channels, the optimal power policies derived

independently for the BC and MAC are related by the MAC-BC (3.6) and BC-MAC (3.7)

transformations at the points where the BC and MAC capacity region boundaries touch.

Optimal MAC/BC Decoding Order

The duality of the flat-fading MAC and BC leads to some interesting observations about the

optimum decoding order in the BC and MAC. By duality, any point on the boundary of the

BC ergodic capacity region is also on the boundary of the MAC ergodic capacity region for

some set of power constraints whose sum equals the BC power constraint. Additionally, it is

easy to show from the proof of Theorem 3.2 that the MAC and BC ergodic capacity regions

are “tangential” at the point where the boundaries touch in the sense that the weighted

rate sum µ · R at the intersection point is equal to the maximum of µ · R in CMAC(H , P )

and in CBC(H , P ) for the same µ.

From results on the ergodic capacity region of the MAC [62,67], it is optimal to decode

users in order of increasing priority µi in all fading states. Therefore, a fixed decoding order

in all fading states is optimal for the MAC. Suppose we consider a point on the boundary
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of the BC capacity region that is also a boundary point of a dual MAC capacity region.

The optimal MAC and BC power policies will be related by the power transformations

given earlier. Additionally, the decoding order in the BC and the MAC are opposite in each

fading state. Therefore, by duality, we see that boundary points can be achieved in the BC

by decoding in order of decreasing priority. From basic results on the BC, however, users

should be decoded in order of increasing channel gain in every fading state. This apparent

inconsistency is resolved by the fact that a user is allocated power in the BC only if all

users with larger priority have smaller channel gains. Thus, decoding in order of decreasing

priority is equivalent to decoding in order of increasing channel gain for the optimal BC

power allocation policy.

Using duality in the form of Theorem 3.3, every boundary point of the MAC is also a

boundary point of a scaled BC. In the α-scaled BC, users are decoded in increasing order

of αihi. Since αi =
λ∗

K
λ∗

i
for the correct scaling (see proof of Theorem 3.2 for justification),

users are decoded in order of increasing hi
λ∗

i
in the BC. By duality, the opposite decoding

order should be used in the MAC. Thus, users should be decoded in order of decreasing hi
λ∗

i
.

Again, the apparent inconsistency with decoding users in the MAC in order of increasing

priority is resolved by the optimal power allocation policy.

Symmetric Channels

If the joint fading distribution is symmetric and all K transmitters in the MAC have the

same power constraint, then the optimal Lagrange multipliers corresponding to the sum

rate capacity of the MAC (the maximum of µ · R where µ1 = µ2 = · · · = µK = 1
K )

are all equal by symmetry. As discussed in Section 3.1.2, this implies that the unscaled

MAC and the unscaled BC (i.e. α = 1) ergodic capacity regions meet at the maximum

sum rate point of their capacities. In this scenario the optimal power policies in the dual

channels are identical, since only the user with the largest fading gain transmits in each

fading state [41] [62]. For asymmetric fading distributions and/or power constraints, the

uplink sum rate capacity is generally strictly less than the downlink sum rate capacity.

Frequency Selective Channels

Duality easily extends to frequency selective (ISI) channels as well. Broadcast and multiple-

access channels with time-invariant, finite-length impulse responses and additive Gaussian

noise were considered in [7] [21]. The dual channels have the same impulse response on

the uplink and downlink, and the same noise power at each receiver. Similar to flat-fading

channels, frequency-selective channels can be decomposed into a set of parallel independent

channels, one for each frequency. Using the duality of each of these independent channels,

it is easy to establish that the capacity region of the BC is equal to the capacity region

of the dual MAC with a sum power constraint. Furthermore, it is also straightforward to
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verify that the conditions of Theorem 3.2 hold, and thus the capacity region of the MAC is

equal to an intersection of scaled BC capacity regions1.

3.1.3 Outage Capacity

In this section we show that duality holds for the outage capacity of fading channels. The

outage capacity region (denoted Cout
MAC(H , P , P out) and Cout

BC(H , P , P out)) is defined as

the set of rates that can be maintained for user j for a fraction P out
j of the time, or in

all but P out
j of the fading states [42, 43]. Outage capacity is concerned with situations in

which each user (in either the BC or MAC) desires a constant rate a certain percentage of

the time. The zero-outage capacity2 [22, 42] is a special case of outage capacity where a

constant rate must be maintained in all fading states, or where P out = 0.

By definition, a rate vector R is in Cout
MAC(H , P , P out) if and only if there exists a

power policy P (h) satisfying the power constraints P and a rate function R(h) such that

R(h) ∈ CMAC(h, P (h)) for all h and Pr[Rj(h) ≥ Rj ] ≥ 1−P out
j . The BC outage capacity

region is defined similarly, except that the power policy must only satisfy a sum power

constraint and R(h) must be in CBC(h,
∑K

i=1 Pi(h)) for all h. By applying duality to

each fading state, it is clear that every rate vector in the MAC outage capacity region is

achievable in the dual BC, and vice versa. Thus, the outage capacity region of the BC

is equal to the sum power constraint outage capacity region of the MAC, with the same

outage vector P out:

Cout
BC(H , P , P out) =

⋃

{P : 1·P=P}

Cout
MAC(H , P , P out). (3.18)

Using Theorem 3.2, it also follows that the MAC outage capacity region is equal to the

intersection of the scaled BC outage capacity regions:

Cout
MAC(H , P , P out) =

⋂

α>0

Cout
BC

(

αH ,1·P
α

, P out

)

. (3.19)

Though the outage capacity region has been characterized for both the BC and MAC [42,43],

the MAC region can be quite difficult to find numerically. Duality, however, allows the region

to easily be found numerically via the dual BC outage capacity region.

There is also a more stringent notion of outage capacity in which outages must be

declared simultaneously for all users (referred to as common outage). In this situation

there is only one outage probability (for all users). It is also straightforward to show that

1Interestingly, the authors of [7] used the concept of channel scaling in order to find the optimal power
allocation policy of the frequency-selective MAC. This turns out to be the same channel scaling that is used
to characterize the MAC in terms of the dual BC.

2Zero-outage capacity is referred to as delay-limited capacity in [22].
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duality extends to common outage as well.

3.1.4 MIMO MAC and BC

In this section we show that the capacity region of the MIMO MAC with a sum power

constraint of P for the K transmitters is the same as the dirty paper region of the dual

MIMO BC with power constraint P . In other words, any rate vector that is achievable

in the dual MAC with power constraints (P1, . . . , PK) is in the dirty paper region of the

dual BC with power constraint
∑K

i=1 Pi. Conversely, any rate vector that is in the dirty

paper region of the BC is also in the dual MIMO MAC region with the same total power

constraint. Expressions for the dirty paper rate region of the MIMO BC and the capacity

region of the MIMO MAC are given in Chapters 2.2.5 and 2.2.6, respectively.

Theorem 3.6 The dirty paper region of a MIMO broadcast channel with power constraint

P is equal to the capacity region of the dual MIMO MAC with sum power constraint P .

CDPC(H1, . . . ,HK , P ) =
⋃

1·P≤P

CMAC(H†
1, . . . ,H

†
K , P ) (3.20)

Proof: We first prove CDPC(H1, . . . ,HK , P ) ⊇
⋃

P
CMAC(H†

1, . . . ,H
†
K , P ) by showing

that every rate vector achieved by successive decoding in the MAC is also in the dirty paper

region of the dual MIMO BC. More specifically, we show by the MAC to BC transformations

below that for every set of MAC covariance matrices Q1, . . . ,QK and any decoding order

in the MAC, there exist BC covariance matrices Σ1, . . . ,ΣK using the same sum power

as the MAC (i.e.
∑K

i=1 Tr(Qi) =
∑K

i=1 Tr(Σi)) such that the MAC rates are achievable

in the BC using dirty paper coding. Each set of MAC covariance matrices corresponds

to a K-dimensional polyhedron, as described in (2.20), with the K! corner points of the

polyhedron corresponding to performing successive decoding at the receiver in one of the

K! possible decoding orders. By the convexity of the dirty paper region (due to the convex

hull operation), it is sufficient to show that the corner points of all polyhedrons (i.e. the

successive decoding points) corresponding to all MAC covariance matrices are in the dirty

paper region of the dual MIMO BC. Thus, with the MAC to BC transformations described

below, this implies CDPC(H1, . . . ,HK , P ) ⊇
⋃

P
CMAC(H†

1, . . . ,H
†
K , P ).

We complete the proof by showing CDPC(H1, . . . ,HK , P ) ⊆ ⋃
P
CMAC(H†

1, . . . ,H
†
K , P ).

We prove this by showing, via the BC to MAC transformations below, that for every

set of BC covariance matrices and any encoding order there exist MAC covariance ma-

trices that achieve the same set of rates using the same sum power. The convexity of

the MIMO MAC sum power constraint region thus implies that CDPC(H1, . . . ,HK , P ) ⊆
⋃

P
CMAC(H†

1, . . . ,H
†
K , P ). This completes the proof, provided we have the transforma-

tions given below that map the MAC covariances to the BC covariances and vice versa.

�
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Next, we explain some terminology used in the transformations, followed by the actual

transformations. It is important to point out that the transformations require a reverse

decoding/encoding order of the users in the dual MAC/BC channel. In other words, if User

1 is decoded first in the MAC (i.e. User 1 suffers interference of all other users’ signals),

then we must encode User 1’s signal last (i.e. no interference from other users) in the BC to

achieve the same rates using these transformations. Also, notice that the proof of duality

only requires existence of BC covariance matrices that satisfy the rates achieved by a set

of MAC covariance matrices, and vice versa. However, the below transformations actually

provide equations for the transformed BC covariances as a function of the MAC covariances,

and vice versa.

Terminology

First, we explain the terms effective channel and flipped channel. A single user MIMO

system Θ with channel matrix H, additive Gaussian noise with covariance X, and additive

independent Gaussian interference with covariance Z is said to have an effective channel

of (X + Z)−1/2H. The set of rates achievable by Θ and a different system with channel

matrix equal to the effective channel and with additive white noise of unit variance and no

interference are the same. Also, the capacity of a system Θ1 with effective channel matrix

Y and the capacity of system Θ2 with effective channel matrix Y†, termed the flipped

channel, are the same [61]. In other words, for every transmit covariance Σ in Θ1, there

exists a Σ in Θ2 with Tr(Σ) ≤ Tr(Σ) such that the rate achieved by Σ in Θ2 is equal to

the rate achieved by Σ in Θ1. In Chapter 3.4.5 we show that Σ = FG†ΣGF† meets this

criterion where the Singular Value Decomposition (SVD) of Y is Y = FΛG†, where Λ is

square and diagonal3. Next, we describe the covariance transformations.

MAC to BC Transformation

In this section we derive a transformation that takes as inputs a set of MAC covariance

matrices and a decoding order and outputs a set of BC covariances with the same sum power

as the MAC covariances that achieve rates equal to the rates achieved in the MAC using

the MAC covariance matrices and successive decoding with the specified decoding order.

Note that this is the MIMO analogue of the MAC-BC transformation for scalar channels

given in (3.6).

Since the numbering of the users is arbitrary, we assume that User 1 is decoded first,

User 2 second, and so on at the MAC receiver. Let Aj , (I + Hj(
∑j−1

l=1 Σl)H
†
j) and

Bj , (I +
∑K

l=j+1 H†
l QlHl). The rate achieved by User j in the MAC for some arbitrary

3Note that the standard SVD command in MATLAB does not always return a square and diagonal
matrix of singular values, so modification may be necessary to generate the flipped matrix correctly.
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set of positive semi-definite covariance matrices (Q1, . . . ,QK) is given in (2.21) and can be

simplified as:

RM
j = log

∣

∣

∣I +
∑K

i=j(H
†
iQiHi)

∣

∣

∣

∣

∣

∣I +
∑K

i=j+1(H
†
iQiHi)

∣

∣

∣

= log

∣

∣

∣

∣

∣

∣

I +



I +

K
∑

i=j+1

(H†
iQiHi)





−1

H†
jQjHj

∣

∣

∣

∣

∣

∣

= log
∣

∣

∣I + B−1
j H†

jQjHj

∣

∣

∣ . (3.21)

Notice that Bj represents the interference experienced by User j in the MAC. To simplify,

we take the square root of B−1
j and use the property |I+AB| = |I+BA|. We also introduce

A
−1/2
j A

1/2
j = I into the expression to get

RM
j = log

∣

∣

∣I + B
−1/2
j H†

jA
−1/2
j A

1/2
j QjA

1/2
j A

−1/2
j HjB

−1/2
j

∣

∣

∣ . (3.22)

Treating B
−1/2
j H†

jA
−1/2
j as the effective channel of the system, we flip the channel and find

A
1/2
j QjA

1/2
j such that

Tr(A
1/2
j QjA

1/2
j ) ≤ Tr(A

1/2
j QjA

1/2
j )

RM
j = log

∣

∣

∣

∣

I + A
−1/2
j HjB

−1/2
j A

1/2
j QjA

1/2
j B

−1/2
j H†

jA
−1/2
j

∣

∣

∣

∣

.

Now consider the rate of User j in the BC assuming that the opposite encoding order

is used (i.e. User 1 is encoded last, User 2 second to last,etc.)

RB
j = log

∣

∣

∣I +
∑j

i=1(HjΣiH
†
j)
∣

∣

∣

∣

∣

∣I +
∑j−1

i=1 (HjΣiH
†
j)
∣

∣

∣

= log
∣

∣

∣I + A−1
j HjΣjH

†
j

∣

∣

∣

= log
∣

∣

∣I + A
−1/2
j HjΣjH

†
jA

−1/2
j

∣

∣

∣ . (3.23)

Here Aj represents the interference experienced by User j in the BC. If we choose the BC
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covariances as

Σ1 = B
−1/2
1 Q1B

−1/2
1 (3.24)

...

Σj = B
−1/2
j A

1/2
j QjA

1/2
j B

−1/2
j (3.25)

...

ΣK = A
1/2
K QKA

1/2
K (3.26)

clearly we see RM
j = RB

j . Additionally, it is easy to show that the resulting covariance

matrices are all symmetric and positive semi-definite. In Chapter 3.4.6, we show that the

transformations given by (3.24)-(3.26) satisfy the sum trace constraint, or that
∑K

i=1 Tr

(Σi) ≤
∑K

i=1 Tr (Qi). Note that Σj depends only on Σ1, · · ·Σj−1, and hence the Σj can be

computed sequentially in increasing order. By doing this for all K users, we find covariance

matrices for the BC that achieve the same rate as in the MAC. If we substitute in the

expression generating the flipped channel, the expression for the BC covariance matrix of

the j-th user in (3.25) can be expanded as:

Σj = B
−1/2
j FjG

†
jA

1/2
j QjA

1/2
j GjF

†
jB

−1/2
j (3.27)

where the effective channel B
−1/2
j H†

jA
−1/2
j is decomposed using the SVD as B

−1/2
j H†

jA
−1/2
j =

FjΛjG
†
j , where Λj is a square and diagonal matrix.

BC to MAC transformation

In this section we derive a transformation that, given a set of BC covariance matrices and

an encoding order, outputs a set of MAC covariances with the same sum power as the BC

covariances that achieve MAC rates (using successive decoding) equal to the rates achieved

in the BC using the BC covariance matrices. These transformations are almost identical to

the MAC-to-BC transformations given in the previous section, and are the MIMO analogue

of the scalar BC-MAC transformation given in (3.7). For the dirty paper encoding at the

BC, we assume that User K is encoded first, User K − 1 second, and so on in decreasing

order. Along the same lines as the MAC-BC transformation, we treat A
−1/2
j HjB

−1/2
j as

the effective channel and B
1/2
j ΣjB

1/2
j as the covariance matrix. By flipping the effective
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channel, we obtain B
1/2
j ΣjB

1/2
j and obtain the transformation

QK = A
−1/2
K ΣKA

−1/2
K (3.28)

...

Qj = A
−1/2
j B

1/2
j ΣjB

1/2
j A

−1/2
j (3.29)

...

Q1 = B
1/2
1 Σ1B

1/2
1 . (3.30)

As before, if we use the opposite decoding order in the MAC (i.e. User 1 decoded first, etc.),

this transformation ensures that the rates of all users in the BC and MAC are equivalent

along with the total power used in the BC and MAC. Also note that we can sequentially

compute the Qj ’s in decreasing numerical order. If we substitute in the expression gener-

ating the flipped channel, the expression for the MAC covariance matrix of the j-th user in

(3.29) can be expanded as:

Qj = A
−1/2
j FjG

†
jB

1/2
j ΣjB

1/2
j GjF

†
jA

−1/2
j (3.31)

where the effective channel A
−1/2
j HjB

−1/2
j is decomposed using the SVD as A

−1/2
j HjB

−1/2
j =

FjΛjG
†
j , where Λj is a square and diagonal matrix.

MIMO MAC with Individual Power Constraints

We can also obtain the capacity region of a MIMO MAC with individual power constraints

from the dirty paper region of the dual MIMO BC. By Theorem 3.2, we can characterize

the individual power constraint MIMO MAC capacity region as an intersection of sum

power constraint MIMO MAC capacity regions. By duality, we know that the sum power

constraint MIMO MAC capacity region is equal to the dirty paper achievable region of the

dual MIMO BC.

Corollary 3.3 The capacity region of a MIMO MAC is the intersection of the scaled dirty

paper regions of the MIMO BC. Mathematically, this is stated as:

CMAC (H1, . . . ,HK , P1, . . . , PK) =
⋂

α>0

CDPC

(

√
α1H

†
1, . . . ,

√
αKH†

K ,
K
∑

i=1

Pi

αi

)

. (3.32)

Proof: This result can be obtained by a straightforward application of Theorem 3.2 to the

MIMO MAC capacity region and the duality developed in Theorem 3.6. The scaled MIMO

BC here refers to the channel where the matrix of each receiver H†
i is scaled by

√
αi. �

41



TX RX

RX TX

h1,1

h1,2

h2,1

h2,2

h3,2

h3,1

Y1

Y2

X1

X2

X3

Figure 3.7: Multi-Terminal Gaussian Network

3.1.5 Multi-Terminal Networks

The focus of this section has been to characterize the duality of Gaussian multiple-access

and broadcast channels. There are, however, many possible directions in which duality can

be extended. In this section we discuss the possibility of a duality for a broader class of

Gaussian channels. The Gaussian MAC and BC can be generalized to a model in which

there are multiple transmitters and multiple receivers, each subject to additive Gaussian

noise. Such networks are referred to as Gaussian multi-terminal networks [13, Section 14.10].

In this section we discuss networks in which nodes can either be transmitters or receivers,

but not both simultaneously.

In Figure 3.7, a three-transmitter, two receiver channel is shown, if transmission is

considered from left-to-right. We define the dual channel for this network as the channel

associated with transmission from right-to-left (i.e. two transmitters, three receivers) with

the same channel gains hi,j between all nodes. As before, we assume that every receiver

suffers from Gaussian noise with the same power.

The dual broadcast and multiple-access channels can be seen as a specialization of multi-

terminal networks in which there is only a single node on the left. If transmission occurs

from left to right, then the channel is a two-user broadcast channel and if the nodes on

the right transmit then the channel is a two-user multiple access channel. Theorem 3.1

states that the capacity regions of the BC and the dual sum power constraint MAC are the

same. This is equivalent to stating that the capacity regions for left to right communication
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(BC) and right to left communication (MAC) are the same if the same sum transmit power

constraint is applied to both channels.

In the general multi-terminal setting we consider, any transmitter is allowed to com-

municate with any receiver. In the channel shown in Figure 3.7, the capacity region is

six-dimensional because there are six possible receiver-transmitter pairs. It is then tempt-

ing to conjecture that Theorem 3.1 extends to general Gaussian multi-terminal networks,

or that the six-dimensional capacity region governing transmission from left-to-right when

sum power constraint P is imposed on the three transmitters on the left is the same as

the capacity region for transmission from right-to-left when the same sum power constraint

P is imposed on the two transmitters on the right. Unfortunately, this conjecture cannot

be confirmed since the capacity region of a general multi-terminal network is not known.

Interestingly, Theorem 3.2 can easily be extended to multiple-receiver channels. This al-

lows characterization of a multiple-transmitter/multiple-receiver rate region (with individ-

ual transmitter power constraints) in terms of the sum transmit power constraint capacity

regions.

If the nodes on the left and right were considered to be multiple-antennas of single users

(i.e. a single transmitter with 3 antennas communicating to a receiver with 2 antennas, or

vice versa), then duality holds due to the reciprocity of multiple-antenna Gaussian links [61].

By the reciprocity result we know that the capacity of a channel with gain matrix H is equal

to the capacity of the channel with gain matrix equal to the transpose (or conjugation

transpose since conjugation of the channel matrix has no effect) of H. This hints that a

broader duality may hold for general Gaussian networks, but this has yet to be confirmed.

3.2 Deterministic Channels

In the previous section, a duality was established between the Gaussian multiple-access

channel and the Gaussian broadcast channel. The dual channels considered had the same

noise power and the same channel gains on the uplink and downlink. The capacity region

of the Gaussian broadcast channel was found to equal a union of capacity regions of the

dual Gaussian multiple-access channel. A natural question to ask given this result is the

following: does a dual multiple-access channel exist for every broadcast channel? In the

strongest form, duality would mean that the capacity region of any discrete memoryless

(DM) broadcast channel is equal to the union of multiple-access channel capacity regions,

where the union is over a set of dual multiple-access channels that are meaningfully related

to the original broadcast channel. It is not known if such a relationship exists, and the fact

that the capacity region of the general broadcast channel is not known makes it extremely

difficult to prove a duality for the most general case.

We consider a two-user discrete memoryless broadcast channel consisting of an input

alphabet X of cardinality M , output alphabets Y1 and Y2 each of cardinality N , and a
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Figure 3.8: Discrete memoryless MAC and BC.

probability transition function p(y1, y2|x). Similarly, we consider a multiple-access channel

consisting of input alphabets X1 and X2 each of cardinality N , an output alphabet Y of

cardinality M , and a probability transition function p(y|x1, x2). A simple model for these

channels is shown in Figure 3.8. In the broadcast channel we consider the situation where

the transmitter sends independent information to each receiver, and in the multiple-access

channel we consider the situation where each transmitter sends independent information to

the receiver. Our ultimate goal is to discover if there is a fundamental connection between

the broadcast and multiple-access channel beyond the obvious symmetries in the channel

models. Since the capacity region of the general broadcast channel remains unknown, we

explore this duality by considering deterministic channels, for which the BC capacity region

is known. Deterministic channels are channels in which the outputs are uniquely defined

by the input. Alternatively, all entries in the probability transition matrix are either 0 or 1

for a deterministic channel.

When the alphabet sizes satisfy M = aN , where a is an integer greater than or equal to

1, we find that a duality can be established between the capacity region of the broadcast and

multiple-access channel. More explicitly, we find that the convex hull of the capacity regions

of all deterministic broadcast channels (with the given input/output alphabets) is equal to

the convex hull of the capacity regions of all deterministic multiple-access channels. We

also conjecture that this capacity region equivalence holds for any N < M < 2N . However,

we are able to show that this duality does not exist for M = 8 and N = 3, i.e. there is a

deterministic BC with a capacity region strictly larger than the capacity region of any dual

deterministic MAC.

We also consider non-deterministic MAC’s and BC’s from a deterministic point of view.

We decompose a non-deterministic channel into a finite-state channel in which the channel

is deterministic in each state. This decomposition allows us to upper bound the the capacity

region of any non-deterministic BC by a convex hull of deterministic BC capacity regions.

This upper bound then allows us to prove that there is a deterministic BC for M = 8 and

N = 3 with a capacity region strictly larger than the capacity region of any dual MAC
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(deterministic or non-deterministic), i.e there is not always a dual MAC in our given setup.

The remainder of this section is structured as follows. In Chapter 3.2.1 we state the

capacity region of the deterministic BC. In Chapter 3.2.3, we establish a duality between

the BC and MAC for the case where M = aN . In Chapter 3.2.4 we extend this duality

to a slightly broader class, and we provide a counter-example to this duality in Chapter

3.2.5. Finally, in Chapter 3.2.6 we upper bound the capacity region of a random BC by the

capacity region of a series of related deterministic broadcast channels.

3.2.1 Deterministic Broadcast Channels

Deterministic broadcast channels are discrete memoryless multi-user channels in which en-

tries in the probability transition matrix p(y1, y2|x) are either 1 or 0, which implies that

every input maps deterministically to a single output pair. The transmitter in the broadcast

channel is assumed to have alphabet X = {1, . . . , M} and each receiver is assumed to have

alphabet Yi = {1, . . . , N}. The input to the channel is denoted by x. The deterministic

nature of the channel allows us to write the channel output as a function (i.e. deterministic

mapping) of the channel input:

(y1, y2) = f(x). (3.33)

Here, the channel transition matrix is entirely captured by the function f(·) which is a

mapping from an input in X to an output pair in Y1 × Y2.

Determining the capacity region of a noiseless channel may seem like a trivial exercise,

but in a broadcast channel there is still the problem of determining how to embed two

independent messages in a single codeword. The Blackwell channel (see [14]) is the classical

example of such a channel with M = 3 and N = 2 and the following channel function:

f(1) = (1, 1), f(2) = (2, 2), f(3) = (2, 1). (3.34)

The capacity region of this specific channel was found in [19] and the capacity region of the

general deterministic broadcast channel was later derived in [51] and [49].

For a two-user deterministic broadcast channel, the capacity region CBC(f(x)) is given

by:

CBC(f(x)) = Cl





⋃

p(x)

{R1, R2 : R1 ≤ H(Y1), R2 ≤ H(Y2),

R1 + R2 ≤ H(Y1, Y2)}) (3.35)

where Cl(·) denotes the convex closure operation. Each input distribution p(x) corresponds

to a pentagon region, and the capacity region is the closure of the convex hull of all such

pentagons. If multiple inputs map to the same output pair, then the inputs are identical.
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Thus, we only consider channels for which each input maps to a different output pair (i.e.

f(a) 6= f(b) ∀a 6= b). Therefore it follows that H(Y1, Y2) = H(X).

Since the deterministic BC is fully characterized by the mapping from input to output

pair, we characterize the channel by an input/output table, in which the location of an

input in the table indicates the output pair (y1, y2) that it maps to. Notice that no two

inputs correspond to the same output pair by our earlier assumption, so exactly M of the

N2 output pairs in the table contain inputs. The Blackwell channel in (3.34) is described

by the following channel table:

x 7→ (y1, y2) :

y1, y2 1 2

1 1

2 3 2

(3.36)

3.2.2 Deterministic Multiple-Access Channels

The deterministic multiple-access channel has a very similar structure as the deterministic

broadcast channel. The deterministic nature of the channel allows us to write the output

of the channel as a function of the two channel inputs:

y = g(x1, x2). (3.37)

We also use an input/output table to characterize the MAC. In the MAC, the table entries

correspond to the outputs of each input pair (x1, x2). Notice that in the MAC every input

pair correspond to an output.

An expression for the capacity region of the general discrete memoryless MAC is given

in Chapter 2.1.1. For the deterministic MAC, the capacity region can be expressed as:

CMAC(g(x1, x2)) = Cl





⋃

p(x1)p(x2)

{R1, R2 : R1 ≤ H(Y |X2), R2 ≤ H(Y |X1),

R1 + R2 ≤ H(Y )}) . (3.38)

3.2.3 Duality for M = aN

In this section we show that there exists a duality between the deterministic BC and MAC

for M = aN , where a is an integer and 1 ≤ a ≤ N . By first principles, it follows that in

the BC, R1 and R2 are each bounded by log(N) and R1 + R2 ≤ log(M) = log(aN) for any

deterministic (or non-deterministic) probability transition matrix. Thus, the region shown

in Fig. 3.9 is an upper bound to any BC capacity region with the given alphabet sizes.

Consider the BC channel function such that every row and every column has exactly a

entries in it. If we map inputs {1, . . . , a} to y1 = 1 and y2 = {1, . . . , a}, inputs {a+1, . . . , 2a}
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to y1 = 2 and y2 = {2, . . . , a + 1} (where the column y2 is assumed to wrap-around for

values larger than N), then this condition is satisfied. For the M = 6, N = 3 channel, this

corresponds to the following channel function:

x 7→ (y1, y2) :

y1, y2 1 2 3

1 1 2

2 3 4

3 6 5

(3.39)

If p(x) is chosen to be the uniform distribution over the input alphabet, then we have

H(X) = log(M) = log(6) and H(Y1) = H(Y2) = log(N) = log(3). Thus, the upper bound

is achievable. For arbitrary N and a, the region

Rpentagon = {(R1, R2) : R1 ≤ log(N), R2 ≤ log(N), R1 + R2 ≤ log(aN)} (3.40)

is achievable if the channel matrix has exactly a entries in every row and column and the

input x is chosen equiprobably on {1, . . . , M}. This region coincides exactly with the upper

bound on the capacity region of any BC with input alphabet M and output alphabet N .

Thus, the capacity region of the deterministic BC with the channel function satisfying the

above condition is equal to Rpentagon. Since Rpentagon is an upper bound to any capacity

region for the given input/output alphabets, the union of capacity regions over all channel

functions is equal to Rpentagon.

For the dual MAC, it is again easy to see that R1 and R2 are bounded by log(N) and

R1 + R2 ≤ log(M) = log(aN). Consider the channel function defined by:

y =







a(x1 − 1) + x2 x2 ≤ a

1 x2 > a
. (3.41)

For the M = 6, N = 3 channel, this corresponds to the following channel function:

(x1, x2) 7→ y :

x1, x2 1 2 3

1 1 2 1

2 3 4 1

3 5 6 1

(3.42)

If x1 is chosen uniformly on {1, . . . , N} and x2 is chosen uniformly on {1, . . . , a} (notice x2

doesn’t use all possible inputs), then the receiver will always be able to determine which

symbols were sent by both users. Thus, the rate vector (R1 = log(N), R2 = log(a)) can be

achieved. The capacity region of this channel is denoted by CMAC,1 in Fig. 3.9. By reversing

the roles of Users 1 and 2 in the channel function, the rate vector (R1 = log(a), R2 = log(N))
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Figure 3.9: Capacity region of MAC and BC for M = aN

can also be achieved. The corresponding capacity region is denoted by CMAC,2 in Fig. 3.9. It

follows then that the convex hull of the capacity regions corresponding to these two channels

equals the region Rpentagon. Thus, Rpentagon is equal to the convex hull of the union of MAC

capacity regions over all transition matrices. We therefore have the following:

Theorem 3.7 When the alphabet sizes satisfy |X | = a|Y1| = a|Y2| for some integer a, the

convex hull of the union of BC capacity regions over all deterministic mappings equals the

convex hull of the union of MAC capacity regions over all deterministic mappings:

Co





⋃

f(x)

CBC(f(x))



 = Co





⋃

g(x1,x2)

CMAC(g(x1, x2)



 , (3.43)

where f(x) is any map from X to (Y1×Y2), g(x1, x2) is any map from (X1×X2) to Y, and

Co(·) denotes the convex hull operation.

The equivalence in Theorem 3.7 can in fact be strengthened to hold when the union is

taken over deterministic and non-deterministic channels (i.e. over all p(y1, y2|x) for the BC

and all p(y|x1, x2) for the MAC) as well, because the region Rpentagon is an upper bound to

the capacity region of the BC or MAC for any probability transition function, deterministic

or not. This relationship then leads to a few interesting questions:

1. Does Theorem 3.7 hold for arbitrary alphabet sizes M and N?

2. Similarly, does Theorem 3.7 hold for arbitrary alphabet sizes when the union is taken

over deterministic and non-deterministic channels?

3. Can a deterministic channel achieve any rate vector achievable by a non-deterministic

channel?
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We address Question 1 in the next two sections. We first establish a limited version of

this relationship for N < M < 2N , but then we provide a counter-example for which this

duality does not hold. In Chapter 3.2.6, we answer Question 3 by relating the capacity

regions of the deterministic and non-deterministic BC (and of the MAC) and we find that

Questions 1 and 2 are entirely equivalent because non-deterministic channels can never have

a larger capacity region than deterministic channels for the same input/output alphabets.

3.2.4 Duality for N < M < 2N

In this section we show a limited duality between deterministic broadcast and multiple-

access channels for N < M ≤ 2N . More explicitly, we show that the convex hull of the

union of BC capacity regions, where the union is over a specific class of BC functions, is

equal to the convex hull of the union of MAC capacity regions, where the union is over a

related class of MAC channel functions.

We consider the class of balanced BC functions, by which we mean channel functions

such that no output in Y1 or in Y2 has more than 2 channel inputs that map to it. In

terms of the channel function, this corresponds to having no row or column with more than

2 channel inputs in it. Of course, as before, we require that every channel input goes to

a different channel output. The Blackwell channel defined in (3.36) is an example of a

balanced BC.

Since M ≤ 2N , it is clear that with such a channel function, M − N of the outputs of

each user will have 2 inputs mapping to it, while the remaining 2N−M outputs of each user

will have only a single input mapping to it. For the M = 5, N = 3 channel, the following

channel function is balanced :

x 7→ (y1, y2) :

y1, y2 1 2 3

1 1 2

2 3 4

3 5

(3.44)

Notice that no row or column has more than 2 inputs in it. A similar channel function can

be defined for other values of M and N by using the same procedure of placing inputs along

the main diagonal and the upper off-diagonal. If we consider the rate achieved by User 1

in a balanced BC, at one corner point of the pentagon region (for a fixed p(x)) we have

R1 = H(Y1) and R2 = H(Y1, Y2) − H(Y1) = H(Y2|Y1). Thus the rate of User 1 is equal to

the received entropy of User 1, while the rate of User 2 is equal to the conditional entropy

of each row of the channel matrix, which can be no larger than one since each row has no

more than 2 inputs in it.

Analogously, we consider balanced MAC channel functions in which exactly M − N

inputs of User 1 have two possible outputs and 2N − M inputs of User 1 have only one
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possible output each. For the M −N inputs of User 1 which have two possible outputs, the

x2 = 1 output is assumed to be the smaller of the two outputs, while all other values of x2

correspond to the larger of the two outputs. For the M = 5, N = 3 channel, the following

channel function is balanced :

(x1, x2) 7→ y :

x1, x2 1 2 3

1 1 2 2

2 3 4 4

3 5 5 5

(3.45)

We also consider the transposes of such matrices, or the situation where the roles of Users 1

and 2 are reversed. It can be shown that the rate vector (R1 = H(Y |X2), R2 = H(Y |X1))

can be achieved for any input product distribution. For the channel described above,

R1 = H(Y |X2) = H(X1) is the input entropy of User 1 and R2 = H(Y |X1) is the conditional

entropy of each row of the channel matrix.

Theorem 3.8 When the alphabet sizes satisfy N < M < 2N , the convex hull of the union

of BC capacity regions over all balanced BC deterministic mappings equals the convex hull

of the union of MAC capacity regions over all balanced MAC deterministic mappings:

Co





⋃

f(x)

CBC(f(x))



 = Co





⋃

g(x1,x2)

CMAC(g(x1, x2)



 , (3.46)

where f(x) is any balanced map from X to (Y1 × Y2), g(x1, x2) is any balanced map from

(X1 ×X2) to Y, and Co(·) denotes the convex hull operation.

Proof: We first show that for a given input BC distribution p(x), the rate vectors

achievable in the BC are also achievable in the dual balanced MAC. By the definition of the

deterministic BC capacity region in (3.35), the upper right corner of the pentagon region

corresponding to p(x) has R1 = H(Y1) and R2 = H(Y2|Y1) ≤ 1, where the inequality is due

to the balanced structure of the BC. In the dual MAC, the rate vector (R1 = H(Y |X2) =

H(X1), R2 = H(Y |X1)) is achievable. By choosing the MAC input X1 to have the same

distribution as the output BC distribution of Y1 and P (x2 = 1) = 1
2 , clearly the BC rate

vector can also be achieved since H(X1) = H(Y1) and H(Y2|Y1) = H(Y |X1). The upper

left corner of the pentagon region corresponding to BC input p(x) can also similarly be

achieved in the dual balanced MAC by considering the MAC with the roles of users 1 and

2 reversed. Since both the BC and MAC regions are convex, this is sufficient to prove that

the LHS of (3.46) is a subset of the RHS of (3.46).

Now consider the rate vector (R1 = H(Y |X2) = H(X1), R2 = H(Y |X1)) achievable

in the MAC. Similarly, any rate vector achievable in the MAC can be achieved in the BC
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Figure 3.10: Deterministic BC and MAC capacity regions for
M = 5, N = 3

by choosing the BC input distribution p(x) such that H(Y1) = H(X1) and such that the

conditional entropy H(Y2|Y1) = H(Y |X1). �

Note that this differs from Theorem 3.7 in that the union is only taken over balanced

broadcast and multiple-access channels. We conjecture that the relationship holds when

the union is taken over all deterministic channels, but we have been unable to show this as

of yet.

Fig. 3.10 shows the capacity region of the balanced deterministic broadcast channel for

M = 5, N = 3 along with the capacity region of the two balanced MAC’s. Notice that the

convex hull of the MAC regions is equal to the BC capacity region.

3.2.5 Duality Counter-example

In this section we provide a simple counter-example showing that the duality between the

deterministic MAC and BC does not always exist. Consider a deterministic BC with M = 8

and N = 3, with each input going to a unique output (Y1, Y2) pair. It is easy to verify that

any such deterministic BC mapping is equivalent for this choice of M and N . Clearly,

by choosing x uniformly over the input alphabet, we can achieve H(Y1, Y2) = log(8) = 3.

Thus, the maximum sum rate for the deterministic BC is 3 bits/use. In the dual MAC,

with M = 8 and N = 3, we will show that for any choice of deterministic MAC, the output

entropy (i.e. H(Y )) is strictly less than 3. Therefore, the deterministic BC capacity region

cannot be written in terms of dual MAC capacity regions.

We now prove that the output entropy H(Y ) for a deterministic MAC is strictly upper

bounded by log(8). In order for H(Y ) = log(8), we require the outputs of the channel to be

equiprobable for some given input product distributions p(x1) and p(x2) and some channel

function. Since every MAC output (i.e. 1, . . . , 8) must correspond to at least one of the

51



N2 = 9 input pairs, without loss of generality we assume the first 8 outputs are mapped as

follows:

(x1, x2) 7→ y :

x1, x2 1 2 3

1 1 2 3

2 4 5 6

3 7 8 ?

(3.47)

and the bottom right output is not yet chosen. We are free to choose any output for

(x1 = 3, x2 = 3). Since numbering of inputs and outputs is arbitrary, rows and columns can

be arbitrarily interchanged as well as output numbers. Thus, there are only two choices for

the output in question: we can either place an output that also appears in the same row or

column as the bottom right input pair (i.e. 3, 6, 7, or 8), or an output that is not in the

same row or column (i.e. 1, 2, 4, or 5).

Assume we choose to map (x1 = 3, x2 = 3) to y = 3. We show by contradiction that

H(Y ) < 3. Clearly the output entropy H(Y ) = 3 if and only if P (Y = i) = 1
8 for i = 1, . . . , 8.

Since outputs 4, 5, and 6 appear only once, in order for P (y = 4) = P (y = 5) = P (y = 6) =
1
8 we need P (x2 = 1) = P (x2 = 2) = P (x2 = 3) = 1

3 and P (x1 = 2) = 3
8 . Similarly, to have

P (y = 1) = P (y = 7) = 1
8 , we need P (x1 = 1) = P (x1 = 3) = 3

8 , which is a contradiction.

Thus, for any choice of p(x1)p(x2) we have H(Y ) < 3 for this choice of a MAC channel.

The maximum output entropy in this configuration is given by: maxp(x1),p(x2) H(Y ). Since

H(Y ) is a continuous function of the input distribution p(x1)p(x2) and the maximization is

taken over a closed set, the maximum is achieved by some p(x1)p(x2) because the maximum

of any continuous function over a compact set is achieved [48, Chapter 4.4]. Therefore, the

maximum output entropy is also strictly smaller than 3.

Now consider the other possible MAC, where we choose to map (x1 = 3, x2 = 3) to 1.

Then by the same argument as above we need P (x2 = 1) = P (x2 = 2) = P (x2 = 3) = 1
3 .

This again implies P (x1 = 1) = P (x1 = 2) = P (x1 = 3) = 3
8 , which is a contradiction.

Thus, we see that H(Y ) < log(8) for any channel map. It is also easy to see by the same

argument as above that the maximum output entropy in this configuration is also strictly

smaller than 3.

Since the maximum entropy in either configuration is strictly smaller than 3, the maxi-

mum H(Y ) for any deterministic MAC is equal to 3 − ε for some ε > 0. Thus, the convex

hull of all deterministic MAC capacity regions is upper bounded by R1 + R2 ≤ 3 − ε, and

thus the convex hull of the deterministic MAC capacity regions is strictly smaller than the

capacity region of the deterministic BC. Thus, Theorem 3.7 does not extend to arbitrary

M and N , and therefore Question 1 in Chapter 3.2.3 can be answered negatively.

In Fig. 3.11, a closeup of the deterministic BC capacity region and the convex hull

of the MAC capacity regions for M = 8, N = 3 is shown. For this case, there are only

2 different deterministic MAC channels (corresponding to the two possible choices for the
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Figure 3.11: Closeup of deterministic BC and MAC capacity regions for
M = 8, N = 3

(x1 = 3, x2 = 3) output), so the convex hull of the regions is easy to compute numerically.

We see that there is a slight gap between the sum rate achievable in the MAC and BC,

but a picture of the entire capacity regions would show that the capacity regions differ

only very slightly. Using the same methodology, we believe that the deterministic BC is in

general larger than any deterministic MAC channel for M > 2N , but this claim has yet to

be proven.

3.2.6 Deterministic vs. Non-deterministic Channels

In this section we explore the relationship between the capacity region of deterministic

and non-deterministic broadcast channels. As before, the transmitter alphabet is assumed

to have cardinality M and both receivers are assumed to have alphabets of size N . The

capacity region of the general broadcast channel is not known, but we still are able to relate

the capacity region of the non-deterministic channel to that of the deterministic channel.

We do so by decomposing a non-deterministic broadcast channel into a finite-state broadcast

channel, where in each state the channel is deterministic. The probabilistic nature of the

channel is captured by the state probabilities.

We first perform this decomposition on a single-user channel to illustrate this idea.

Consider a finite-state channel defined by p(y|x, s) where s is an auxiliary random variable

unknown to either the transmitter or the receiver and independent of the channel inputs

and outputs that is chosen according to some distribution p(s) defined on {1, . . . , k}. If the

channel state is not known by the transmitter nor receiver, the channel probability transition

function can be written as p(y|x) =
∑k

i=1 p(y|x, s = i)p(s = i). Thus the capacity of any

channel with probability transition function p(y|x) is equal to the capacity of a finite-state

channel defined by p(y|x, s) in which neither the transmitter nor the receiver know the
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Figure 3.12: BSC and an equivalent finite-state channel

state and p(y|x) =
∑k

i=1 p(y|x, s = i)p(s = i). Clearly, the capacity of the finite-state

channel where neither the transmitter nor receiver knows the state s is upper-bounded by

the capacity of the finite-state channel where both the transmitter and receiver know s.

Mathematically, this can be stated as

C(p(y|x)) ≤
k
∑

i=1

C(p(y|x, s = i)) (3.48)

for any decomposition p(y|x, s = i) satisfying p(y|x) =
∑k

i=1 p(y|x, s = i)p(s = i). Here we

have used the fact that capacity of a channel in which both the transmitter and receiver have

knowledge of the state is equal to the statistical average over all states of the corresponding

capacity in each state [79].

To illustrate this upper bound, let us decompose a single-user binary symmetric channel

(BSC) into a finite-state channel, where the channel is strictly deterministic in each state.

Consider a standard BSC with crossover probability p, i.e. p(y = 1|x = 0) = p(y = 0|x =

1) = p. The BSC can be decomposed into two states: an error-free state(s = 1, w.p. 1− p),

where y = x, and an error state (s = 2, w.p. p) where y equals the compliment of x. Clearly,

the capacity in either state is 1, so the upper bound on capacity is 1. An alternative method

of decomposing the channel is the following. When s = 1 (w.p. p), p(y = 0|x = 0) = p(y =

0|x = 1) = 1. When s = 2 (w.p. p), p(y = 1|x = 0) = p(y = 1|x = 1) = 1. Finally, when

s = 3 (w.p. 1 − 2p), y = x. This decomposition is illustrated in Fig. 3.12. The capacity

of the channel when s = 1 or s = 2 is clearly 0 and C(s = 3) = 1. Thus the upper bound

to capacity is p(s = 1)C(s = 1) + p(s = 2)C(s = 2) + p(s = 3)C(s = 3) = 1 − 2p, which is

strictly greater than the capacity of the original channel (equal to 1 − H(p)) except when

p = 0 or p = .5.

We can similarly decompose any DM broadcast channel into a finite-state broadcast

channel, where in each state the broadcast channel is deterministic4. We will refer to

such a channel as a finite-state deterministic BC. It can be shown that the capacity region

of a finite-state deterministic BC where the transmitter and receivers know the state is

equal to the weighted “sum” of the capacity region of each state, where the weights are

4It is easy to show that a decomposition into a finite-state deterministic channel is always possible for a
single or multi user channel with finite input and output alphabets.

54



equal to the probability of each state. Below we more precisely define the notion of a

sum of regions. Again, this is clearly an upper bound to the channel where neither the

transmitter nor receivers know the state. As we saw with the BSC, there are many different

ways of decomposing a channel into a finite-state deterministic channel. Each of these

decompositions may yield a different upper bound to the capacity of the original channel.

Thus, we take the intersection of all of these upper bounds to get the following theorem:

Theorem 3.9 The capacity region of a DM broadcast channel (X ,Y1,Y2, p(y1|x), p(y2|x))

is upper bounded by the intersection of capacity regions of finite-state deterministic BC’s

where the transmitter and receivers know the state:

CBC ⊆
⋂

p(s), p(y1,y2|x,s)

CBC(p(s), p(y1, y2|x, s)) (3.49)

where the intersection is taken over deterministic p(y1, y2|x, s) that satisfy
∑k

i=1 p(y1|x, s =

i)p(s = i) = p(y1|x) and
∑k

i=1 p(y2|x, s = i)p(s = i) = p(y2|x), where k is assumed to

be the cardinality of the state variable s. Here we use CBC(p(s), p(y1, y2|x, s)) to indicate

the capacity region of the finite-state deterministic channel with transmitter and receiver

knowledge of the state, given by:

CBC(p(s), p(y1, y2|x, s)) = p1C(s = 1) + · · · + pkC(s = k) (3.50)

where C(s = k) is the capacity region of the deterministic broadcast channel when s = k

and the sum is defined as element-by-element addition of rate vectors(i.e. a sum of sets).

Proof: The bound given in (3.49) follows obviously from the fact that both the transmitter

and receiver can ignore information about the state s. The capacity region of a finite-

state deterministic BC can be shown to equal the expression given in (3.50) by bounding

H(Y1), H(Y2) and H(Y1, Y2) in the probabilistic channel by considering the entropies while

in each channel state. If we were to consider the n outputs of the channel Y1 and the length

n state sequence, denoted Y n
1 and Sn, respectively, using Fano’s inequality and standard

information theoretic arguments:

nR1 = H(W1) (3.51)

= H(W1|Y n
1 , Sn) + I(W1; Y

n
1 , Sn) (3.52)

≤ nεn + I(W1; Y
n
1 |Sn) (3.53)

≤ I(Xn(W1, W2, S
n); Y n

1 |Sn) + nεn (3.54)

= H(Y N
1 |Sn) + nεn (3.55)

≤
n
∑

i=1

H(Y1(i)|S(i)) + nεn (3.56)
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where Y1(i) denotes the output at receiver 1 at the i-th instant and S(i) denotes the i-th

state. Thus, since we consider large n and assume the state S(i) is chosen iid, we have

R1 ≤
∑k

i=1 p(S = i) maxp(x|s=i) H(Y1|S = i). We can show similar inequalities for R2 and

R1 + R2 to give the result. �

From the definition of the convex hull, it follows that CBC(p(s), p(y1, y2|x, s)) lies in

the convex hull of the union of C(s = 1), . . . , C(s = k). Thus, any rate vector in the

capacity region of a non-deterministic broadcast channel lies in the convex hull of capacity

regions of deterministic channels with the same input/output alphabets. Thus, we conclude

that, similar to single-user channels, randomness never helps in broadcast channels in the

sense that any rate vector achievable with a random channel is also achievable (at least

in the convex hull sense) by deterministic channels. Theorem 3.9 can also be extended

to multiple-access channels. Interestingly, for either multiple-access channels or single-user

channels, the finite-state upper bound can equivalently be shown using the convexity of

mutual information in the channel law [13, Chapter 2].

We can use Theorem 3.9 applied to the MAC to strengthen the duality counter-example

presented in Chapter 3.2.5. In the counter-example, we found that the convex hull of the

capacity regions of all deterministic MAC’s is strictly smaller than the capacity region of the

deterministic BC. Since Theorem 3.9 implies that non-deterministic channels are not better

than deterministic channels, we can now state that for the M = 8, N = 3 case, no MAC,

deterministic or non-deterministic, can achieve the capacity region of the deterministic BC

described in Chapter 3.2.5. This answers Question 2 posed in Chapter 3.2.3. Furthermore,

we can state unequivocally that every discrete memoryless broadcast channel does not have

a set of dual multiple-access channels with the same alphabet sizes for which the union of

the MAC capacity regions equals the capacity region of the broadcast channel. Of course,

this does not preclude a general MAC-BC relationship existing in which the BC and MAC

are not forced to have the same alphabet sizes. Intuitively speaking, it seems it may be

useful to allow the MAC to have a larger alphabet than the BC when trying to derive a

general duality relationship.

3.3 Summary

In this chapter we established a duality relationship between the multiple-access channel

and the broadcast channel. For Gaussian channels, we proved that the capacity region

of the BC and the MAC are identical if the MAC is formed by reversing the roles of all

transmitters and receivers in the BC and if the multiple-access transmitters are subject to

a sum power constraint equal to the power constraint in the BC. This relationship holds for

AWGN channels, fading channels, and MIMO channels. Furthermore, we considered the

general class of discrete memoryless broadcast and multiple-access channels and established

a somewhat similar duality for a class of deterministic channels.
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Duality is an exciting new concept that gives great insight into the similarities between

the MAC and BC. Furthermore, the duality of the Gaussian MAC and BC is particularly

useful in deriving new results, as we illustrate in some of the following chapters. In Chapter

5 we use duality and an explicit characterization of the minimum rate capacity of the

fading BC to find the minimum rate capacity of the fading MAC. In Chapter 4, we use

duality to find the sum rate capacity of the multiple-antenna broadcast channel. We also

use duality to develop an efficient numerical algorithm to calculate the sum rate capacity

and the corresponding optimal transmission strategy for the MIMO broadcast channel.

Finally, duality is used in Chapter 4.4 to analytically compare the sum-rate capacity of the

MIMO BC to rates achievable using time-division multiple-access (TDMA), a sub-optimal

transmission strategy.

3.4 Appendix

3.4.1 Power-Preserving Property of MAC-BC Transformations

We show that if PM
j Aj = PB

j Bj for all j, where Aj and Bj are defined as

Aj = 1 + hj

j−1
∑

i=1

PB
i , Bj = 1 +

K
∑

i=j+1

hiP
M
i ,

then
∑K

i=1 PM
i =

∑K
i=1 PB

i . For notational simplicity we assume π(i) = i in this section.

We prove the result by inductively showing that

j
∑

i=1

PB
i =

1

Bj

j
∑

i=1

PM
i . (3.57)
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The base case (j = 1) holds by definition: PB
1 =

A1P M
1

B1
= 1

B1
PM

1 . Assume (3.57) holds for

j. For j + 1 we get:

j+1
∑

i=1

PB
i =

j
∑

i=1

PB
i +

Aj+1P
M
j+1

Bj+1

=

j
∑

i=1

PB
i +

PM
j+1(1 + hj+1

∑j
i=1 PB

i )

Bj+1

=
PM

j+1 + (PM
j+1hj+1 + Bj+1)

∑j
i=1 PB

i

Bj+1

=
PM

j+1 + Bj
∑j

i=1 PB
i

Bj+1

(a)
=

PM
j+1 +

∑j
i=1 PM

i

Bj+1

=

∑j+1
i=1 PM

i

Bj+1
,

where (a) follows from the inductive hypothesis. By using (3.57) for j = K and the fact

that BK = 1, we get
∑K

i=1 PB
i =

∑K
i=1 PM

i as desired.

3.4.2 Proof of Corollary 3.8

The fact that CMAC(h, P ) ⊆ CBC(1·h, P ) follows trivially from Theorem 3.1. Also, the fact

that the boundaries of the regions meet at the point where users are decoded in order of

decreasing channel gains in the MAC follows from the MAC-BC transformations and the

fact that the opposite decoding order is used in the BC. It only remains to show that the

MAC and dual BC capacity region boundaries meet at only this point if the channel gains

of all K users are distinct5 and that all other corner points of the MAC capacity region lie

strictly in the interior of the dual BC capacity region.

We show this by proving that every successive decoding point other than the one cor-

responding to decoding in order of decreasing channel gains lies strictly in the interior of

the sum power constraint MAC capacity region (i.e. the dual BC capacity region). We

show that the sum power needed to achieve any strictly positive rate vector R using the

decoding order in which the weakest user is last is strictly less than the sum power needed

to achieve the same rate vector using any other decoding order at the receiver. This implies

that points on the boundary of the sum power MAC can only be achieved by successive

decoding in order of decreasing channel gain. Therefore all corner points of the individual

power constraint MAC other than the optimal decoding order point are in the interior of

the dual BC capacity region.

5If all channel gains are not distinct, then the MAC and BC boundaries will meet along a hyperplane.
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Assume there exist i and j such that hi < hj but User i is decoded directly before User

j. This is easily seen to be true if and only if decoding is not done in order of decreasing

channel gains. We will show that the sum power needed to achieve any strictly positive rate

vector is strictly less if User i is decoded directly after User j. Users i and j do not affect

users decoded after them because their signals are subtracted out, but they do contribute

interference hiPi + hjPj to all users decoded before them. All users that are decoded after

Users i and j are seen as interference to both Users i and j. We denote this interference by

I. The rates of Users i and j then are

Ri = log

(

1 +
hiPi

hjPj + 1 + I

)

Rj = log

(

1 +
hjPj

1 + I

)

if User i is decoded before User j. The power required by Users i and j to achieve their

rates are

Pi =
hjPj + 1 + I

hi
(eRi − 1), Pj =

1 + I

hj
(eRj − 1)

and the sum of their powers is

Pi + Pj =
1 + I

hi
(eRi − 1) +

1 + I

hj
(eRj − 1)

+
1 + I

hi
(eRi − 1)(eRj − 1).

If User i is decoded directly after User j instead of before him, then the required sum power

is

P ′
i + P ′

j =
1 + I

hi
(eRi − 1) +

1 + I

hj
(eRj − 1)

+
1 + I

hj
(eRi − 1)(eRj − 1).

Clearly Pi + Pj − P ′
i − P ′

j = (1+I
hi

− 1+I
hj

)(eRi − 1)(eRj − 1) > 0 since hi < hj and

Ri, Rj > 0 by assumption. Therefore we have Pi + Pj > P ′
i + P ′

j . This fact means that

Users i and j can achieve the same rates using less sum power by switching the decoding

order of Users i and j and switching their powers from Pi and Pj to P ′
i and P ′

j . The rates

of users decoded after i and j are unaffected by such a switch. However, as noted above,

Users i and j do contribute interference to all users decoded before them. If we expand the

interference contribution of Users i and j, we find

hiPi + hjPj = (1 + I)(e2(Ri+Rj) − 1) = hiP
′
i + hjP

′
j ,
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so the rates of all users decoded earlier are unaffected. Therefore by switching the decoding

order of Users i and j and changing the powers to P ′
i and P ′

j (but not altering the rest of

the decoding order or power allocations), we can achieve the same set of rates for all K

users using strictly less sum power. Thus the point lies in the interior of the sum power

constraint MAC and therefore is not on the boundary of the dual BC capacity region.

3.4.3 Proof of Theorem 3.2

We wish to show that for any strictly positive6 power constraint P = (P 1, . . . , PK) > 0

R(P ) =
⋂

α>0

Rsum
α

(

1·P
α

)

, (3.58)

where the sum power constraint capacity region is defined as

Rsum
α (Psum) ,

⋃

{P | P∈RK
+, 1·P≤Psum}

Rα(P ). (3.59)

Before beginning the proof, we first restate the conditions required of R(P ):

1. R(P ) = Rα(P

α
) ∀ α > 0, P > 0.

2. S = {(R, P )|P ∈ RK
+ , R ∈ R(P )} is a convex set.

3. For all P ∈ RK
+ , R(P ) is a closed, convex region.

4. If P1 ≥ P2 then R(P1) ⊇ R(P2).

5. If (R1, . . . RK) ∈ R(P1, P2, . . . , PK), then for any i,

(R1, . . . , Ri−1, 0, Ri+1, . . . , RK) ∈ R(P1, . . . , Pi−1, 0, Pi+1, . . . , PK).

6. If R ∈ R(P ) and R′ ≤ R, then R′ ∈ R(P ).

7. R(P ) is unbounded in every direction as P increases, or ∀j, maxRj∈R(P ) Rj → ∞ as

Pi → ∞.

8. R(P ) is finite for all P > 0.

From condition 1 and the definition of the sum power constraint capacity region (3.59),

it is clear that R(P ) = Rα(P

α
) ⊆ Rsum

α (1·P
α

) ∀α > 0. This implies that R(P ) ⊆
⋂

α>0 Rsum
α

(

1·P
α

)

. To complete the proof, we must show that this inequality also holds

in the opposite direction.

6If the power constraint of some transmitter is zero, then we can eliminate the user and consider the
K − 1 user problem.
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Since R(P ) is a closed and convex region, it is completely characterized by the following

maximization [45, p. 135]

max
R

µ · R s.t. R ∈ R(P ) (3.60)

over priorities µ = (µ1, . . . , µK) such that µ ≥ 0 and 1 · µ = 1. Since at least one component

of µ must be strictly positive for 1 · µ = 1 to hold, without loss of generality we assume

µK > 0 . For every µ ≥ 0, we show7

max
R∈R(P )

µ · R ≥ sup
R∈

T

α>0 Rsum
α

“

1·P

α

”

µ · R. (3.61)

This implies R(P ) ⊇ ⋂

α>0 Rsum
α

(

1·P
α

)

because R(P ) is completely characterized by

maxµ · R (3.60). We essentially show that for every µ (or roughly every point on the

boundary of R(P )) there exists an α such that the boundaries of Rsum
α

(

1·P
α

)

and R(P )

meet at the point where µ · R is maximized.

The optimization in (3.60) is equivalent to

max
(R,P )∈S

µ · R s.t. P ≤ P . (3.62)

where the set S is defined in condition 2. Consider the above maximization for some fixed µ.

Since the objective function is linear and the set S is convex, this is a convex optimization

problem (see [4] for a general reference on convex optimization and Lagrangian duality).

Furthermore, the maximization takes on some optimal value p∗ by the feasibility of the

constraint set. The optimal value is finite due to the assumption that R(P ) is finite.

The Lagrangian is formed by adding the weighted sum of the constraints to the objective

function:

L(R, P , λ) = µ · R − λ1(P1 − P 1) − · · · − λK(PK − PK)

where the weights λ = (λ1, . . . , λK) are the Lagrangian multipliers. The Lagrangian dual

function is

g(λ) = sup
(R,P )∈S

L(R, P , λ).

By the above definition, for any (R, P ) ∈ S satisfying P ≤ P and λ ≥ 0, we have

µ · R ≤ L(R, P , λ) ≤ g(λ). This implies p∗ ≤ g(λ) for any λ ≥ 0. Notice that the

supremum is taken over the entire set S without taking the power constraints into effect.

Additionally, the dual function g(λ) is a convex function of λ since g(λ) is the pointwise

supremum of affine, and therefore convex, functions of λ.

7We take a sup instead of a max over the sum power constraint capacity region because we have not
verified that it is a closed region.
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By minimizing the dual function over all non-negative Lagrange multipliers, we get an

upper bound d∗ on the optimal value p∗. Due to the convexity and feasibility of the problem,

this bound is tight [4] [45]:

d∗ , min
λ≥0

g(λ) , g(λ∗) = p∗ (3.63)

where λ∗ = (λ∗
1, . . . , λ

∗
K) are the optimum Lagrange multipliers that lead to d∗. Below we

show that λ∗
i is finite and strictly positive if µi > 0 and λ∗

i is zero if µi = 0.

First consider i such that µi > 0. If λi = ∞, then with R = P = 0 we get L(R, P , λ) ≥
λiP i. Thus g(λ) = ∞, which implies that λ∗

i must be finite. Now assume λi = 0. Choose

Pj = P j for all j 6= i and let Pi be arbitrarily large. Additionally, choose all rates to be zero

except for Ri. For this choice of (R, P ), we have L(R, P , λ) = µiRi. Due to the unbounded

condition on R(P ), letting Pi be arbitrarily large implies Ri can be made arbitrarily large

while still maintaining (R, P ) ∈ S. This in turn implies g(λ) = ∞. Since p∗ = g(λ∗) is

finite, we must have λ∗
i 6= 0.

We now show that µi = 0 implies λ∗
i = 0. Since g(λ) is the supremum of the Lagrangian

and because µi = 0, it follows from condition 5 that Ri = Pi = 0 to achieve g(λ) if λi > 0.

Thus, for any λ with λi > 0 and any (R, P ) with Ri = Pi = 0, we have

L(R, P , λ) = µ · R −
∑

j 6=i

λjPj +
∑

j

λjP j

> µ · R −
∑

j 6=i

λjPj +
∑

j 6=i

λjP j

= L(R, P , λ′)

where λ′ = λ except that λ′
i = 0. Thus g(λ) > g(λ′), which implies that λ∗

i = 0.

Now consider the scaled MAC with αi defined as

αi =







λ∗
K

λ∗
i

if λ∗
i > 0

c if λ∗
i = 0

(3.64)

for i = 1, . . . , K and where c > 0 is some positive constant. Notice that α is an implicit

function of c by this definition. Since λ∗
K > 0 due to the fact that µK > 0, we have αi > 0

for all i. We will now consider the sum power constraint capacity region of the scaled MAC

with α as defined above. Consider the following optimization on the scaled MAC:

sup
R

µ · R s.t. R ∈ Rsum
α

(

1 · P

α

)

. (3.65)

By the definition of the sum power constraint capacity region, R ∈ Rsum
α

(

1 · P

α

)

is equiva-

lent to R ∈ Rα(P ) for any P satisfying 1 · P ≤ 1 · P

α
. The above maximization (3.65) can
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thus be rewritten as

sup
P∈R+

K , R∈Rα(P )

µ · R s.t. 1 · P ≤ 1 · P

α
. (3.66)

We denote the solution to this by d∗α. Because there is a sum power constraint, there is

only one Lagrange multiplier and the Lagrangian therefore is:

Hα(R, P , ν) = µ · R − ν

(

1 · P − 1 · P

α

)

= µ · R − ν

(

P1 −
P 1

α1

)

− · · ·

−ν

(

PK − PK

αK

)

= µ · R − ν

α1

(

α1P1 − P 1

)

− · · ·

− ν

αK

(

αKPK − PK

)

and the corresponding Lagrangian dual function is:

fα(ν) = sup
P∈R+

K , R∈Rα(P )

Hα(R, P , ν).

Again, the dual function satisfies fα(ν) ≥ d∗α for all ν ≥ 0. Due to the fact that Rα(P ) =

R(αP ) and α > 0, we can simplify the dual function as:

fα(ν) = sup
αP∈R+

K , R∈R(αP )

µ · R − ν

α1
(α1P1 − P 1) − · · ·

− ν

αK
(αKPK − PK)

= sup
P∈R+

K , R∈R(P )

µ · R − ν

α1
(P1 − P 1) − · · ·

− ν

αK
(PK − PK)

= g
( ν

α

)

where g is the Lagrangian dual function of the individual power constraint unscaled MAC.

If we evaluate the dual function with ν = λ∗
K , we get

fα(λ∗
K) = g

(

λ∗
K

α

)

= g

(

λ∗
K

α1
, . . . ,

λ∗
K

αK

)

.

Having established this, there are now two cases to consider: (a) µi > 0 for all i; (b) µi = 0

for some i.
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If µi > 0 for all i, then αi =
λ∗

K
λ∗

i
for all i. Thus

fα(λ∗
K) = g

(

λ∗
K

α1
, . . . ,

λ∗
K

αK

)

= g(λ∗
1, . . . , λ

∗
K) = p∗.

Since fα(λ∗
K) is an upper bound to d∗α, we have d∗α ≤ p∗. This implies

max
R∈R(P )

µ · R ≥ sup
R∈Rsum

α

“

1·P

α

”

µ · R

≥ sup
R∈

T

α>0 Rsum
α (1·P

α
)
µ · R

where the second inequality follows from Rsum
α

(

1 · P

α

)

⊇ ⋂
α>0 Rsum

α

(

1·P
α

)

.

If µi = 0 for some i, we must consider α-scalings for different values of c. As-

sume without loss of generality that µi = 0 for i = 1, . . . , L and µi > 0 for i = L +

1, . . . , K. We established earlier that µi = 0 implies λ∗
i = 0. Therefore, we have p∗ =

g
(

λ∗
1, . . . , λ

∗
L, λ∗

L+1, . . . , λ
∗
K

)

= g
(

0, . . . , 0, λ∗
L+1, . . . , λ

∗
K

)

. Using the fact that fα(ν) =

g
(

ν
α

)

∀α > 0, we have

fα (λ∗
K) = g

(

λ∗
K

α

)

= g

(

λ∗
K

c
, . . . ,

λ∗
K

c
,

λ∗
K

αL+1
, . . . ,

λ∗
K

αK

)

= g

(

λ∗
K

c
, . . . ,

λ∗
K

c
, λ∗

L+1, . . . , λ
∗
K

)

.

Here fα(λ∗
K) is a function of the constant c because α depends on c, as defined in (3.64).

For a fixed α (i.e. a fixed c), the optimum value of the sum power constraint region satisfies

d∗α ≤ fα(λ∗
K).

We now show the desired result by contradiction. Assume

sup
R∈

T

α>0 Rsum
α (1·P

α
)
µ · R > max

R∈R(P )
µ · R. (3.67)

Since Rsum
α (1 · P

α
) ⊇ ⋂

α>0 Rsum
α

(

1·P
α

)

∀α > 0, this implies that for some ε > 0,



 sup
R∈Rsum

α (1·P

α
)

µ · R



 ≥
(

max
R∈R(P )

µ · R

)

+ ε,

for all α > 0. This implies that for all α > 0, d∗α ≥ p∗ + ε = g
(

0, . . . , 0, λ∗
L+1, . . . , λ

∗
K

)

+ ε.

However, earlier we established that d∗α ≤ fα (λ∗
K) = g

(

λ∗
K
c , . . . ,

λ∗
K
c , λ∗

L+1, . . . , λ
∗
K

)

for all

c > 0. Thus we have that g
(

λ∗
K
c , . . . ,

λ∗
K
c , λ∗

L+1, . . . , λ
∗
K

)

≥ g
(

0, . . . , 0, λ∗
L+1, . . . , λ

∗
K

)

+ ε
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for all c. Since g is a convex function, g
(

β, . . . , β, λ∗
L+1, . . . , λ

∗
K

)

must lie beneath the

line between g
(

0, . . . , 0, λ∗
L+1, . . . , λ

∗
K

)

and g
(

1, . . . , 1, λ∗
L+1, . . . , λ

∗
K

)

(which is finite) for

0 ≤ β ≤ 1. This contradicts

g

(

λ∗
K

c
, . . . ,

λ∗
K

c
, λ∗

L+1, . . . , λ
∗
K

)

≥ g
(

0, . . . , 0, λ∗
L+1, . . . , λ

∗
K

)

+ ε ∀c ≥ λ∗
K .

In other words, the convexity of g implies that as c becomes large, the value of

g
(

λ∗
K
c , . . . ,

λ∗
K
c , λ∗

L+1, . . . , λ
∗
K

)

must become arbitrarily close to g
(

0, . . . , 0, λ∗
L+1, . . . , λ

∗
K

)

.

Thus (3.67) must be false and therefore

max
R∈R(P )

µ · R ≥ sup
R∈

T

α>0 Rsum
α (1·P

α
)
µ · R (3.68)

for all µ such that µi = 0 for some i.

We have now shown that the above relationship (3.68) holds for all µ ≥ 0 and the proof

is complete.

3.4.4 Verification of Rate Region Conditions

In this section we show that capacity region of the constant MAC CMAC(h, P ) meets the

conditions specified in Theorem 3.2. All conditions are satisfied by any reasonable definition

of a capacity region, but we explicitly verify them for this case.

1. The scaling property of CMAC(h, P ) follows from the definition of the capacity region

in (2.9).

2. The set S is convex if for any x, y ∈ S and θ ∈ [0, 1], θx + (1 − θ)y ∈ S. Let

r ∈ CMAC(P ) and t ∈ CMAC(Q). We wish to show that θr +(1− θ)t ∈ CMAC(θP +

(1 − θ)Q). By time-sharing between the schemes used to achieve r and t, we use

power θP + (1 − θ)Q and achieve rate θr + (1 − θ)t, which verifies the convexity of

the set.

3. The region CMAC(h, P ) is closed by definition and is convex due to a time-sharing

argument.

4. CMAC(h, P ) is an increasing function of power because any rate achievable with a

smaller power constraint is also achievable with a larger power constraint because all

power need not be used.

5. If some set of rates are achievable by transmitters 2 through K while transmitter 1

is also sending information, then those same rates are achievable in the absence of

transmitter 1’s signal because each user transmits an independent message.
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6. If transmission is halted for some fraction of time, then any smaller rate vector can

be achieved.

7. Additional power allows for additional rate on any link by transmitting a codeword

that can be decoded (and thus subtracted off) by all K receivers, even when treating

the rest of the received signal as noise.

8. CMAC(h, P ) is bounded by the individual capacities of each link (i.e. each transmitter-

receiver pair), which are finite due to the basic properties of Gaussian channels.

3.4.5 Equivalent Covariance Matrix for Flipped Channel

Given a covariance matrix Σ for some channel H, we wish to find a covariance matrix Σ

such that Tr(Σ) ≤ Tr(Σ) and

log |I + HΣH†| = log |I + H†ΣH|. (3.69)

If the SVD of H is H = FΛG† where Λ is square and diagonal, then we propose Σ =

FG†ΣGF†. Using the identity |I + AB| = |I + BA| and the fact that F†F = I and

G†G = I we can write the capacity of the unflipped channel as:

log |I + HΣH†| = log |I + FΛG†ΣGΛF†|
= log |I + ΛG†ΣGΛ|. (3.70)

We can similarly write the capacity of the flipped channel with our candidate covariance

matrix Σ as:

log |I + H†ΣH| = log |I + GΛF†FG†ΣGF†FΛG†|
= log |I + GΛG†ΣGΛG†|
= log |I + ΛG†ΣGΛ|. (3.71)

Therefore the rate achieved by Σ in the flipped channel is the same as the rate achieved

by the original covariance matrix Σ in the unflipped channel. It thus only remains to show

that Tr(Σ) ≤ Tr(Σ). To do so, we make use of the identity Tr(AB) = Tr(BA). Clearly,

we can write

Tr(Σ) = Tr(FG†ΣGF†) = Tr(G†ΣG) = Tr(ΣGG†). (3.72)

We then use Gram-Schmidt to expand G into a full unitary matrix:

G̃ = [G G] (3.73)
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such that G̃G̃† = G̃†G̃ = I. Using this unitary matrix, we can write

Tr(Σ) = Tr(ΣG̃G̃†)

= Tr(ΣGG†) + Tr(ΣG G
†
)

≥ Tr(ΣGG†). (3.74)

To get (3.74), we used the fact that the matrix G
†
ΣG is positive semi-definite, which

implies Tr(ΣG G
†
) = Tr(G

†
ΣG) ≥ 0.

3.4.6 Trace-Preserving Property of MIMO MAC-BC Transformations

In this section, we show that the MAC-BC transformations obtained in (3.24)-(3.26) satisfy

the sum trace requirement. Since ΣK = A
1/2
K QKA

1/2
K

Tr(ΣK) ≤ Tr(A
1/2
K QKA

1/2
K )

= Tr(AKQK)

= Tr(QK) +
K−1
∑

i=1

Tr(ΣiH
†
KQKHK).

By adding
∑K−1

i=1 Tr(Σi) to both sides we get

K
∑

i=1

Tr(Σi) ≤ Tr(QK) +
K−1
∑

i=1

Tr(Σi(I + H†
KQKHK)).

By the definition of Σj , we get

Tr(Σj(I +
K
∑

i=j+1

H†
iQiHi)) = Tr(ΣjBj)

≤ Tr(AjQj)

= Tr(Qj) +

j−1
∑

i=1

Tr(ΣiH
†
jQjHj).

Using this expression for j = K − 1 we get

K
∑

i=1

Tr(Σi) ≤
K
∑

l=K−1

Tr(Ql) +

K−2
∑

i=1

Tr(Σi(I +
K
∑

l=K−1

H†
l QlHl)).
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By induction, we can further show that

K
∑

i=1

Tr(Σi) ≤
K
∑

l=j

Tr(Ql) +

j−1
∑

i=1

Tr(Σi(I +
K
∑

l=j

H†
l QlHl)),

for any j. For j = 1, we get

K
∑

i=1

Tr(Σi) ≤
K
∑

l=1

Tr(Ql).

The same proof method can be used to show that the BC-MAC transformations in (3.28)-

(3.30) also satisfy the trace constraints.
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Chapter 4

Multiple-Antenna Broadcast

Channels

Multiple input multiple output (MIMO) systems have received a great deal of attention as

a method to achieve very high data rates over wireless links. The capacity of single-user

MIMO Gaussian channels was first studied by Foschini [16] and Telatar [61]. This work

has also been extended to the MIMO multiple-access channel (MAC) [61, 66, 83]. In this

chapter we study multiple-antenna broadcast channels in which the transmitter and each of

the receivers may employ multiple antennas. Such channels are not well understood because

they fall into the class of non-degraded broadcast channels, for which the capacity region

is unknown. Note that the multiple-antenna broadcast channel is an excellent model for

current cellular systems in which multiple antennas are deployed at the base station. Thus,

understanding the fundamental limits of such channels is of critical importance.

In pioneering work by Caire and Shamai [5], an achievable rate region for the MIMO

broadcast channel was obtained by applying the “dirty paper” result [8] at the transmitter

(or alternatively using the coding for non-causally known interference technique [15]). Caire

and Shamai also showed that the sum rate capacity of the MIMO BC equals the maximum

sum rate of this achievable region for the two user broadcast channel with an arbitrary

number of transmit antennas and one receive antenna at each receiver. However, computing

this region is extremely complex and the approach used in [5] to prove the optimality of

dirty-paper coding for sum rate does not appear to work for more than two users and

multiple receive antennas.

In this chapter we develop three new results related to the sum rate capacity of the

MIMO BC. First, we generalize the results of [5] and show that dirty paper coding achieves

the sum rate capacity of the MIMO BC for an arbitrary number of users, transmit antennas,

and receive antennas. We prove that an upper bound to the sum rate capacity of the MIMO

BC is equal to the sum rate capacity of the dual MIMO multiple-access channel. Using the

equivalence of the MIMO MAC capacity region and the MIMO BC dirty paper achievable
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region, established in Chapter 3.1.4, this proves the result. Next, we propose an efficient

algorithm that numerically computes the sum rate capacity of the MIMO BC and the

corresponding optimal transmission policies. This algorithm in fact finds the sum capacity

of the dual MIMO multiple-access channel and provably converges. Finally, we compare

the sum rate capacity of the MIMO BC, again using the MAC-BC duality, to the maximum

sum rate achievable using single-user transmission, i.e. using time-division multiple-access

(TDMA), to characterize the gain that dirty paper coding provides over simpler transmission

techniques. It is interesting to note that the MAC-BC duality is a crucial component of all

three results in this section.

The remainder of this chapter is organized as follows. In Chapter 4.1 we describe the

MIMO BC and the dual MIMO MAC. In Chapter 4.2 we find the sum-rate capacity of

the MIMO BC, followed by a corresponding numerical algorithm in Chapter 4.3. Finally,

we compare the sum-capacity achieving technique of dirty paper coding to the sub-optimal

technique of time-division multiple-access in Chapter 4.4. Some of the work in this chapter

is also published in [68] [69] [33] [71] [31] [28].

4.1 System Model

We consider a MIMO broadcast channel with an M -antenna transmitter and K receivers

with r1, . . . , rK receive antennas, respectively, as described in Chapter 2.2.5. In order to

facilitate reading of this thesis, we copy the mathematical description of this channel from

Chapter 2.2.5. Let x ∈ C
M×1 be the transmitted vector signal and let Hk ∈ C

rk×M be

the channel matrix of receiver k where Hk(i, j) represents the channel gain from transmit

antenna j to antenna i of receiver k. The circularly symmetric complex Gaussian noise

at receiver k is represented by nk ∈ C
rk×1 where nk ∼ N(0, I). Notice that each receive

antenna component suffers from additive complex Gaussian noise of variance one. Let

yk ∈ C
rk×1 be the received signal at receiver k. The received signal is mathematically

represented as:









y1

...

yK









= Hx +









n1

...

nk









where H =









H1

...

HK









. (4.1)

The matrix H represents the channel gains of all receivers. The covariance matrix of the

input signal is Σx , E[xx†]. The transmitter is subject to an average power constraint P ,

which implies Tr(Σx) ≤ P . We assume the channel matrix H is constant and is known

perfectly at the transmitter and at all receivers.

Throughout this chapter we also extensively consider the dual multiple-access channel,

i.e. a K-transmitter multiple-access channel in which the j-th transmitter has rj antennas
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and the receiver has M antennas. This channel is described in Chapter 2.2.6, but for ease

of reading we repeat the mathematical description. Let xk ∈ C
rk×1 denote the transmitted

signal of transmitter k. Let yMAC ∈ C
M×1 be the received signal and n ∈ C

M×1 the noise

vector where n ∼ N(0, I). We also use Hk ∈ C
M×rk to denote the channel matrix from the

k-th transmitter to the receiver. Notice that the channel matrix dimensions are opposite

those in the MIMO broadcast channel. The received signal is mathematically represented

as

yMAC = H1x1 + . . . + HKxK + n

= H









x1

...

xK









+ n where H = [H1 . . . HK ] .

In the dual MAC, each transmitter is subject to an individual power constraint of P1, . . . , PK .

We also assume perfect knowledge of the channel at the transmitters and the receiver in

the dual MAC.

Lastly, we define the cooperative system to be the same as the broadcast channel, but

with all receivers coordinating to perform joint detection. If the receivers are allowed to

cooperate, the broadcast channel reduces to a single-user M × (
∑K

j=1 rj) multiple-antenna

system described by

y = Hx + z (4.2)

where y =









y1

...

yK









and z =









n1

...

nK









. We call the capacity of this system, denoted

Ccoop(H, P ), the cooperative capacity.

We use boldface to denote matrices and vectors. |S| denotes the determinant and S−1

the inverse of a square matrix S. For any general matrix M, M† denotes the conjugate

transpose and Tr(M) denotes the trace. I denotes the identity matrix and diag(λi) denotes

a diagonal matrix with the (i, i) entry equal to λi.

4.2 Sum Rate Capacity

In this section, we prove that dirty paper coding achieves the sum rate capacity of the

multiple-antenna broadcast channel. If we let Cregion
BC (H1, . . . ,HK , P ) denote the capacity

region of the MIMO BC, the sum rate capacity of the channel, denoted CBC(H1, . . . ,HK , P ),

is given by:

CBC(H1, . . . ,HK , P ) , max
R1,...,RK∈Cregion

BC (H1,...,HK ,P )

K
∑

i=1

Ri. (4.3)
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We can similarly define the maximum sum rate achievable using dirty paper coding, denoted

Csumrate
DPC (H1, . . . ,HK , P ), by:

Csumrate
DPC (H1, . . . ,HK , P ) , max

R1,...,RK∈CDPC(H1,...,HK ,P )

K
∑

i=1

Ri. (4.4)

where the dirty paper rate region CDPC(H1, . . . ,HK , P ) is defined in (2.19).

In [55], Sato presented an upper bound on the capacity region of general BCs. This

bound utilizes the capacity of the cooperative system as defined in Chapter 4.1. Since the

cooperative system is the same as the BC, but with receiver coordination, the capacity

of the cooperative system (Ccoop(H, P )) is an upper bound on the BC sum rate capacity,

i.e. CBC(H1, . . . ,HK , P ) ≤ Ccoop(H, P ). This bound is not tight in general, but Sato

tightened this bound by using the fact that the capacity region of a general BC depends

only on the marginal transition probabilities of the channel (i.e. p(yi|x)) and not on the joint

distribution p(y1, . . . , yK |x) [13, Theorem 14.6.1]. Thus, if the joint distribution is modified

while keeping the marginal distributions fixed, the capacity region of the broadcast channel,

and therefore the sum rate capacity, is unaffected. However, the capacity of the cooperative

system is affected by the joint distribution, and thus the joint distribution can be modified

to yield the lowest cooperative capacity.

For the MIMO BC, the marginal distribution is governed only by the fixed channel

matrices and the additive Gaussian noise at each receiver, and is unaffected by any corre-

lation between the noise at different receivers of the BC. Such correlation does, however,

affect the capacity of the cooperative system, which is still an upper bound on the sum

rate of the BC. Therefore we retain E(nin
†
i ) = I, 1 ≤ i ≤ K as before (i.e. noise com-

ponents at the multiple receive antennas within a single receiver are uncorrelated) and let

E(ninj
†) , Xi,j ≺ I. Let Z denote the noise covariance matrix in the cooperative system

(i.e Z = E[zzT ] where z = [n1
T · · ·nk

T ]T ) and define the set S to be all non-singular

(or strictly positive definitive) noise covariance matrices satisfying the Sato upper bound

conditions

S =















Z : Z > 0,Z =









I . . . X†
K,1

...
...

...

XK,1 . . . I























. (4.5)

Then for any Z ∈ S, the cooperative capacity is an upper bound to CBC(H1, . . .HK , P ).

Noise correlation colors the noise of the joint receiver, and it is easy to see that the capacity

of the cooperative system with channel H and Gaussian noise with covariance Z is equal to

Ccoop(Z
−1/2H, P ). Thus, the Sato upper bound is equal to the capacity of the cooperative
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system for the worst case Z:

CSato(H1, . . . ,HK , P ) , inf
Z∈S

Ccoop(Z
−1/2H, P )

= inf
Z∈S

max
Σ≥0,Tr(Σ)≤P

log
∣

∣

∣I + Z−1/2HΣH†Z−1/2
∣

∣

∣ , (4.6)

where the cooperative capacity is given in [61] as:

Ccoop(Z
−1/2H, P ) = max

Σ≥0,Tr(Σ)≤P
log
∣

∣

∣I + Z−1/2HΣH†Z−1/2
∣

∣

∣ .

Of course, as noted before, the sum rate capacity of the MIMO BC can be no larger than

the Sato upper bound:

CBC(H1, . . . ,HK , P ) ≤ CSato(H1, . . . ,HK , P ). (4.7)

Next, we show that this statement holds with equality, or that the sum rate capacity of the

MIMO BC actually equals the Sato upper bound.

Theorem 4.1 The sum rate capacity of the MIMO BC equals the Sato upper bound. Fur-

thermore, the dirty paper coding strategy achieves the sum rate capacity of the MIMO BC

CBC(H1, . . . ,HK , P ) = Csumrate
DPC (H1, . . . ,HK , P ) = CSato(H1, . . . ,HK , P ). (4.8)

Proof: Since the sum rate capacity of the MIMO BC can be no larger than the Sato upper

bound, it is sufficient to show that the Sato upper bound is actually achievable in the

MIMO BC using dirty paper coding. By Theorem 3.6 we have CDPC(H1, . . . ,HK , P ) =
⋃

1·P≤P CMAC(H†
1, . . . ,H

†
K , P ). Thus, if we define Csumrate

union (H†
1, . . . ,H

†
K , P ) as:

Csumrate
union (H†

1, . . . ,H
†
K , P ) , max

P1,...,PK :
PK

i=1 Pi≤P
Csumrate

MAC (H†
1, . . . ,H

†
K , P1, . . . , PK)(4.9)

then clearly we have Csumrate
DPC (H1, . . . ,HK , P ) = Csumrate

union (H†
1, . . . ,H

†
K , P ). Therefore it is

sufficient to show

Csumrate
union (H†

1, . . . ,H
†
K , P ) ≥ CSato(H1, . . . ,HK , P ). (4.10)

to get the result. Note that the expression for the MAC sum rate given in (2.22) gives

Csumrate
union (H†

1, . . . ,H
†
K , P ) = max

{Qj≥0,
PK

i=1 Tr(Qi)≤P}
log

∣

∣

∣

∣

∣

I +
K
∑

i=1

H†
iQiHi

∣

∣

∣

∣

∣

. (4.11)

We prove (4.10) by using Lagrangian duality to express both the Sato upper bound and

the MIMO MAC sum rate capacity in different forms. Specifically, as shown in Chapter
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4.6.1, we can alternatively write the Sato upper bound defined in (4.6) as:

CSato(H1, . . . ,HK , P ) = inf
Z∈S

min
A,λ

− log |A| + Tr(A) + λP − M

such that (4.12)

λ ≥ 0,A ≥ 0

λZ ≥ HAH†,

and the MIMO MAC sum rate capacity (4.11) as:

Csumrate
union (H†

1, . . . ,H
†
K , P ) = min

A,λ
− log |A| + Tr(A) + λP − M

such that (4.13)

λ ≥ 0,A ≥ 0,

λI ≥ HiAH†
i ∀i.

Notice that the objective functions of (4.12) and (4.13) are the same, but the variables and

constraints are different. We will show that Csumrate
union (H†

1, . . . ,H
†
K , P ) ≥ CSato(H1, . . . ,HK , P )

by constructing a feasible solution to the Sato upper bound dual problem from an optimal

solution to the MIMO MAC sum rate dual problem.

Let λ = λ0, A = A0 be an optimizing solution to (4.13), i.e. Csumrate
union (H†

1, . . . ,H
†
K , P ) =

− log |A0|+ Tr(A0) + λ0P −M . Since (4.13) is a minimization of a convex function over a

closed set, we know that the minimum is achieved and the minimizing pair (λ0,A0) exists.

We prove (4.10) by explicitly constructing a feasible set of variables (λ,A,Z) for the Sato

upper bound (4.12) such that the objective functions in (4.13) and (4.12) are equal.

Let us first consider the choice of values of (λ,A,Z) as

λ = λ0 (4.14)

A = A0 (4.15)

Z =















I
H1A0H

†
2

λ0
. . .

H1A0H
†
K

λ0

H2A0H
†
1

λ0
I . . .

H2A0H
†
K

λ0

. . . . . . . . . . . .
HKA0H

†
1

λ0

HKA0H
†
2

λ0
. . . I















. (4.16)

As long as this choice of Z is positive definite, it can be verified by the method used below

that this set is feasible for (4.12) and that the objective functions of both minimizations

are the same. Thus we have constructed the worst case noise Z for the Sato upper bound

and have shown (4.10), but only for the case when Z > 0. However, in many practical cases

this choice of Z is singular, and hence, not a feasible choice of Z for (4.12).

To circumvent this singularity, we construct instead a family of feasible points (i.e Z > 0)
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by introducing an arbitrary parameter δ > 0. This family of values of (λ,A,Z) is given by

λ = λ0 + δ (4.17)

A = A0 (4.18)

Z =















I
H1A0H

†
2

λ0+δ . . .
H1A0H

†
K

λ0+δ
H2A0H

†
1

λ0+δ I . . .
H2A0H

†
K

λ0+δ

. . . . . . . . . . . .
HKA0H

†
1

λ0+δ
HKA0H

†
2

λ0+δ . . . I















. (4.19)

We need to ensure that this set is feasible for (4.12). Since (λ0,A0) are an optimizing

solution of (4.13), (λ0,A0) must satisfy the constraints in (4.13). Therefore we have that

λ = λ0 + δ > 0 and A = A0 ≥ 0. Since the matrix Z has the identity matrix along its block

diagonal and is symmetric by construction, we see that if Z > 0 then Z ∈ S. We thus need

to verify that Z > 0 and that λZ ≥ HAH†.

Note that λ0 + δ > 0 and

(λ0 + δ)Z − HA0H
† = diag[(λ0 + δ)I− HiA0H

†
i ]

= diag[λ0I− HiA0H
†
i ] + δI. (4.20)

Since (λ0,A0) are an optimizing solution of (4.13), we have λ0I − HiA0H
†
i ≥ 0 for all

i. This implies that diag[λ0I− HiA0H
†
i ] ≥ 0. Since δ > 0, we have

λZ − HA0H
† = diag[λ0I − HiA0H

†
i ] + δI > 0. (4.21)

This implies that λZ > HA0H
† = HAH†. It thus remains to show that Z > 0. Since

A ≥ 0, we also have that HAH† ≥ 0. This implies that λZ > 0. Since λ > 0, we then get

Z > 0. Hence (λ,A,Z) form a feasible set of values for (4.12). Since the Sato upper bound

is equal to the infimum (over the feasible set) of the objective function, we have

CSato(H1, . . . ,HK , P ) ≤ − log |A| + Tr(A) + λP − M

= − log |A0| + Tr(A0) + λ0P − M + δP

= Csumrate
union (H†

1, . . . ,H
†
K , P ) + δP. (4.22)

Since this holds for any δ > 0, we get CSato(H1, . . . ,HK , P ) ≤ Csumrate
union (H†

1, . . . ,H
†
K , P ),

which completes the proof of the theorem. �.

A nice property of the proof of the sum rate capacity proof is that it is constructive in

the sense that the proof generates worst-case noise covariances for the Sato upper bound,

assuming that the optimizing solution to the MIMO MAC sum rate problem is known.

Specifically, in Equation (4.19), we explicitly construct a noise covariance for which the
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Figure 4.1: Dirty paper broadcast region: K = 2, M = 2, r1 = r2 = 1,
H1 = [1 .4], H2 = [.4 1], P = 10

cooperative capacity is larger than the MIMO MAC sum rate capacity by an arbitrarily

small amount δP . Though we show that the constructed matrix Z > 0 when δ > 0, as noted

earlier when δ ≥ 0 we still are guaranteed Z ≥ 0. If the constructed matrix Z with δ = 0

is strictly non-singular (i.e. Z > 0), then the cooperative capacity with noise covariance

Z is equal to the MIMO MAC sum rate capacity. Therefore, in these cases Z is in fact a

worst case noise covariance for the Sato upper bound. Numerically, we also find Z to be a

worst case noise covariance for cases when Z is singular when δ = 0, as shown in Example

2 below.

The dirty paper BC region and the capacity regions of the dual MAC, along with the

Sato upper bound and single-user bounds, are illustrated for a symmetric two user channel

in Fig. 4.1. The dirty paper region is the union of the pentagons in the figure because the

dirty paper region is formed as a union of the individual power constraint MAC regions

(via Theorem 3.6). Since each receiver has only a single antenna, the dual MIMO MAC

region with individual power constraints is a simple pentagon. The capacity upper bound

is obtained by taking the intersection of the regions formed by the two single user optimum

corner points (which are parallel to the axes) and the Sato upper bound, which is tight at

the sum rate capacity. Note that the region formed by all three upper bounds is in fact quite

close to the dirty paper achievable region. Also note that the boundary of the dirty paper

achievable region has a straight line segment at the sum rate point. This characteristic of

possessing a straight line segment (i.e. a time-division portion) at sum rate is also true for

the MIMO MAC capacity region when the transmitters have more than one antenna [83].

76



4.2.1 Numerical Examples

In this section we provide two numerical examples to better illustrate the concepts discussed

in the paper.

Example 1: Consider a two user broadcast channel with P = 1 and channel matrices

H1 =

[

1 .8

.5 2

]

, H2 =

[

.2 1

2 .5

]

. (4.23)

The dirty paper achievable region is very difficult to compute without employing duality, as

discussed in Chapter 2.2.5. Thus, we find the dual MAC region using convex optimization

techniques to obtain the achievable region in Figure 4.2.

To compute the Sato upper bound for the problem, we solve the dual problem to the

MIMO MAC. Note that this problem is a convex problem with linear matrix inequality

constraints. There are many techniques in the convex optimization literature to solve such

problems. We use a readily available software package called SDPSOL, developed by Boyd

and Wu [64], to get that Csumrate
union (H†

1, . . . ,H
†
K , P ) = 2.2615 nats/sec and obtain A0, λ0 to

be

A0 =

[

3.231 1.43

1.43 3.603

]

λ0 = 1.2879.

From these, we obtain the worst case noise (using Equation (4.19) with δ = 0)

Z =













1 0 .1332 .4446

0 1 .4478 .0613

.1332 .4478 1 0

.4446 .0613 0 1













which is non-singular. Therefore, we find that Ccoop(Z
−1/2H, P ) = CSato(H1, . . . ,HK , P ) =

Csumrate
union (H†

1, . . . ,H
†
K , P ). The corresponding upper bound to the capacity region is shown

in Figure 4.2.

The sum rate maximizing covariance matrices in the MAC are

Q1 =

[

.0720 .1827

.1827 .4634

]

, Q2 =

[

0 .0026

.0026 .4646

]

.

Notice that the sum rate is not maximized at a single point on the boundary of the capacity

region, but it is actually maximized along a line segment. The corner points of this line

segment are circled in Figure 4.2. In the MAC, the lower corner point of this line segment

can be achieved using the above covariance matrices Q1,Q2 and by decoding User 1 last.
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Figure 4.2: Achievable region and Sato upper bound for Example 1

The upper corner point of the line segment can be achieved using the same covariance

matrices, but the opposite decoding order (i.e. decode User 2 last). Any other point on the

line segment can be achieved by time-sharing between these two decoding orders.

We can use the MAC-BC transformations in (3.24) to find the corresponding sum rate

capacity-achieving BC covariance matrices. Note, however, that the transformations depend

on the decoding order in the MAC. If we assume that User 1 is decoded last in the MAC,

the transformed BC covariances are:

Σ1 =

[

.0746 .1932

.1932 .5004

]

, Σ2 =

[

.4104 −.0776

−.0776 .0147

]

.

The lower corner point of the sum rate line segment is then achievable in the BC using

these covariance matrices and by encoding User 2 last (i.e using dirty paper coding for User

2 to cancel out the signal of User 1). To achieve the upper corner point of the sum rate

line segment, we must perform the MAC-BC transformations using the opposite order in

the MAC. We then get

Σ1 =

[

.0001 −.0069

−.0069 .4841

]

, Σ2 =

[

.4849 .1225

.1225 .0309

]

.

Clearly, these BC covariance matrices are different than those used to achieve the other

corner point of the sum rate line segment. Therefore, we see that in the MAC the corner

points of the sum rate boundary can be achieved by using the same set of covariance matrices

and different decoding orders. In the BC, however, a different decoding order and different

covariance matrices are needed to achieve the corner points of the sum rate boundary.
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Example 2: Consider a three user broadcast channel, with two antennas at the trans-

mitter (M = 2) and one antenna each per receiver (r1 = r2 = r3 = 1). The channel matrices

are given by H1 = [0 1],H2 = [−
√

3/2 − 1/2],H3 = [
√

3/2 − 1/2] and the total power

constraint is P = 1. Note that the channels are unit vectors in Euclidean space, and are

spaced 120 degrees apart, as shown in Figure 4.3. Also note that the channel matrix H

H =







0 1

−
√

3/2 −1/2√
3/2 −1/2






(4.24)

has rank two, and that H1 = −(H2 + H3).

First, let us consider the dual MAC problem. By the symmetric structure of these

channels, it is clear that allocating equal power to each user maximizes the sum rate of

this system. Thus sum rate capacity is achieved with Q1 = Q2 = Q3 = 1/3 and any MAC

decoding order.

Using the MAC-to-BC transformations in (3.24), we find covariances in the broadcast

(corresponding to encoding User 1 last, User 2 second, and User 3 first) that achieve the

same sum rate point on the capacity region to be

Σ1 =

[

0 0

0 .2857

]

,Σ2 =

[

.2187 .1623

.1623 .1205

]

(4.25)

Σ3 =

[

.2812 −.1624

−.1624 .0937

]

(4.26)
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and the sum rate capacity equals

log

∣

∣

∣

∣

I +
1

3
(H†

1H1 + H†
2H2 + H†

3H3)

∣

∣

∣

∣

= .8109 nats/use.

Now, let us find the worst case noise for the Sato upper bound. Note that, if n1 =

−(n2 + n3), then y1 = −(y2 + y3). This implies that the received signal at one of the

antennas is a linear combination of the signal at the other two antennas. Therefore, one

receive antenna can be eliminated from the system without any loss in the cooperative

capacity. Since E(n2
1) = E(n2

2) = E(n2
3) = 1, we require that E(ninj) = −.5 ∀i 6= j. Thus,

a noise covariance matrix given by

Zcand =







1 −.5 −.5

−.5 1 −.5

−.5 −.5 1






(4.27)

corresponds to n1 = −(n2 + n3), which allows us to eliminate one receive antenna. This

noise covariance is a candidate for the worst-case noise covariance for the Sato upper bound.

Note that this noise covariance is singular. If we eliminate the third antenna output, we

are left with the following two input, two output channel:

G =

[

0 1

−
√

3/2 −1/2

]

. (4.28)

The cooperative capacity with this noise covariance is then

max
Σ

log

∣

∣

∣

∣

∣

∣

I +

[

1 −.5

−.5 1

]−1

GΣG†

∣

∣

∣

∣

∣

∣

. (4.29)

To evaluate the expression above, we use the standard waterfilling technique [61] and find

the optimizing Σ to be

[

.5 0

0 .5

]

. The corresponding cooperative capacity is thus equal

to .8109 nats/use. Since the cooperative capacity with noise covariance Zcand equals the

MIMO MAC sum rate capacity, Zcand is a worst case noise for this problem.

Now, let us use the method for obtaining the worst case noise introduced in the proof

of Theorem 4.1. Using SDPSOL we get A0 =

[

1.5 0

0 1.5

]

and λ0 = 2/3. From (4.16) we
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can construct the worst case noise covariance to be

Z0 =









I
H1A0H

†
2

λ0

H1A0H
†
3

λ0

H2A0H
†
1

λ0
I

H2A0H
†
3

λ0

H3A0H
†
1

λ0

H3A0H
†
2

λ0
I









(4.30)

=







1 −.5 −.5

−.5 1 −.5

−.5 −.5 1






. (4.31)

We immediately notice that Zcand = Z0. Thus, for this case, the singular noise covariance

constructed from (4.16) actually is a worst case noise covariance, even though we are not

guaranteed this when the noise is singular.

Note: The fact that dirty paper coding achieves the sum rate capacity of the multiple-

antenna broadcast channel was also proven in parallel in [82] and [73].

4.3 Computation of Sum Rate Capacity

In the previous section, we showed that dirty paper coding achieves the sum rate capacity

of the multiple-antenna broadcast channel. Using the expression for the DPC rate region

given in (2.17) and (2.19), the sum rate capacity is equal to:

CBC(H1, . . . ,HK , P ) = Csumrate
DPC (H1, . . . ,HK , P )

= max
PK

i=1 Tr(Σi)≤P, Σi≥0 i=1,...,K
log

∣

∣

∣I + Hi(
∑

j≥i Σj)H
†
i

∣

∣

∣

∣

∣

∣I + Hi(
∑

j>i Σj)H
†
i

∣

∣

∣

.(4.32)

In this section we are interested in determining the optimal covariance matrices Σ1, . . . ,ΣK

that achieve the sum rate capacity, i.e. that achieve the maximum above. If a direct

maximization of (4.32) is attempted, one will immediately note that the objective function

is not a concave function of the covariance matrices Σ1, . . . ,ΣK . Thus, convex optimization

algorithms cannot be used, making it extremely difficult to numerically solve.

There is, however, an alternative way of finding the optimal covariance matrices that

achieve the sum rate capacity. Note that by duality, the sum rate capacity of the broadcast

channel is equal to the sum rate capacity of the dual multiple-access channel. Thus, we can

alternatively express the sum rate capacity of the broadcast channel as

CBC(H1, . . . ,HK , P ) = Csumrate
union (H†, P )

= max
{Qj≥0,

PK
i=1 Tr(Qi)≤P}

log

∣

∣

∣

∣

∣

I +
K
∑

i=1

H†
iQiHi

∣

∣

∣

∣

∣

. (4.33)
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The objective function in (4.33) is easily seen to be a concave function of the covariance ma-

trices Q1, . . . ,QK . Furthermore, the MAC-BC transformations given in Chapter 3.1.4 pro-

vide a simple mapping from the maximum achieving uplink covariance matrices Q1, . . . ,QK

to the sum capacity achieving downlink covariance matrices Σ1, . . . ,ΣK , i.e. the inputs that

maximize (4.32). Since the MAC formulation is the maximization of a concave function,

there exist standard interior point convex optimization algorithms [4] that solve the sum

power MAC problem. A new interior point based method has also been found in [76]. How-

ever, employing an interior point convex optimization algorithm to tackle as well structured

a problem as sum capacity is inefficient.

In this section, we exploit the structure in the sum capacity problem to obtain a simple

iterative algorithm for calculating sum capacity. More precisely, we propose an iterative

algorithm that solves (4.33). This algorithm is inspired by and is very similar to an iterative

algorithm for the conventional individual power constraint MAC problem by Yu, Rhee,

Boyd, and Cioffi [83]. In the following section, we describe the algorithm in [83]. We

then propose our algorithm and show that a simple modification provably converges to the

optimum.

4.3.1 Iterative Water-Filling with Individual Power Constraints

The iterative water-filling algorithm for the conventional MIMO MAC problem was obtained

by Yu, Rhee, Boyd, and Cioffi in [84]. This algorithm finds the sum capacity of a MIMO

MAC with individual power constraints P1, . . . , PK on each user, which is equal to:

CMAC(H†
1, . . . ,H

†
K , P1, . . . , PK) = max

{Qi≥0, Tr(Qi)≤Pi}
log

∣

∣

∣

∣

∣

I +

K
∑

i=1

H†
iQiHi

∣

∣

∣

∣

∣

. (4.34)

This differs from (4.33) only in the power constraint structure. Notice that the objective is a

concave function of the covariance matrices, and that the constraints in (4.34) are separable

because there is an individual trace constraint on each covariance matrix. In such situations,

it is generally sufficient to optimize with respect to the first variable while holding all other

variables constant, then optimize with respect to the second variable, etc., in order to reach

a globally optimum point. This is referred to as the block-coordinate ascent algorithm and

convergence can be shown under relatively general conditions [3, Section 2.7]. If we define

the function f(·) as

f(Q1, . . . ,QK) , log

∣

∣

∣

∣

∣

I +
K
∑

i=1

H†
iQiHi

∣

∣

∣

∣

∣

, (4.35)
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then in the (l + 1)-th iteration of the block-coordinate ascent algorithm,

Q
(l+1)
j , arg max

Qj≥0, Tr(Qj)≤Pj

f(Q
(l)
1 , . . . ,Q

(l)
j−1,Qj ,Q

(l)
j+1, . . . ,Q

(l)
K ) (4.36)

for j = (l mod K) + 1 and Q
(l+1)
j = Q

(l)
j for all other j. Notice that only one of the

covariances is updated in each iteration.

The key to the iterative water-filling algorithm is noticing that f(Q1, . . . ,QK) can be

rewritten as:

f(Q1, . . . ,QK) = log

∣

∣

∣

∣

∣

∣

I +
∑

i6=j

H†
iQiHi + H†

jQjHj

∣

∣

∣

∣

∣

∣

= log

∣

∣

∣

∣

∣

∣

I +
∑

i6=j

H†
iQiHi

∣

∣

∣

∣

∣

∣

+

log

∣

∣

∣

∣

∣

∣

∣

I +



I +
∑

i6=j

H†
iQiHi





−1/2

H†
jQjHj



I +
∑

i6=j

H†
iQiHi





−1/2
∣

∣

∣

∣

∣

∣

∣

for any j. Thus, the iteration in (4.36) can be rewritten as:

Q
(l+1)
j = arg max

Qj≥0, Tr(Qj)≤Pj

log
∣

∣

∣I + G†
jQjGj

∣

∣

∣ (4.37)

where Gj = Hj

(

I +
∑

i6=j H†
iQ

(l)
i Hi

)−1/2
. This maximization is clearly equal to the ex-

pression for the capacity of a point-to-point MIMO channel with channel matrix Gj and

power constraint Pj . It is well known that the capacity of such a MIMO channel is achieved

by choosing the input covariance along the eigenvectors of the channel matrix and by water-

filling on the eigenvalues of the channel matrix [61]. Thus, Q
(l+1)
j should be chosen as a

water-fill of the channel Gj , i.e. the eigenvectors of Q
(l+1)
j should equal the left eigenvectors

of Gj , with the eigenvectors chosen by the water-filling procedure.

At each step of the algorithm, exactly one user optimizes his covariance matrix while

treating the signals from all other users as noise. In the next step, the next user (in

numerical order) optimizes his covariance while treating all other signals, including the

updated covariance of the previous user, as noise. This intuitively appealing algorithm can

easily be shown to satisfy the conditions of [3, Section 2.7] and thus provably converges.

Furthermore, the optimization in each step of the algorithm simplifies to water-filling over

an effective channel, which is computationally efficiently.

If we let Q∗
1, . . . ,Q

∗
K denote the optimal covariances, notice that

f(Q∗
1, . . . ,Q

∗
K) = max

Qj≥0,Tr(Qj)≤Pj

f(Q∗
1, . . . ,Q

∗
j−1,Qj ,Q

∗
j+1, . . . ,Q

∗
K). (4.38)
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Thus, Q∗
1 is a water-fill of the noise and the signals from all other users, and simultaneously

Q∗
2 is a water-fill of the noise and the signals from all other users, and so on. Thus, the

sum capacity achieving covariance matrices simultaneously water-fill each of their respective

effective channels (which for User j depends on the covariance matrices of all other users)

[84], with the water-filling levels (i.e. the eigenvectors) of each user determined by the

power constraints Pj . In the next subsection, we will see that similar intuition describes

the sum capacity achieving covariance matrices in the MIMO MAC when there is a sum

power constraint instead of individual power constraints.

4.3.2 Sum Power Iterative Water-Filling

In the previous section we described an iterative water-filling algorithm that computes the

sum capacity of a MIMO MAC subject to individual power constraints. We are instead

concerned with computing the sum capacity, along with the corresponding optimal covari-

ance matrices, of a MIMO BC. As stated earlier, this is equivalent to computing the sum

capacity (and the corresponding optimal covariance matrices) of a MIMO MAC subject to

a sum power constraint, i.e. computing:

CMAC(H†
1, . . . ,H

†
K , P ) = max

{Qi≥0,
PK

i=1 Tr(Qi)≤P}
log

∣

∣

∣

∣

∣

I +
K
∑

i=1

H†
iQiHi

∣

∣

∣

∣

∣

. (4.39)

If we let Q∗
1, . . . ,Q

∗
K denote a set of covariance matrices that achieve the above maximum,

it is easy to see that similar to the individual power constraint problem, each covariance

must be a water-fill of the noise and signals from all other users. More precisely, this

means that for every j, the eigenvectors of Q∗
j are aligned with the left eigenvectors of

Hj

(

I +
∑

i6=j H†
iQ

∗
i Hi

)−1/2
. However, since there is a sum power constraint on the covari-

ances, the water level of all users must be equal. This is akin to saying that no advantage

will be gained by transferring power from one user with a higher water-filling level to an-

other user with a lower water-filling level. In the individual power constraint channel, since

each user’s water-filling level was determined by his own power constraint, the covariances

of each user could be updated one at a time. With a sum power constraint, however, we

must update all covariances simultaneously to maintain a constant water-level.

Motivated by the individual power algorithm, we propose the following algorithm in

which all K covariances are simultaneously updated during each step, based on the covari-

ance matrices from the previous step. This is a natural extension of the per-user sequential

update described in Chapter 4.3.1. At each iteration step we generate an effective channel

for each user based on the covariances of all other users. In order to maintain a common

water-level, we simultaneously water-fill across all K effective channels, i.e. we maximize

the sum of rates on the K effective channels. The (l + 1)-th iteration of the algorithm is

described by the following:
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1. Generate effective channels Gj = Hj(I +
∑

i6=j H†
iQ

(l)
i Hi)

−1/2 for j = 1, . . . , K.

2. Treating these effective channels as parallel, non-interfering channels, obtain the new

covariance matrices {Q(l+1)
i }K

i=1 by water-filling with total power P :

{Q(l+1)
i }K

i=1 = arg max
Qi≥0,

PK
i=1 Tr(Qi)≤P

K
∑

i=1

log
∣

∣

∣I + G†
iQiGi

∣

∣

∣ .

This maximization is equivalent to water-filling the block diagonal channel with diag-

onals equal to G1, . . . ,GK . If the SVD of GjG
†
j is written as GjG

†
j = UjDjU

†
j with

Uj unitary and Dj square and diagonal, then the new covariance matrices are given

by:

Q
(l+1)
j = UjΛjU

†
j (4.40)

where Λj =
[

µI− (Dj)
−1
]+

and the operation [A]+ denotes a component-wise mini-

mum with zero. Here the water-filling level µ is chosen such that
∑K

i=1 Tr(Λi) = P .

Perhaps surprisingly, this algorithm does not always lead to an increase in the objective

function and does not always converge to the optimum when K > 2. Even though the

algorithm converges to the maximum sum rate for a two-user channel, the algorithm needs

to be modified to guarantee convergence when there are more than two users. In the

following section we discuss the modification and the proof of convergence.

4.3.3 Convergence Proof

In this section we show that the sum power iterative water-filling algorithm converges when

K = 2, but does not always converge when K > 2. For K > 2, we describe a modified

version of the algorithm that provably converges to the optimum.

Two User Analysis

In order to prove convergence of the algorithm for K = 2, let us consider the following

optimization problem:

max
Tr(A1+A2)≤P, Tr(B1+B2)≤P

1

2
log
∣

∣

∣I + H†
1A1H1 + H†

2B2H2

∣

∣

∣

+
1

2
log
∣

∣

∣I + H†
1B1H1 + H†

2A2H2

∣

∣

∣ . (4.41)

We first show that the solutions to the original sum rate maximization problem in (4.39)

and (4.41) are the same. If we let A1 = B1 = Q1 and A2 = B2 = Q2, we see that any sum

rate achievable in (4.39) is also achievable in the modified sum rate in (4.41). Also, since
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the log(det(·)) function is concave we have

log
∣

∣

∣I + H†
1Q1H1 + H†

2Q2H2

∣

∣

∣ ≥
1

2
log
∣

∣

∣I + H†
1A1H1 + H†

2B2H2

∣

∣

∣+
1

2
log
∣

∣

∣I + H†
1B1H1 + H†

2A2H2

∣

∣

∣

if we let Q1 = 1
2(A1 + B1) and Q2 = 1

2(A2 + B2). Since Tr(Q1) + Tr(Q2) = 1
2Tr(A1 +

A2 + B1 + B2) ≤ P , any sum rate achievable in (4.41) is also achievable in the original

(4.39). Thus, every set of maximizing covariances (A1,A2,B1,B2) map directly to a set

of maximizing (Q1,Q2). Therefore, we can equivalently solve (4.41) to find the uplink

covariances that maximize the sum-rate expression in (4.39).

Now notice that the maximization in (4.41) has separable constraints on (A1,A2) and

(B1,B2). Thus, we can use the block coordinate ascent method in which we maximize with

respect to (A1,A2), then with respect to (B1,B2), and so on. The maximization of (4.41)

with respect to (A1,A2) can be written as:

max
Tr(A1+A2)≤P

log
∣

∣

∣I + G†
1A1G1

∣

∣

∣+ log
∣

∣

∣I + G†
2A2G2

∣

∣

∣ (4.42)

where G1 = H1(I + H†
2B2H2)

−1/2 and G2 = H2(I + H†
1B1H1)

−1/2. Clearly, this is equiv-

alent to the iterative water-filling step described in the previous section where B1,B2 play

the role of the covariance matrices from the previous step. Similarly, when maximizing

with respect to B1,B2, the covariances A1,A2 are the covariance matrices from the previ-

ous step. Therefore, performing the cyclic coordinate ascent algorithm on (4.41) is exactly

equivalent to the sum power iterative water-filling algorithm described in Chapter 4.3.2.

Furthermore, notice that each iteration is equal to the calculation of the capacity of a

point-to-point MIMO channel. Water-filling is known to be optimal in this setting, and in

Chapter 4.6.2 we show that the water-filling solution is also the unique solution. Therefore,

by [85, pg. 228] [3, Chapter 2.7], the block coordinate ascent algorithm converges because

at each step of the algorithm there is a unique maximizing solution. Thus, the iterative

water-filling algorithm given in Chapter 4.3.2 converges to the maximum sum rate when

K = 2.

More Than Two Users

If there are more than two users, the original algorithm is easily shown by example not to

always converge. Thus, the algorithm needs to be slightly modified in order to guarantee

convergence. For simplicity, we consider three users and then generalize. Similar to the
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previous section, consider the following maximization:

max
1

3
log
∣

∣

∣I + H†
1A1H1 + H†

2B2H2 + H†
3C3H3

∣

∣

∣

+
1

3
log
∣

∣

∣
I + H†

1C1H1 + H†
2A2H2 + H†

3B3H3

∣

∣

∣

+
1

3
log
∣

∣

∣I + H†
1B1H1 + H†

2C2H2 + H†
3A3H3

∣

∣

∣ (4.43)

subject to the constraints Tr(A1 + A2 + A3) ≤ P , Tr(B1 + B2 + B3) ≤ P , and Tr(C1 +

C2 + C3) ≤ P . By the same argument used for the two user case, any set of covariances is

a solution to the original optimization problem in (4.39) if and only if it is a solution to the

above problem (with Ai = Bi = Ci for i = 1, 2, 3). In order to maximize (4.43), we can again

use the cyclic coordinate ascent algorithm. We first maximize with respect to (A1,A2,A3),

then with respect to (B1,B2,B3), and so on. As before, convergence is guaranteed by [3,

Section 2.7]. In the two user case, the cyclic coordinate ascent method applied to the

modified optimization problem yields the same iterative water-filling algorithm proposed in

Chapter 4.3.2 where the effective user of each channel was based on the covariance matrices

from the previous step. If there are more than two users, however, the effective channel of

each user depends on covariances that are up to K − 1 steps old, instead of just one step

old. It is easily seen that the effective channel of User j in the n-th step is:

G
(n)
j = Hj

(

I +
K−1
∑

i=1

H†
[j+i]K

Q
(n−K+i)
[j+i]K

H[j+i]K

)−1/2

(4.44)

where [x]K = x + lK where l is an integer such that 1 ≤ x + lK ≤ K. For the three

user case, the update of Q
(n)
1 depends on Q

(n−2)
2 and Q

(n−1)
3 , Q

(n)
2 depends on Q

(n−2)
3 and

Q
(n−1)
1 , and Q

(n)
3 depends on Q

(n−2)
1 and Q

(n−1)
2 . Thus, the previous K − 1 states of the

algorithm must be stored. If (4.44) is used to generate each effective channel in step 1 of the

sum power iterative water-filling algorithm in Chapter 4.3.2, then the algorithm provably

converges to the optimum due to the convergence of the block coordinate ascent method.

Numerical Results

In Figures 4.4 and 4.5, plots of sum rate vs. iteration number are provided for a randomly

chosen 10 user channel with 4 transmit and receive antennas. In Fig. 4.4 the original

algorithm converges to the optimum, and is seen to converge considerably faster than the

modified, provably convergent algorithm. Given that the original algorithm converges in

this scenario, it is not surprising that its convergence rate is much faster. The modified

algorithm is intuitively slower because updates are based on covariance matrices from up

to K − 1 iterates ago, as opposed to only the previous iterate. In Fig. 4.5, however, the

original algorithm diverges, and oscillates between two sub-optimal points. In general, it
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Figure 4.4: Algorithm comparison for convergent scenario
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Figure 4.5: Algorithm comparison for divergent scenario

88



is not difficult to find similar examples of divergence for a large number of users. When

convergence speed is of concern, it appears to be beneficial to use the original algorithm

for the first few iterations (or until sum rate is decreased in the next iteration) and then

use the modified algorithm thereafter. The modified algorithm converges from any starting

point, and thus convergence is still guaranteed.

4.4 DPC and TDMA Comparison

Earlier in this chapter, we proved that dirty paper coding achieves the sum rate capacity of

the multiple antenna broadcast channel. However, dirty paper coding is a rather new and

complicated scheme that has yet to be implemented in practical systems. Current wireless

systems such as Qualcomm’s High Date Rate (HDR) system [27] use the much simpler

technique of time-division multiple-access (TDMA) in which the base station transmits to

only one user at a time. Considering the difficulty in implementing dirty-paper coding,

we answer the following question in this section: How large of a performance boost does

dirty-paper coding provide over TDMA in terms of sum-rate?

If dirty paper coding is used in a K-user broadcast channel, any rate vector in the

K-dimensional dirty paper coding achievable region can be achieved. Similarly, if TDMA

is used, any rate vector in the K-dimensional TDMA rate region can be achieved. It

is easy to see that the dirty paper coding achievable region is larger than the TDMA rate

region. However, defining a meaningful metric that quantifies the difference between two K-

dimensional regions for K ≥ 2 is quite difficult. Viswanathan, Venkatesan, and Huang [76]

first investigated the above question by considering different operating points (i.e. rate

vectors in the DPC and TDMA rate regions) that are reasonable for cellular systems, and

numerically comparing the rates achievable with DPC and TDMA.

In this section we focus exclusively on the sum rate capacity, or maximum throughput,

achievable using DPC and TDMA. This operating point is quite reasonable when users have

channels with roughly equivalent quality (i.e. no large SNR imbalances), but may not be as

fair for asymmetric channels because we would expect users with higher SNR’s to receive

a disproportionate fraction of the total data rate. However, the sum capacity is in general

an important figure of merit because it quantifies how much total data flow is possible in

a broadcast channel. Furthermore, comparing the maximum throughput achievable with

DPC and TDMA gives a reasonable estimate of how much “larger” the DPC rate region is

compared to the TDMA rate region.

By establishing upper and lower bounds to the DPC sum-rate capacity and the maximum

TDMA sum-rate, respectively, we are able to analytically upper bound the ratio of sum-

rate capacity to the maximum TDMA sum rate. Furthermore, we characterize the DPC

gain at asymptotically high and low SNR. We also investigate the DPC gain in a time-

varying, Rayleigh-fading channel in which the transmitter and receiver have perfect channel
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knowledge. Using the same techniques as for the downlink, we are also able to upper bound

the sum-rate gain that successive decoding provides over TDMA on the uplink (multiple-

access) channel.

The remainder of this section is organized as follows. In Chapter 4.4.1 we define the

DPC gain, which is the quantity of interest. In Chapter 4.4.2 we develop an analytical

bound on the DPC gain and we investigate the asymptotic behavior of the DPC gain at

low and high SNR in Chapter 4.4.3. We study the behavior of the DPC gain in Rayleigh

fading channels in Chapter 4.4.4. In Chapter 4.4.5 we attempt to bound the DPC rate

region in terms of the TDMA rate region. In Chapter 4.4.6 we consider the DPC gain

in a frequency-selective broadcast channel and in Chapter 4.4.7 we briefly compare dirty

paper coding to transmitter beamforming, another sub-optimal transmission strategy for

the broadcast channel. We end by applying our analytical bounds to the multiple-antenna

multiple-access channel in Chapter 4.4.8.

4.4.1 Definition of DPC Gain

As shown earlier in this chapter, the sum rate capacity of the MIMO broadcast channel is

achievable by dirty paper coding. Due to the MAC-BC duality, the sum-rate capacity of the

MIMO BC is equal to the sum-rate capacity of the dual MAC with sum power constraint

P :

CBC(H1, . . . ,HK , P ) = CMAC(H†
1, . . . ,H

†
K , P )

= max
{Qi: Qi≥0,

PK
i=1 Tr(Qi)≤P}

log

∣

∣

∣

∣

∣

I +
K
∑

i=1

H†
iQiHi

∣

∣

∣

∣

∣

(4.45)

where each of the matrices Qi is an N × N positive semi-definite covariance matrix. Note

that the previous section provides an algorithm that computes this expression.

The time-division rate region RTDMA is defined as the set of average rates that can be

achieved by time-sharing between single-user transmissions using constant power P :

RTDMA(H1, . . . ,HK , P ) ,

{

(R1, . . . , RK) :
K
∑

i=1

Ri

C(Hi, P )
≤ 1

}

(4.46)

where C(Hi, P ) denotes the single-user capacity of the i-th user subject to power constraint

P . The single-user capacity of a MIMO channel is given by the following expression1:

C(Hi, P ) = max
{Qi: Qi≥0, Tr(Qi)≤P}

log
∣

∣

∣I + H†
iQiHi

∣

∣

∣ . (4.47)

1The expression in (4.47) is the capacity of the point-to-point channel with channel matrix H
†
i . However,

the capacity of the dual (or reciprocal) point-to-point channel with channel Hi is the same [61].
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Figure 4.6: DPC and TDMA rate regions for a 2 user system with 2
transmit antennas

The maximum is achieved by choosing the covariance matrix Qi to be along the eigenvectors

of the channel matrix HiH
†
i and by choosing the eigenvalues according to a water-filling

procedure [61].

It is easy to see that the maximum sum-rate in RTDMA is the largest single-user capacity

of the K users:

CTDMA(H1, . . . ,HK , P ) , max
R∈RTDMA(H1,...,HK ,P )

K
∑

i=1

Ri = max
i=1,...,K

C(Hi, P ) (4.48)

and is achieved by transmitting only to the user with the largest capacity. We will refer to

this quantity as the TDMA sum-rate.

We are interested in quantifying the advantage that DPC gives over TDMA in terms

of total throughput. Thus, the performance metric analyzed in this paper is the DPC gain

G(H1, . . . ,HK , P ), which we define to be the ratio of sum-rate capacity to TDMA sum-rate:

G(H1, . . . ,HK , P ) ,
CBC(H1, . . . ,HK , P )

CTDMA(H1, . . . ,HK , P )
. (4.49)

Since CBC(H1, . . . ,HK , P ) ≥ CTDMA(H, P ) by definition, the DPC gain is always greater

than or equal to one. Notice that the DPC gain is a function of the channels H1, . . . ,HK

and the SNR P .

In Fig. 4.6, the DPC and TDMA rate regions are shown for a two user broadcast

channel with two transmit antennas and single receive antennas. In this symmetric channel

the TDMA sum rate is equal to the single-user capacity of either user (3.75 bps), while

the sum rate capacity is equal to 4.79 bps. Thus, the DPC gain is equal to 1.28. In the

following section, we develop an analytical upper bound to the DPC gain.
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4.4.2 Bounds on Sum-Rate Capacity and DPC Gain

In this section we develop a precise analytical upper bound to the DPC gain defined in

(4.49). In order to do so, we upper bound the sum-rate capacity of the MIMO BC and

lower bound the TDMA sum-rate.

Theorem 4.2 The sum-rate capacity of the multiple-antenna downlink is upper-bounded

as:

CBC(H1, . . . ,HK , P ) ≤ M log

(

1 +
P

M
||H||2max

)

(4.50)

where ||H||max = maxi=1,...,K ||Hi|| and || · || denotes the matrix norm (i.e. the largest

singular value).

Proof: We prove this result using the fact that the BC sum rate capacity is equal to the

dual MAC sum-rate capacity with power constraint P . The received signal in the dual MAC

is yMAC =
∑K

i=1 H†
ixi + n. The received covariance is given by Σy = E[yy†] = E[nn†] +

∑K
i=1 H†

iE[xix
†
i ]Hi = I +

∑K
i=1 H†

iQiHi. Notice that the argument of the maximization in

the expression of the sum rate capacity of the dual MAC in (4.45) is log |Σy|.
The received signal power is given by E[y†y] =

∑K
i=1 E[x†

iHiH
†
ixi] + E[n†n]. Since

x†
iHiH

†
ixi ≤ ||H†

i ||2||xi||2 = ||Hi||2||xi||2 by the definition of matrix norm, we have

E[y†y] ≤
K
∑

i=1

||Hi||2E[x†
ixi] + E[n†n] (4.51)

≤ ||H||2max

K
∑

i=1

E[x†
ixi] + M (4.52)

≤ ||H||2maxP + M (4.53)

where (4.52) follows from the definition of ||H||max and the fact that E[n†n] = M and

(4.53) follows from the sum power constraint on the transmitters in the dual MAC (i.e.
∑K

i=1 E[x†
ixi] ≤ P ). Since E[y†y] = Tr(E[yy†]) = Tr(Σy), this implies that Tr(Σy) ≤

P ||H||2max +M . By [13, Theorem 16.8.4], for any positive definite M ×M matrix K, |K| ≤
(Tr(K)

M )M . Therefore |Σy| ≤ (1 + P
M ||H||2max)

M , from which we get CBC(H1, . . . ,HK , P ) =

maxΣy log |Σy| ≤ M log(1 + P
M ||H||2max). �

The upper bound is equal to the sum-rate capacity of a system with M spatially orthog-

onal eigenmodes (distributed in any manner between the K users), each with norm equal to

||H||max. Interestingly, users need not be spatially orthogonal for the bound to be achieved

with equality. If N = 1 and there are more receivers than transmit antennas (K > M),

then if the users’ channels are Welch-bound equality sequences [54] (i.e. ||Hi|| = 1 for all

i and H†H = K
M I), then the bound is also met with equality by allocating equal power

(choosing Qi = P
K in (4.45)) to each user in the dual MAC. Since K > M , it is not possible

for the K channels (which are the 1×M rows of the matrix H) to be mutually orthogonal.
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However, the Welch-bound condition requires the M columns of H to be orthogonal. The

i-th column of H refers to the channel gains from the i-th base station antenna to each of

the K mobiles.

We now proceed by lower bounding the TDMA sum-rate.

Theorem 4.3 The TDMA sum-rate is lower bounded by the rate achieved by transmitting

all power in the direction of the largest eigenmode:

CTDMA(H1, . . . ,HK , P ) ≥ log
(

1 + P ||H||2max

)

. (4.54)

Proof: For each user, C(Hi, P ) ≥ log(1 + P ||Hi||2) because single-user capacity is

achieved by water-filling over all eigenmodes instead of allocating all power to the best

eigenmode. Since the TDMA sum-rate is the maximum of the single-user capacities, the

result follows. �

This bound is tight when N = 1, but is generally not tight for N > 1 because each user

has min(M, N) eigenmodes to water-fill over.

By combining Theorems 4.2 and 4.3, we can upper bound the DPC gain:

CBC(H1, . . . ,HK , P )

CTDMA(H1, . . . ,HK , P )
≤ M log

(

1 + P
M ||H||2max

)

log (1 + P ||H||2max)
(4.55)

≤ M (4.56)

where we used Theorems 4.2 and 4.3 to get (4.55). Furthermore, since each user’s rate in a

broadcast channel can be no larger than his respective single-user capacity,

CBC(H1, . . . ,HK , P ) ≤
K
∑

i=1

C(Hi, P )

≤ K · CTDMA(H1, . . . ,HK , P ). (4.57)

Combining the upper bounds in (4.56) and (4.57) gives the following result:

Theorem 4.4 The DPC gain is upper bounded by M , the number of transmit antennas,

and K, the number of users.

G(H1, . . . ,HK , P ) ≤ min(M, K). (4.58)

This bound is valid for any set of channels H1, . . . ,HK , any number of receive antennas

N , any number of users K, and any SNR P . When we consider DPC and TDMA from a

signaling dimensions perspective, the upper bound is in fact quite intuitive. In the lower

bound on TDMA in Theorem 4.3, only one spatial dimension (corresponding to the largest

eigenmode amongst all users) is used. Dirty paper coding, on the other hand, can utilize
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up to M dimensions2 (Theorem 4.2). Since the TDMA lower bound uses the strongest

eigenmode, the quality of each of these M spatial dimensions can be no better than the

quality of the dimension used in the TDMA lower bound. Thus the rate on each of the M

dimensions can be no larger than the TDMA lower bound, which implies that DPC gives a

sum rate no larger than M times the TDMA capacity.

Note: A bound similar to Theorem 4.2 for the single receive antenna (N = 1) downlink

when users have the same channel norm and are mutually orthogonal was independently

derived in an earlier paper by Viswanathan and Kumaran [74, Proposition 2].

4.4.3 Asymptotic DPC Gain

If we consider a system with more transmit antennas than receive antennas (M ≥ N) in the

regimes of high and low SNR, we can establish that the DPC gain converges to min
(

M
N , K

)

at asymptotically high SNR. Additionally, we can show that the DPC gain converges to

unity at low SNR, i.e. that DPC gives no throughput gain at low SNR. We present these

results in the following theorems (proofs are given in Chapter 4.6.3 and 4.6.4):

Theorem 4.5 If the concatenated channel matrix H has at least min(M, NK) linearly

independent rows and at least one of the channel matrices Hi is full row rank (i.e. has N

linearly independent rows), as P → ∞ we have

lim
P→∞

G(H1, . . . ,HK , P ) = min

(

M

N
, K

)

. (4.59)

Theorem 4.6 For any channel matrix H, dirty paper coding and TDMA are equivalent at

asymptotically low SNR:

lim
P→0

G(H1, . . . ,HK , P ) = 1. (4.60)

The DPC gain of min
(

M
N , K

)

at high SNR can be intuitively explained from a dimen-

sion counting argument as follows. At high SNR, it is easy to show that the capacity of

a MIMO channel grows as L log(P ) (ignoring additive constants), where L is the number

of spatial dimensions available in the channel, which is equal to the rank of the channel

matrix. Therefore, only the number of spatial dimensions is important at high SNR and

2The term “dimensions” is used rather loosely when applied to DPC. In a single-user non-time varying
MIMO channel, spatial dimensions correspond to purely orthogonal signaling directions (generally corre-
sponding to the right eigenvectors of the channel gain matrix). When using DPC, signaling dimensions are
generally not orthogonal because orthogonal signaling generally leads to much lower data rates. Thus, the
number of spatial dimensions is more accurately interpreted as the rank of the transmit covariance matrix
when using DPC.
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the quality of these spatial dimensions (i.e. the channel gain) is unimportant. This is ex-

pected since as P becomes large, log(1 + αP ) ≈ log(P ) + log(α) ≈ log(P ). When using

TDMA, there are min(M, N) dimensions available. This is equal to the number of dimen-

sions available in an M transmit, N receive antenna MIMO channel. When using DPC,

each linearly independent row (i.e. each received signal that is not equal to a linear com-

bination of some other received signals) gives a spatial signaling dimension. Assuming H

has at least min(M, NK) linearly independent rows, DPC can utilize min(M, NK) spatial

dimensions. When M ≥ N , the ratio of spatial dimensions using DPC vs. TDMA is given

by: min(M,NK)
N = min

(

M
N , K

)

, and thus DPC gives a sum rate equal to min
(

M
N , K

)

times

the sum rate in TDMA.

Since the sum rate capacity grows as min(M, NK) log(P ) for large P , it is also easy to

show that the sum rate capacity upper bound given in Theorem 4.2 is asymptotically tight

when M ≤ NK, or that

lim
P→∞

CBC(H1, . . . ,HK , P )

M log
(

1 + P
M ||H||2max

) = 1. (4.61)

Interestingly, the TDMA sum capacity lower bound in Theorem 4.3 is a factor of N times

smaller than the actual TDMA sum capacity in the asymptotic limit:

lim
P→∞

CTDMA(H1, . . . ,HK , P )

log (1 + P ||H||2max)
= N. (4.62)

However, this factor of N does not preclude the general upper bound of min(M, K) on the

DPC gain.

We can also compare the high SNR behavior of the sum rate capacity with that of

the cooperative-receiver channel. Since receiver cooperation can only increase the capacity

of the broadcast channel, the sum capacity CBC(H1, . . . ,HK , P ) is upper bounded by the

capacity of the system in which the K receivers fully cooperate, i.e. the capacity of the

M transmit, NK receive antenna MIMO channel, which is given by C(H, P ) as defined in

(4.47). The cooperative upper-bound MIMO channel also has min(M, NK) spatial dimen-

sions. Thus, at high SNR the ratio of sum capacity of the broadcast channel to the capacity

of the cooperative channel converges to unity. In fact, an even tighter result shows that the

difference between the sum capacity with DPC and the cooperative upper bound converges

to zero as SNR goes to infinity [5, Theorem 3].

The intuition behind the low SNR result in Theorem 4.6 is exactly the opposite of

the high SNR scenario. At low SNR only the quality of the best signaling dimension is

important and the number of available signaling dimensions is unimportant. To see this,

note that for P small, CBC(H1, . . . ,HK , P ) ≤ M log
(

1 + P
M ||H||2max

)

≈ M P
M ||H||2max =

P ||H||2max ≈ CTDMA(H1, . . . ,HK , P ). DPC allows for simultaneous transmission over all of

the different spatial dimensions. Since only the best signaling dimension is of importance
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Figure 4.7: Plots of DPC gain and sum rate for a 2 user, 2 transmit
antenna, 1 receive antenna channel

at low SNR, this option is of no use and DPC and TDMA are equivalent at low enough

SNR.

In Fig. 4.7(a), the DPC gain G(H1, . . . ,HK , P ) is plotted as a function of SNR for a

2-user channel with 2 transmit antennas and single receive antennas. The upper bound

(= M = 2) on the DPC gain is also included. Notice the monotonicity of the DPC gain

and convergence of the gain at both low and high SNR. When N = 1, we conjecture

that G(H1, . . . ,HK , P ) is in fact a monotonically non-decreasing function of P . Showing

that CBC(H1, . . . ,HK , P ) and CTDMA(H, P ) are increasing functions of P is trivial, but it

appears difficult to show the monotonicity of the ratio of these quantities for even the 2-user,

N = 1 scenario for which an exact expression for CBC(H1, . . . ,HK , P ) is known [5, Theorem

1]. In Fig. 4.7(b), the DPC and TDMA sum rate (CBC(H1, . . . ,HK , P ) and CTDMA(H, P ),

respectively) are plotted for the same system, along with the sum rate capacity upper bound

M log
(

1 + P
M ||H||2max

)

from Theorem 4.2. Note that the sum rate capacity upper bound

becomes tight (in the ratio sense only) as P → ∞. Furthermore, notice that the slope of

the sum rate capacity curve is approximately twice the slope of the TDMA sum rate curve,

leading to the convergence of the DPC gain to two.

In Fig. 4.8(a), the DPC gain is plotted as a function of SNR for a 2-user channel with

2 transmit antennas and 2 receive antennas per user. Notice that the DPC gain converges

to M
N = 1 at both extremes, but takes its maximum at a finite SNR. When M = N > 1,

G(H1, . . . ,HK , P ) is generally not non-decreasing and actually achieves its maximum at

a finite SNR. When M = N as in the figure, both TDMA (min(M, N) = M) and DPC

(min(M, NK) = M) can use M spatial dimensions. When using TDMA, the transmitter

must choose to use one of the K user’s M spatial dimensions. When using DPC, the

transmitter can choose M spatial dimensions from all NK available dimensions instead of
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Figure 4.8: Plots of DPC gain and sum rate for a 2 user, 2 transmit
antenna, 2 receive antenna channel

being forced to choose one of the K sets (corresponding to each user) of N dimensions. This

is not important at high SNR, where only the number of dimensions is relevant, or at low

SNR, where only the strongest spatial dimension is relevant. However, this improvement in

the quality of dimensions leads to a strict DPC gain at finite SNR. In Fig. 4.8(b) the DPC

and TDMA sum rate are plotted for the same system, along with the sum rate capacity

upper bound from Theorem 4.2. In this channel, it is easy to see that all three curves have

the same growth rate, i.e. are asymptotically equivalent in the ratio sense.

4.4.4 Tightness of Bound in Rayleigh Fading

In this section we consider the downlink sum-rate capacity in uncorrelated Rayleigh fading,

i.e. where each entry of Hk is independently and identically distributed as a complex cir-

cularly symmetric Gaussian with unit variance. Here we consider a time-varying system,

but we assume the transmitter and receiver have perfect and instantaneous channel state

information (CSI), and thus can adapt to the channel in each fading state. We also assume

that the transmitter (the base station) is subject to a short-term power constraint, so that

the base station must satisfy power constraint P in every fading state. This implies that

there can be no adaptive power allocation over time 3. Assuming that the fading process

is ergodic, the sum-rate is equal to the expected value of the sum-rate in each fading state.

Therefore, a reasonable performance metric is the ratio of the average sum rate using DPC

to the average sum rate using TDMA, i.e. EH[CBC(H1,...,HK ,P )]
EH[CTDMA(H1,...,HK ,P )] . Note that this is not the

3If the transmitter is subject to an average power constraint instead of a peak power constraint, the
fading channel is theoretically equivalent to the frequency-selective broadcast channel model discussed in
Chapter 4.4.6. In the frequency-selective scenario, we show that the DPC gain is also upper bounded by
min(M, K).
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same as the quantity EH[G(H1, . . . ,HK , P )], which is not as meaningful when considering

average rates achievable in a fading channel.

In the previous sections we were able to establish bounds and asymptotic limits for

the DPC gain for a fixed channel H. In this section, we attempt to gain some intuition

about the “average” DPC gain, where we average rates over Rayleigh fading channels and

then calculate the ratio. By Theorem 4.4, we have CBC(H1, . . . ,HK , P ) ≤ min(M, K) ·
CTDMA(H1, . . . ,HK , P ) for each instantiation of H. By taking the expectation of both

sides, we get
EH [CBC(H1, . . . ,HK , P )]

EH [CTDMA(H1, . . . ,HK , P )]
≤ min(M, K). (4.63)

In this section we show that this bound can be tightened to min(M
N , K) in the limit of high

SNR, in the limit of a large number of transmit antennas, and in the limit of a large number

of users. Note that the same limiting behavior occurs for the DPC gain of each channel

instantiation in the limit of high SNR (Theorem 4.5). We also provide numerical results

that show the DPC gain for non-asymptotic systems. To compute the sum rate capacity

for each channel instantiation, we use the algorithm provided in Chapter 4.3. Furthermore,

we use the standard Monte Carlo method to approximate the expected value of sum rate

over the distribution of H.

High SNR

We first consider the scenario where M , N , and K are fixed, but the SNR P is taken to

infinity. Furthermore, we assume K ≥ M ≥ N , which is quite reasonable for practical

systems. In this scenario, the DPC gain is shown to asymptotically equal M
N , or that:

lim
P→∞

EH [CBC(H1, . . . ,HK , P )]

EH [CTDMA(H1, . . . ,HK , P )]
=

M

N
. (4.64)

We show convergence by establishing upper and lower bounds on TDMA and DPC sum-

rate4 .

Similar to Theorem 4.2, we can upper bound the single-user capacity C(Hi, P ) by

N log(1 + P
N ||Hi||2). Then, using Jensen’s inequality, the TDMA sum-rate can be bounded

as:

EH [CTDMA(H1, . . . ,HK , P )] ≤ NEH

[

log

(

1 +
P

N
||H||2max

)]

≤ N log

(

1 +
P

N
EH[||H||2max]

)

.

4Note that the high SNR result in Theorem 4.5 cannot be extended in a straightforward manner here
because the theorem only gives convergence for each instantiation of H and we require some uniformity of
convergence for the result to hold in an expected value sense across instantiations.
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Since CTDMA(H1, . . . ,HK , P ) ≥ C(H1, P ), we can lower bound the TDMA capacity as:

EH[CTDMA(H1, . . . ,HK , P )] ≥ EH1 [C(H1, P )]

≥ EH

[

log

∣

∣

∣

∣

I +
P

N
H†

1H1

∣

∣

∣

∣

]

= NEH

[

log

(

1 +
P

N
λi

)]

≥ N

(

log

(

P

N

)

+ EH [log (λi)]

)

.

where λi is an unordered eigenvalue of the Wishart matrix H1H
†
1 and the single-user capac-

ity is lower bounded by transmitting equal power (as opposed to the optimal water-filling

power allocation) on each of the N eigenmodes of User 1.

Using Theorem 4.2 and Jensen’s inequality, we can upper bound the sum-rate capacity

as:

EH [CBC(H1, . . . ,HK , P )] ≤ MEH

[

log

(

1 +
P

M
||H||2max

)]

≤ M log

(

1 +
P

M
EH

[

||H||2max

]

)

.

We can also lower bound the sum-rate capacity by choosing Qi = P
KN I in (4.45) for each

user:

EH[CBC(H1, . . . ,HK , P )] ≥ EH

[

log

∣

∣

∣

∣

I +
P

KN
H†H

∣

∣

∣

∣

]

= MEH

[

log

(

1 +
P

KN
λi

)]

≥ M

(

log

(

P

KN

)

+ EH [log(λ1)]

)

where λi is distributed as an unordered eigenvalue of the M × M Wishart matrix H†H.

Using these bounds, as P becomes large, we can upper and lower bound the ratio
EH[CBC(H1,...,HK ,P )]

EH[CTDMA(H1,...,HK ,P )] by M
N . It then follows that EH[CBC(H1,...,HK ,P )]

EH[CTDMA(H1,...,HK ,P )] converges to M
N in

the limit of high SNR. This result is intuitively closely related to Theorem 4.5.

In Fig. 4.9, the ratio of sum-rate capacity to the TDMA sum-rate

(i.e. EH[CBC(H1,...,HK ,P )]
EH[CTDMA(H1,...,HK ,P )]) is plotted for a system with 10 users. The ratio is plotted for

M = 4 and N = 1, N = 2, and N = 4. In each case the DPC gain converges to M
N , though

it does so quite slowly for the N = 1 case.
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Figure 4.9: DPC Gain as a function of SNR for a 10 user system

Large M

In this section we examine the scenario where the number of users (K), number of receive

antennas (N), and SNR (P ) are fixed but the number of transmit antennas (M) is taken

to be large. We will show that the DPC gain converges to K in this case, i.e.:

lim
M→∞

EH [CBC(H1, . . . ,HK , P )]

EH [CTDMA(H1, . . . ,HK , P )]
= K. (4.65)

As in the previous section, we lower bound the sum rate capacity by choosing Qi = P
KN I

in (4.45) for each user and in each fading state. Since the identity covariance is optimal

for point-to-point MIMO channels in Rayleigh fading [61], with the above choice of Qi the

lower bound is equal to the point-to-point capacity of a KN transmit, M receive MIMO

channel where only the receiver has channel knowledge. If the number of receive antennas

in this point-to-point link is allowed to become large (i.e. M → ∞) but the number of

transmit antennas in this point-to-point model (KN) is kept fixed, then the capacity of the

point-to-point system grows as KN log(1 + MP
KN ) [23].

As in the previous section, the TDMA sum-rate is upper bounded as

EH[CTDMA(H1, . . . ,HK , P )] ≤ NEH[log
(

1 + P
N ||H||2max

)

]. Using standard probability ar-

guments, we can upper bound EH[CTDMA(H1, . . . ,HK , P )] by N log
(

1 + P
N M(1 + α)

)

,

where α is any strictly positive number.

If we now take the ratio of DPC sum-rate capacity to TDMA sum-rate as M → ∞, we

get

lim
M→∞

EH [CBC(H1, . . . ,HK , P )]

EH [CTDMA(H1, . . . ,HK , P )]
≥ lim

M→∞

KN log(1 + MP
KN )

N log(1 + P
N M(1 + α))

= K. (4.66)
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Figure 4.10: DPC Gain as a function of M for a system with 3 users at
10 dB

By Theorem 4.4, this ratio is also upper-bounded by K for all M , Thus, in the limit of many

transmit antennas and with a fixed number of receivers, the DPC gain goes to K. Intuitively,

as M becomes large, the NK rows of H become mutually orthogonal because each row is

a random vector in C
M . Using TDMA, signaling can be done over N roughly orthogonal

dimensions, whereas DPC allows signaling over NK dimensions. Thus, DPC can use K

times as many signaling dimensions. Furthermore, the received SNR increases linearly with

M . Thus, we are effectively in the high SNR regime when considering asymptotically large

M , which implies that the factor of K increase in the number of spatial dimensions gained

by using DPC translates to a factor of K increase in rate.

In Figure 4.10 the DPC gain is plotted as a function of the number of transmit antennas

for a system with 3 users, each with 10 dB average SNR. Notice that for both N = 1 and

N = 2, slow convergence to K = 3 is observed as M becomes large.

Large K

If the number of antennas and the SNR are kept fixed and the number of users is taken to

be large, it is shown in [60] that the dirty paper gain converges to M
N , i.e.:

lim
K→∞

EH [CBC(H1, . . . ,HK , P )]

EH [CTDMA(H1, . . . ,HK , P )]
=

M

N
(4.67)

More specifically, the authors show that the sum rate capacity and the TDMA sum-rate

grow as M log log(K) and N log log(K), respectively. The intuition in this scenario is that

as the number of users grows large, you can find a roughly orthogonal set (of size M or N)

of channels to transmit over. Furthermore, the quality of these channels (i.e. the channel

gain) grows roughly as log(K) because the maximum of independent exponential random

variables grows logarithmically. Thus, the approximate rate is equal to (# of dimensions)
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Figure 4.11: DPC Gain as a function of # of users for a system with 4
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· log log(K).

Numerical Results

In this section we provide plots and analysis of the DPC gain in Rayleigh fading for more

realistic system parameters. In Fig. 4.11, the DPC gain is plotted as a function of the

number of users for a system with four transmit antennas and one receive antenna. Plots

are provided for different average SNR values. The DPC gain converges to four in the limit

of a large number of users (i.e. each SNR curve converges to four), but convergence occurs

extremely slow, particularly for the lower SNR values. However, a factor of 2 to 3 increase

in sum rate is possible for systems with 20 users and average SNR’s ranging from 5 to 20

dB.

In Figure 4.12 the DPC gain is plotted against SNR for systems with single receive

antennas and differing numbers of transmit antennas. Each curve converges to M at very

high SNR, and convergence occurs relatively quickly, unlike in the previous figure. Notice

that at 0 dB, the DPC gain is larger than two only when there are eight transmit antennas.

However, at 10 to 20 dB, gains of 2 to 5 are feasible if four or more antennas are used.

In general, note that the largest DPC gain occurs in systems with a large number of

users relative to the number of transmit antennas operating at a high average SNR. Cellular

systems typically have a large number of users per cell (i.e. 20 - 30), which is large compared

to reasonable base station antenna deployments, but SNR’s are typically quite low.
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Figure 4.12: DPC Gain as a function of SNR for a 10 user system with
1 RX antenna

4.4.5 Rate Region Bounds

Given that the sum-rate gain of DPC over TDMA can be elegantly upper bounded by

min(M, K), a natural question to ask is whether the entire DPC rate region can be upper

bounded by the same factor min(M, K) times the TDMA rate region, i.e. is

RDPC(H1, . . . ,HK , P ) ⊆ min(M, K) · RTDMA(H1, . . . ,HK , P )? We have thus far investi-

gated the gain DPC provides when all users’ rates are weighted equally, but such a result

would bound the total gain DPC can provide for any weighting of transmission rates.

By single-user capacity bounds, we know that R ∈ RDPC(H1, . . . ,HK , P ) implies

Ri ≤ C(Hi, P ) for i = 1, . . . , K. Thus, 1
K

∑K
i=1 Ri ≤

∑K
i=1

1
K C(Hi, P ), which by the defi-

nition of RTDMA(H1, . . . ,HK , P ) in (4.46) implies 1
K R ∈ RTDMA(H1, . . . ,HK , P ). Thus,

it follows that RDPC(H1, . . . ,HK , P ) ⊆ K ·RTDMA(H1, . . . ,HK , P ). However, it is in fact

surprisingly simple to show that it is not always true that RDPC(H1, . . . ,HK , P ) ⊆ M ·
RTDMA(H1, . . . ,HK , P ). Consider a single transmit and single receive antenna broadcast

channel (M = N = 1). As long as each of the channel gains are not equal, the capacity re-

gion (which is equal to the DPC region for the scalar broadcast channel) of the scalar broad-

cast channel is strictly larger than the TDMA region [13], i.e. RDPC(H1, . . . ,HK , P ) ⊃
RTDMA(H1, . . . ,HK , P ). Interestingly, for symmetric channels (i.e. single user capacities

of all users are equal C(H1, P ) = C(H2, P ) = · · · = C(HK , P )), the min(M, K) bound on

the DPC gain implies that for any R in the DPC region,
∑K

i=1 Ri ≤ CBC(H1, . . . ,HK , P ) ≤
min(M, K) · C(H1, P ). Therefore, it follows that RDPC(H1, . . . ,HK , P ) ⊆ min(M, K) ·
RTDMA(H1, . . . ,HK , P ) for symmetric channels. However, this result is not true in gen-

eral.
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4.4.6 Frequency Selective Broadcast Channels

A frequency selective multiple-antenna broadcast channel can be decomposed into a set

of parallel, independent flat-fading multiple-antenna broadcast channels [21]. In practi-

cal systems, orthogonal frequency division multiplexing (OFDM) can be used to reduce a

frequency-selective channel into a finite number of parallel, frequency-flat MIMO broadcast

channels (corresponding to each frequency tone). Dirty paper coding could be used sepa-

rately on each of these frequency tones, or TDMA could be used on each tone (i.e choose

only user per tone to transmit to). If DPC is used on each tone, power can optimally

be allocated to different tones to meet an average power constraint. If this same per-tone

power allocation is used in conjunction with TDMA instead of DPC (transmitting to only

the strongest user on each tone), Theorem 4.4 can be used to upper bound the DPC gain

in each tone by min(M, K). Therefore, the total sum rate achieved using DPC (and opti-

mal allocation of power across tones) is still at most min(M, K) times larger than the rate

achievable using TDMA on each tone. However, if only one user was selected for transmis-

sion across all tones, which implies that this user may not be the best user for each tone,

the gain of DPC is no longer upper bounded by M , but is still upper bounded by K, the

number of users.

4.4.7 Transmitter Beamforming

Transmitter beamforming5 is a sub-optimal technique that supports simultaneous transmis-

sion to multiple users on a broadcast channel. Each active user is assigned a beamform-

ing direction by the transmitter and multi-user interference is treated as noise. Transmit

beamforming is actually quite similar to dirty paper coding, but with DPC some multi-

user interference is “pre-subtracted” at the transmitter, thus increasing the rates of some

users. In [73] it is shown that transmitter beamforming for the broadcast channel without

pre-coding is dual to receiver beamforming in the multiple-access channel without succes-

sive interference cancellation. As a result, when N = 1, the maximum sum rate using

beamforming can be written as [65]:

CBF (H1, . . . ,HK , P ) = max
{Pi:

PK
i=1 Pi≤P}

K
∑

j=1

log

∣

∣

∣
I +

∑K
i=1 H†

iPiHi

∣

∣

∣

∣

∣

∣I +
∑

i6=j H†
iPiHi

∣

∣

∣

(4.68)

This optimization cannot be cast in a convex form, and does not lend itself to numerical

computation. However, we are able to analytically show that beamforming and DPC are

equivalent at low and high SNR.

Theorem 4.7 If H has at least M independent rows, beamforming performs as well as

5Transmitter beamforming is also referred to as SDMA, or space-division multiple access.
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DPC in the ratio sense at both asymptotically low and high SNR.

lim
P→∞

CBC(H1, . . . ,HK , P )

CBF (H1, . . . ,HK , P )
= lim

P→0

CBC(H1, . . . ,HK , P )

CBF (H1, . . . ,HK , P )
= 1. (4.69)

Proof: By Theorem 1, we have CBC(H1, . . . ,HK , P ) ≤ M log
(

1 + P
M ||H||2max

)

. For simplic-

ity, assume that the first M rows of H are linearly independent. In the proof of Theorem

4.5, we show that the sum rate achievable using channel inversion is at least as large as
∑M

i=1 log(1 + α2
i

P
M ). Channel inversion is a particular method of transmitter beamforming

(zero-forcing beamforming), and thus CBF (H1, . . . ,HK , P ) ≥ ∑M
i=1 log(1 + α2

i
P
M ). There-

fore we have:

lim
P→∞

CBC(H1, . . . ,HK , P )

CBF (H1, . . . ,HK , P )
≤ lim

P→∞

M log
(

1 + P
M ||H||2max

)

∑M
i=1 log(1 + α2

i
P
M )

= 1

The low SNR result follows directly from Theorem 4.6 and the fact that CBF (H, P ) ≥
CTDMA(H1, . . . ,HK , P ). �

The equivalence of transmitter beamforming and DPC at high SNR follows from the fact

that both DPC and transmitter beamforming can use min(M, NK) signaling dimensions.

However, the use of dirty paper coding reduces interference seen at the receivers and there-

fore improves the quality of each of the signaling dimensions, leading to an increase in sum

rate at finite SNR. Thus, an interesting open problem is to analytically bound the gain that

DPC provides over transmitter beamforming. We conjecture that the ratio CBC(H1,...,HK ,P )
CBF (H1,...,HK ,P )

is bounded by a constant (< M) independent of the number of antennas and the channel

H for all P , but we have been unable to prove this due to the difficulty of working with

the beamforming sum-rate expression in (4.68). Viswanathan and Venkatesan [75] recently

characterized the performance of downlink beamforming and dirty paper coding as M and

K both grow to infinity at some fixed ratio M
K = α. In this asymptotic regime, the ratio

CBC(H1,...,HK ,P )
CBF (H1,...,HK ,P ) is bounded by 2 for all values of α and P .

4.4.8 Bound on Sum-Rate Gain of Successive Decoding for Uplink

Successive decoding is a capacity-achieving scheme for the multiple-access channel (uplink)

in which multiple users simultaneously transmit to the base station and the receiver succes-

sively decodes and subtracts out the signals of different users. This technique achieves

the sum-rate capacity of the MIMO MAC [13, Chapter 14], but is difficult to imple-

ment in practice. The sum-rate capacity of the MAC with transmitter power constraints
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P = (P1, . . . , PK) is given by:

CMAC(H1, . . . ,HK ,P) = max
{Tr(Qi)≤Pi ∀i}

log

∣

∣

∣

∣

∣

I +
K
∑

i=1

H†
iQiHi

∣

∣

∣

∣

∣

.

Notice that the sum-rate capacity of the MAC is identical to the BC sum-rate capacity ex-

pression in (4.45) except that the MAC expression has individual power constraints instead

of a sum constraint.

Using the proof technique of Theorem 4.2 on the dual uplink (K transmitters with

N antennas each and a single receiver with M antennas) modified for individual power

constraints P = (P1, . . . , PK), it is easy to see that the following holds:

CMAC(H1, . . . ,HK ,P) ≤ M log

(

1 +

∑K
i=1 Pi||Hi||2

M

)

. (4.70)

A sub-optimal transmission scheme is to allow only one user to transmit at a time. Since

each user in the uplink has an individual power constraint, users are allocated orthogonal

time slots in which they transmit. Thus, the TDMA rate region is defined as:

RTDMA(H1, . . . ,HK ,P) ,
⋃

αi≥0,
PK

i=1 αi=1

(

α1C

(

H1,
P1

α1

)

, . . . , αKC

(

HK ,
PK

αK

))

.

As before, the TDMA sum-rate is defined as the maximum sum of rates in this region. As

used in the proof of Theorem 4.3, for each user C(Hi,
Pi
αi

) ≥ log(1 + Pi
αi
||Hi||2) for any αi.

Thus,

CTDMA(H1, . . . ,HK ,P) ≥ max
αi≥0,

PK
i=1 αi=1

K
∑

i=1

αi log

(

1 +
Pi

αi
||Hi||2

)

.

The RHS of this expression corresponds to the TDMA region of a scalar MAC with channel

gains ||H1||, . . . , ||HK ||. It is easy to verify that this expression is maximized by choosing

αi = Pi||Hi||
2

PK
j=1 Pj ||Hj ||2

. With this choice of αi, we get the following upper bound:

CTDMA(H1, . . . ,HK ,P) ≥ log

(

1 +
K
∑

i=1

Pi||Hi||2
)

. (4.71)

Combining (4.70) and (4.71) we get CMAC(H1,...,HK ,P)
CTDMA(H1,...,HK ,P) ≤ M. As before, the single-user

capacity of each user also upper bounds this ratio by K. Thus, we finally get

CMAC(H1, . . . ,HK ,P)

CTDMA(H1, . . . ,HK ,P)
≤ min(M, K) (4.72)

or that performing optimal successive decoding at the base station offers a gain of at most
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min(M, K) over TDMA.

4.5 Summary

Throughout this chapter, one unifying theme has been the use of duality. The dirty paper

coding achievable region of the multiple-antenna broadcast channel is extremely difficult to

deal with, both analytically and numerically. However, the dual multiple-access capacity

region is considerably easier to work with in both regards due to its convex properties.

We first used the dual form of the dirty paper region to analytically prove achievability

of the sum rate capacity. We then exploited the convex structure of the multiple-access

sum capacity to develop an intuitive algorithm that calculates the sum capacity of the

multiple-antenna broadcast channel. Finally, we again used the expression for multiple-

access sum capacity to analytically compare the sum rate capacity to the maximum sum

rate achievable using time division multiple-access, which is a sub-optimal technique for

the downlink. Interestingly, after completion of this work, duality was again used to show

that the dirty paper coding region is optimal if Gaussian inputs are capacity achieving for

the multiple-antenna broadcast channel [70] [72]. Furthermore, the optimality of Gaussian

inputs has recently been shown [77], which finally settles the question of the optimality of

dirty paper coding for the multiple-antenna broadcast channel.

4.6 Appendix

4.6.1 Lagrangian Dual Problem

We first find the dual problem of the maximum sum-rate of the MIMO MAC: 6

max
Qi∈S

log

∣

∣

∣

∣

∣

I +

K
∑

i=1

H†
iQiHi

∣

∣

∣

∣

∣

(4.73)

over the convex set S = {Qi : Qi ≥ 0 ∀i,
∑K

i=1 Tr(Qi) ≤ P}.
The problem given by (4.73) is a convex optimization problem, i.e., it has a concave

objective function and a convex constraint set. Hence a convex Lagrangian dual minimiza-

tion problem can be obtained that achieves the same optimum value at (4.73). For this, we

rewrite (4.73) as

min
X,Qi

− log |X|

such that X = I +
K
∑

i=1

H†
iQiHi,

K
∑

i=1

Tr(Qi) ≤ P, Qi ≥ 0.

6This derivation is based on the dual problem found in [83]

107



Note that matrix inequalities are associated with dual variables that are matrices, while

scalar inequalities are associated with scalar dual variables. The Lagrangian for this problem

is:

L(X,Qi,A,Si, λ) = − log |X| + Tr[A(X− I−
K
∑

i=1

H†
iQiHi]

+λ(

K
∑

i=1

Tr(Qi) − P ) +

K
∑

i=1

Tr(SiQi). (4.74)

The dual function is found by minimizing with respect to the primal variables X,Qi:

g(A,Si, λ) = inf
X,Qi

L(X,Qi,A,Si, λ). (4.75)

We obtain the optimality conditions by differentiating the Lagrangian (4.74) with respect

to the primal variables to get

λI = HiAH†
i + Si ∀i

X−1 = A.

For any Lagrangians not satisfying these conditions, we get g(A,Si, λ) = −∞. For La-

grangians that do satisfy these conditions, we get

g(A,Si, λ) = log |A| − Tr(A) − λP + t. (4.76)

The dual problem is then obtained by maximizing the dual function g(A,Si, λ) with respect

to the dual variables:

max
A,λ

log |A| − Tr(A) − λP + t (4.77)

such that A ≥ 0, λ ≥ 0

λI ≥ HiAH†
i ∀i.

Due to the convexity of the original optimization, the sum rate capacity of the MAC is

equal to the solution of the dual problem above (4.77).

We now use Lagrangian duality to find an alternative form for the Sato upper bound.

The Sato upper bound is originally defined in (4.6) as:

CSato(H1, . . . ,HK , P ) , inf
Z∈S

max
Σ≥0,Tr(Σ)≤P

log
∣

∣

∣I + Z−1HΣH†
∣

∣

∣ . (4.78)

We will find an alternate form for this upper bound by considering the Lagrangian dual of

only the inner maximization (and not of the entire expression). For any Z > 0, consider
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the inner maximization:

max
Σ≥0,Tr(Σ)≤P

log
∣

∣

∣I + Z−1HΣH†
∣

∣

∣ . (4.79)

Note that the maximization in (4.79) is the capacity of a multi-antenna system with channel

given by Z−1/2H and additive white Gaussian noise [61]. Therefore, (4.79) is equivalent to:

max
Q≥0,Tr(Q)≤P

log
∣

∣

∣I + H†Z−1/2QZ−1/2H
∣

∣

∣ . (4.80)

Notice that this maximization is equivalent to the form of the MAC sum-rate maximization

in (4.73) with K = 1, H†
1 = H†Z−1/2, and Q1 = Q. Therefore, the above maximization

(4.80) is equivalent to:

max
A,λ

log |A| − Tr(A) − λP + t (4.81)

such that A ≥ 0, λ ≥ 0

λI ≥ Z−1/2HAH†Z−1/2.

Clearly, we can multiply the last inequality by the term Z−1/2 on both sides and negate the

objective function to get:

min
A,λ

− log |A| + Tr(A) + λP − M (4.82)

such that A ≥ 0, λ ≥ 0

λZ ≥ HAH†.

Since this is equivalent to the inner maximization of the Sato upper bound for every Z ∈ S,

we can rewrite the Sato upper bound as:

CSato(H1, . . . ,HK , P ) = inf
Z∈S

min
A,λ

− log |A| + Tr(A) + λP − M

such that (4.83)

λ ≥ 0,A ≥ 0

λZ ≥ HAH†.

4.6.2 Uniqueness of Water-Filling Solution

In this appendix we show that there is a unique solution to the following problem:

max
Q≥0, Tr(Q)≤P

log
∣

∣

∣I + HQH†
∣

∣

∣ (4.84)

for any non-zero H ∈ CN×M for arbitrary M, N . This proof is identical to the proof

of optimality of water-filling in [61, Section 3.2], with the addition of a simple proof of
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uniqueness.

Since H†H ∈ C
M×M is Hermitian and positive semi-definite, we can diagonalize it and

write H†H = UDU† where U is unitary and D is diagonal with non-negative entries. Using

the identity |I + AB| = |I + BA|, we can rewrite the objective function as

log
∣

∣

∣I + HQH†
∣

∣

∣ = log
∣

∣

∣I + QH†H
∣

∣

∣ = log
∣

∣

∣I + QUDU†
∣

∣

∣ = log
∣

∣

∣I + U†QUD
∣

∣

∣ . (4.85)

Let Q̃ = U†QU. Clearly Q = UQ̃U†. Since Tr(AB) = Tr(BA) and U is unitary, we have

Tr(Q̃) = Tr(U†QU) = Tr(QUU†) = Tr(Q). Furthermore, Q̃ ≥ 0 if and only if Q ≥ 0.

Therefore, the maximization can equivalently be carried out over Q̃, i.e.:

max
Q̃≥0, Tr(Q̃)≤P

log
∣

∣

∣I + Q̃D
∣

∣

∣ . (4.86)

with D ∈ RM×M diagonal and non-negative. In addition, any solution to (4.84) corresponds

to a solution of (4.86) via the invertible mapping Q̃ = U†QU. Thus, if the maximization in

(4.84) has multiple solutions, the maximization in (4.86) must also have multiple solutions.

Therefore, it is sufficient to show that (4.86) has a unique solution, which we prove next.

First notice that Haddamard’s inequality [13] gives the following upper bound
∣

∣

∣I + Q̃D
∣

∣

∣ ≤
∏K

i=1(1+QiiDii), which is achievable if and only if Q is diagonal. Since Tr(Q) =
∑K

i=1 Qii ≤
P and Qii ≥ 0 for i = 1, . . . , K by the positive semi-definite condition, for any feasible non-

diagonal Q there exists a diagonal Q corresponding to a strictly larger objective value.

Therefore, the optimal solution must be diagonal. If Q is diagonal, the objective function

is equal to
∑M

i=1 log(1 + QiiDii). Since we can ignore entries of D that are zero and the

assumption that H is not the zeroes matrix insures that at least one diagonal entry of D

is non-zero, we can without loss of generality assume Dii > 0 for i = 1, . . . , M . Therefore,

the objective is a strictly concave function of Q11, . . . ,QMM , and thus (4.86) has a unique

solution.

4.6.3 Proof of Theorem 4.5

The basic premise is to show that CBC(H1, . . . ,HK , P ) grows as min(M, NK) log(P ) and

CTDMA(H1, . . . ,HK , P ) grows as N log(P ). We first consider a channel with M < NK.

Note that by Theorem 1, CBC(H1, . . . ,HK , P ) ≤ M log
(

1 + P
M ||H||2max

)

. Furthermore, we

form a matrix (denoted by HM,M ) consisting of any set of M linearly independent rows of

H. By the linear independence of the rows, HM,M is strictly positive definite. Therefore,

we can invert the channel at the transmitter to give M independent and parallel non-zero

channels, though there is a power penalty involved in channel inversion. The result is M

independent and parallel channels with strictly non-zero channel gains α1, . . . , αM . Thus,

we have CBC(H1, . . . ,HK , P ) ≥∑M
i=1 log(1+α2

i
P
M ), because allocating equal power on the

110



parallel channels is sub-optimal.

Without loss of generality, assume H1 has full row rank. Then a lower bound to

CTDMA(H1, . . . ,HK , P ) is arrived at by:

CTDMA(H1, . . . ,HK , P ) ≥ C(H1, P ) ≥
N
∑

i=1

log

(

1 + λi
P

N

)

, (4.87)

where (λ1, . . . , λN ) are the eigenvalues of H1H
†
1. Similar to Theorem 4.2, we can upper

bound CTDMA(H1, . . . ,HK , P ) by assuming there exists a user with N eigenmodes with

eigenvalues equal to ||H||max: CTDMA(H1, . . . ,HK , P ) ≤ N log
(

1 + ||H||2max
P
N

)

. Combin-

ing these bounds, we can establish that limP→∞
CBC(H1,...,HK ,P )

CTDMA(H1,...,HK ,P ) is bounded above and

below by M
N .

If KN ≤ M (i.e. K ≤ M
N ), we can similarly show that DPC grows as KN log(P ) while

TDMA grows as N log(P ). Thus, the DPC gain is asymptotically equal to K.

4.6.4 Proof of Theorem 4.6

Without loss of generality, assume that |H1| ≥ |H2| · · · ≥ |HK |. First notice that on the

dual MAC we have:

log

∣

∣

∣

∣

∣

I +
K
∑

i=1

H†
iQiHi

∣

∣

∣

∣

∣

= I(X1, . . . , XK ; Y ) (4.88)

=
K
∑

i=1

I(Xi; Y |X1, . . . , Xi−1) (4.89)

≤
K
∑

i=1

I(Xi; Y |X1, . . . , Xi−1, Xi+1, . . . , XK) (4.90)

=
K
∑

i=1

log
∣

∣

∣I + H†
iQiHi

∣

∣

∣ (4.91)

where we have used the chain rule for mutual information in (4.89) and the fact that

X1, . . . , XK are independent to get I(Xi; Y |X1, . . . , Xi−1, Xi+1, . . . , XK) ≥
I(Xi; Y |X1, . . . , Xi−1) in (4.90). Thus we can upper bound the sum capacity of the dual

MIMO MAC by the sum capacity of a multiple-access channel where each transmitter has

an independent channel (H†
i ) to the receiver. By diagonalizing each Hi, we can write the

sum capacity of this upper bound as:

max
Pi,j≥0:

P

i,j Pi,j≤P

∑

i,j

log(1 + Pi,jλi,j) (4.92)
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where λi,j is the j-th eigenvalue of HiH
†
i . Assume that λi,j ≥ λi,k for all k > j. Notice

that the optimal power allocation maximizing (4.92) is found by the standard water-filling

procedure for parallel Gaussian channels [13, Chapter 10.4].

We must separately consider two different cases: |H1| > |H2| and |H1| = |H2|. First

consider |H1| > |H2|, which implies λ1,1 > λ2,1. From the water-filling procedure, we

know that for P ≤ 1
λ1,1

− 1
λ2,1

, there is not enough power to fill any of the channels of

Users 2, . . . , K. Therefore, the maximum in (4.92) is achieved by only allocating power to

User 1, i.e. TDMA is optimal, for small enough P . Thus, for P ≤ 1
λ1,1

− 1
λ2,1

, we have

CBC(H1, . . . ,HK , P ) = CTDMA(H1, . . . ,HK , P ).

Now consider the scenario where |H1| = |H2| = · · · = |HL|, i.e. where L users have

the same largest eigenvalue. Let mi be the multiplicity of the largest eigenvalue of the

i-th user, and assume
∑L

i=1 mi = J . Then for P ≤ J( 1
λ1,1

− 1
λ∗ ), where λ∗ is the second

largest eigenvalue amongst all users, the maximum in (4.92) is achieved by allocating equal

power to the J eigenmodes with the largest eigenvalue. The corresponding capacity is

J log(1 + |H1|2 P
J ). In this case, note that

lim
P→0

J log
(

1 + |H1|2 P
J

)

log (1 + |H1|2P )
= 1. (4.93)

Thus, in the limit of small P , the ratio of the sum capacity of the upper bound to the

TDMA capacity goes to one.
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Chapter 5

Fading Multi-User Channels

Due to user mobility, wireless channels are typically time-varying. In the past, wireless

engineers typically built in a large fade margin in systems to allow for a certain amount of

channel degradation. However, this is clearly a sub-optimal method of dealing with fading

channels. Instead, more intelligent system architectures provide receivers and transmitters

with the capability to adapt power and rate in response to changing channel conditions.

In this chapter, we characterize the optimum power and rate allocation policies for fading

single-antenna broadcast channels with respect to different performance metrics.

In [20], Goldsmith and Varaiya derived the optimum power and rate allocation strategy

that maximizes the long-term average rate in a single-user fading channel with perfect

and instantaneous channel knowledge at both the transmitter and receiver. In [41], Li

and Goldsmith extended this work to fading broadcast channels. As one would intuitively

expect, the optimal strategy involves increasing both power and rate for users with good

channel conditions, and decreasing both quantities for users with poor channel conditions.

Though such a strategy may maximize the average rate of transmission, it may come at the

expense of transmitting at extremely low or zero data rate to users for a long period of time

while their channel quality is poor. Since this may not be permissible in delay-sensitive

applications such as video transmission, it is also useful to consider different performance

metrics for fading channels.

In the first section, we consider a fading broadcast channel and maximize the average

rate of transmission while maintaining some minimum rate in every fading state, i.e. while

maintaining some minimum level of service in each fading state. Thus, regardless of how

poor the channel quality is, each user must be served at some minimum rate. Such a policy

is appropriate for transmission of a mixture of delay-sensitive traffic (such as video) corre-

sponding to the minimum rate and delay-insensitive traffic (such as data) being transmitted

at any excess rate possible beyond the minimum rate. We show that the minimum rate

capacity region can be written in terms of the ergodic capacity region of a broadcast chan-

nel with effective noises determined by the minimum rate requirements. This allows us to
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use previously known results on the ergodic capacity region of the broadcast channel [41] to

find the optimum power allocation policy. Though we only directly find the optimum power

allocation policy for the fading broadcast channel, we are able to use duality to also find

the minimum rate capacity region and the corresponding optimal power allocation policies

for the fading multiple-access channel.

In the final section of the chapter, we consider a fading broadcast channel in which the

transmitter can send independent messages to each of the receivers as well as a common

message that must be received by both of the receivers. In a cellular setting, for example, this

might correspond to separate data file transmission to individual users while simultaneously

multi-casting a news update to every user. We are able to derive the optimal rate and

power allocation scheme that maximizes long-term average rates in this scenario. Unlike

the optimal power allocation schemes for the fading broadcast channel without common

messages, a water-filling like interpretation is not possible when there are both common

and independent messages. Material in this chapter also appears in [29] [30] [32].

5.1 Broadcast Channels with Minimum Rate Constraints

In this section we characterize the minimum rate capacity region of the fading broadcast

channel. We assume that the transmitter and all receivers can track the channel fade

perfectly, or in other words that the transmitter and all receivers have perfect channel

state information (CSI). Furthermore, we assume the channel is slowly fading relative to

codeword length, i.e. the channel is constant during transmission of a codeword.

Two notions of Shannon capacity have been developed for multi-user fading channels:

ergodic capacity and outage capacity. Ergodic capacity is concerned with achieving long-

term rates averaged over all fading states [63], [62], [41], while outage capacity achieves

a constant rate in all non-outage fading states subject to an outage probability [42], [43].

Zero-outage capacity refers to outage capacity with zero outage probability [22].

The ergodic capacity of a fading broadcast channel determines the maximum achievable

long-term rates averaged over all fading states. The optimal resource allocation scheme

for rates in the ergodic capacity region is found in [25, 41] and corresponds to multi-level

water-filling over both time (i.e. fading states) and users. As intuition would suggest, users

are allocated the most power when their channels are strong, and little, if any, power when

their channels are weak. Such an allocation scheme maximizes long-term average rates, but

may result in long delays for users in deep channel fades. This clearly may not be reasonable

for delay-sensitive applications such as video or voice transmission.

In the outage capacity region of a broadcast channel, each user maintains a constant

rate some percentage of the time and no data is transmitted (i.e. an outage is declared)

the rest of the time. In essence, no data is transmitted to a user when his channel is weak

because it takes a great deal of power to transmit data over a weak channel. Constant rates
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are maintained in all other states. The optimal power allocation scheme is essentially a

multi-user extension of channel inversion. This scheme eliminates all channel variation seen

by the receivers by scaling the transmitted signal to invert fading so constant rates can be

maintained during non-outage. Because constant rate transmission requires more power in

a weak channel than in a strong channel, users are allocated the most power when their

channels are weak. This is in sharp contrast to the allocation scheme used to maximize

ergodic rates, where users are allocated the most power when their channels are strongest.

It is therefore clear that stronger channel states are not truly taken advantage of and as

a result the outage capacity region may be significantly smaller than the ergodic capacity

region. Zero-outage capacity is a special case of outage capacity in which no outage is

allowed and constant rates must be maintained in all fading states.

Ergodic and outage capacity are clearly two very different performance measures, as

reflected by their contrasting power allocation strategies. In ergodic capacity, the trans-

mitter takes advantage of time-variation in the channel by transmitting more data to users

with strong channels, while in outage capacity the transmitter equalizes time-variation by

transmitting at constant rates in all non-outage states. For a system that simultaneously

transmits delay-sensitive and delay-insensitive data, neither of these approaches appears

optimal. It is not desirable to shut off users for long periods of time as is possible in the er-

godic capacity region, but forcing constant rates to be maintained subject only to an outage

probability as is done in the outage capacity region severely reduces the set of achievable

rates.

In this section we combine the notions of ergodic and zero-outage capacity by maximizing

the ergodic capacity subject to minimum rate requirements for all users in all fading states.

Thus, some power is used to maintain the minimum rates in all fading states while the

remaining power is used to maximize the average rates in excess of the minimum rates. Users

are never completely cut-off due to the minimum rate requirements, but time-variation of

the channel is still taken advantage of by transmitting to users at rates higher than the

minimum rates when their channels are strong and at exactly the minimum rates when

their channels are poor. Clearly, the minimum rate requirement must be in the zero-outage

capacity region for the rates to be achievable in all states.

We consider a slowly fading channel that is assumed to be constant over the duration

of each codeword. Thus, we associate an instantaneous rate with each user in every fading

state. The minimum rate capacity region is defined as the set of all average rates achievable

subject to an average power constraint such that the instantaneous rates in each fading state

do not violate a minimum rate constraint. We show that the minimum rate capacity region

is equal to the sum of the minimum rate vector plus the ergodic capacity region of an effective

noise channel, where the effective noise depends on the minimum rate requirements. This

relationship allows us to easily characterize the boundary of the minimum rate capacity
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region and the optimal power allocation policies in terms of known results for ergodic

capacity [25, 41, 63].

We then extend these results to find the minimum rate capacity region subject to a peak

power constraint instead of an average power constraint, and also subject to both a peak and

average power constraint. Furthermore, the problem of minimum rates with outage is also

addressed. When outage is allowed, ergodic capacity is maximized with the constraint that

minimum rates must be satisfied at least a certain percentage of time. This is a combination

of ergodic capacity and outage capacity, as opposed to non-outage minimum rate capacity,

which is a combination of ergodic and zero-outage capacity. A similar notion of minimum-

rate outage capacity was independently proposed by Luo et. al. in [46, 47] for single-user

channels. Finally, we use the duality relationship of the Gaussian MAC-BC established

in Chapter 3.1 to derive the minimum rate capacity region of the fading multiple-access

channel.

The remainder of this section is organized as follows. Chapter 5.1.1 describes the flat-

fading broadcast channel model and Chapter 5.1.2 defines ergodic and zero-outage capacity.

In Chapter 5.1.3 we precisely define the minimum rate capacity region. In Chapter 5.1.4

we characterize the minimum rate capacity region in terms of the ergodic capacity region

and find the optimal power allocation schemes. In Chapter 5.1.5 we find the minimum rate

capacity region with peak power constraints and in Chapter 5.1.6 we find the minimum

rate outage capacity region. Numerical results are presented in Chapter 5.1.7, followed by

a derivation of the MAC minimum rate capacity region in Chapter 5.1.8.

5.1.1 System Model

We consider a fading Gaussian broadcast channel, as described in Chapter 2.2.3:

Yj[i] =
√

hj [i]X[i] + nj [i] j = 1, . . . , K.

where nj [i] is normally distributed with unit variance and the channel gains h1[i], . . . , hK [i]

vary according to some ergodic process. For simplicity, we incorporate the channel gain into

the noise term and define an effective noise density1 nj [i] = 1/gj [i]. Thus, an equivalent

form for the received signal is given by:

Yj [i] = X[i] + zj[i] j = 1, . . . , K (5.1)

where zj[i] is Gaussian noise with power nj [i].

We assume that the noise density vector n[i] = (n1[i], n2[i] . . . , nK [i]) is known to the

transmitter and all K receivers at time instant i. The transmitter can therefore vary the

1Notice that the noise density is the instantaneous power of the noise and is not the instantaneous noise
sample.
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power of the signal transmitted to each user Pj [i] as a function of the noise vector n[i] subject

to an average power constraint P . Since all receivers have knowledge of n, each receiver

can perform successive decoding in which the decoding order depends on the ordering of n.

As the noise density vector incorporates the effects of the channel gain, we will alterna-

tively refer to n as the fading state throughout this paper.

5.1.2 Ergodic & Zero Outage Capacity Regions

In this section we present results from [41, 42] on the ergodic and zero-outage capacity of

the fading broadcast channel.

Ergodic Capacity Region

The ergodic capacity region is defined as the set of all long-term average rates achievable

in a fading channel with arbitrarily small probability of error. In [41], the ergodic capacity

region and optimal power allocation scheme for the fading broadcast channel is found by

decomposing the fading channel into a parallel set of constant broadcast channels, one for

each fading state n. In Chapter 2.2.3 an expression for the ergodic capacity region was

given in (2.12). We now restate the expression for the ergodic capacity region, denoted by

Cergodic(P ;n), in terms of the noise vector n:

Cergodic(P ;n) =
⋃

P∈F

CBC(P;n). (5.2)

where FBC is the set of power policies meeting the power constraint FBC = {PBC :

En[
∑K

j=1 PB
j (n)] ≤ P} and CBC(P) defined as

CBC(P;n) = {Rj : Rj ≤ En [Rj(P(n))] , j = 1, 2, . . . , K}

with Rj(P(n)) given by:

Rj(P(n)) = log

(

1 +
Pj(n)

nj +
∑K

k=1 Pk(n)1[nj > nk]

)

(5.3)

where 1[.] is the indicator function.

The optimal power allocation scheme that achieves the boundary points of the ergodic

capacity region is a multi-level extension of water-filling. Because the data rate varies

from state to state, a different codebook (a codebook is assumed to have codewords for

all K users) is used in every joint fading state, as in the multiplexing strategy described

in [20, 41]. This coding scheme works in either a slow-fading or fast-fading environment,

but the decoding delay is highly dependent on the correlation time of the channel because

of the multiplexing structure. An achievability proof and a converse are provided in [41].
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Zero-Outage Capacity Region

For the K-user broadcast channel, a rate vector R = (R1, R2, . . . , RK) is in the zero-outage

capacity region if and only if the rate vector can be achieved in all fading states while

meeting the average power constraint. The zero-outage capacity region (also referred to as

the delay-limited capacity) for the multiple-access channel is derived in [22]. In [42] it is

shown that rates in the zero-outage capacity region of the broadcast channel can be achieved

using superposition coding and successive decoding.

From Eq. 3 of [42], the minimum power to support a rate vector R in fading state n is:

Pmin(R,n) =
K
∑

k=1

[

e
PK

j=k+1 Rπ(j)
(

eRπ(k) − 1
)

nπ(k)

]

+
(

eRπ(K) − 1
)

nπ(K) (5.4)

where π(.) is the permutation such that nπ(1) < nπ(2) < · · · < nπ(K). Therefore, the zero-

outage capacity region is the set of all rate vectors that meet the average power constraint:

Czero(P ;n) = {(R1, R2, . . . , RK) : En[Pmin(R,n)] ≤ P}. (5.5)

The boundary of the capacity region is the set of all rate vectors R such that the power

constraint is met with equality [42]. The zero-outage capacity region is more formally

defined as the set of rate vectors for which there exists codebooks that can be decoded with

a delay independent of the channel correlation structure (i.e. the speed of the fading) for

any desired non-zero probability of error. This is in stark contrast to the ergodic capacity,

in which the decoding delay is highly dependent on the channel correlation.

5.1.3 Minimum Rate Capacity Region

Definition of Capacity Region

We define the minimum rate capacity region of a K-user broadcast channel to be the

region of all achievable average rate vectors subject to an average power constraint P and

minimum rate constraints R∗ = (R∗
1, R

∗
2, . . . , R

∗
K). The minimum rate constraint forces the

instantaneous rate of each user to be at least as large as its corresponding minimum rate in

all fading states, i.e. we require Rj(n) ≥ R∗
j j = 1, . . . , K ∀n. Since we are dealing with

slowly fading channels that are assumed to be constant over the length of a codeword, the

notion of an instantaneous rate Rj(n) in each fading state is reasonable. Moreover, the set

of achievable instantaneous rates in each fading state is equal to the capacity region of the

constant Gaussian broadcast channel defined by the joint fading state and the amount of

power allocated to each user.

Using the previously stated notion of a power allocation scheme, let Cmin(P) denote the
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set of achievable long-term average rates in excess of the minimum rates for power policy

P:

Cmin(P) = {Rj : R∗
j ≤ Rj ≤ En[Rj(P(n))] j = 1, . . . , K}

where Rj(P(n)) is defined in (5.3). Notice this definition is slightly different than the

definition of C(P) in Chapter 5.1.2. The set Cmin(P) does not include the rates below

the minimum rates because if the average rates are less than the minimum rates, then the

minimum rates must be violated in some fading states.

To ensure that the minimum rates are satisfied, we must restrict the set of feasible power

policies more tightly than in the case of ergodic capacity. Let F ′ denote the set of all power

policies that satisfy the minimum rate constraints in every fading state and the average

power constraint P :

F ′ ≡







P : En





K
∑

j=1

Pj(n)



 ≤ P , Rj(P(n)) ≥ R∗
j ∀j,n







The additional constraint ensures that the minimum rates can be maintained for all K users

in every fading state for any power policy in F ′.

Definition 5.1 The minimum rate capacity region of a fading broadcast channel with per-

fect CSI at the transmitter and receivers, average power constraint P , and minimum rate

constraint R∗ = (R∗
1, R

∗
2, . . . , R

∗
K) ∈ Czero(n, P ) is:

Cmin(P ,R∗;n) = Co

(

⋃

P∈F ′

Cmin(P)

)

(5.6)

where Co(·) denotes the convex hull operation. The achievability of this region follows from

the achievability proof for ergodic capacity given in [41] and standard timesharing arguments.

Remarks on Coding

In the slowly fading channel model that we consider, the channel is assumed to be constant

over the duration of a codeword. If the transmitter and receivers use a multiplexing strategy

similar to that of [20], then a different rate vector and a different set of codebooks is

associated with every joint fading state. In this context, minimum rate capacity is the set

of all achievable average rates such that the instantaneous rates in every fading state meet

the minimum rate requirements. The associated decoding delay at each user is equal to the

codeword length, which can be arbitrarily long due to our slow fading assumption.

Since our definition of minimum rate capacity explicitly mentions instantaneous rates

(i.e. rates associated with each fading state), no converse seems to exist for this formu-

lation. A more Shannon theoretic formulation of minimum rate capacity that would not
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require the slow fading assumption might consider transmitting delay-sensitive data at the

minimum rate with a delay independent of the channel variation (similar to zero-outage

capacity), while simultaneously maximizing transmission of delay-insensitive data with no

delay requirement (similar to ergodic capacity). In this setting it appears natural to trans-

mit using two independent codebooks, one for the delay-sensitive data and one for the

delay-insensitive data. However, as we discuss below, it appears to be quite difficult to

apply this approach to the broadcast channel.

In Chapter 5.1.4 we discuss a coding strategy for the single-user channel such that the

minimum rate data (i.e. the codeword from the minimum rate codebook) can be decoded

before the codeword from the excess rate codebook. This allows the minimum rate data

to be decoded with a delay that is independent of the rate of channel variation, but the

decoding delay associated with the excess rate (i.e. above the minimum rate) data can

be infinite. This coding strategy works in both slow-fading and fast-fading environments.

However, this scheme does not generalize to the multi-user broadcast channel because the

successive decoding structure, which is capacity-achieving for the broadcast channel, essen-

tially precludes the possibility of all users having finite delays associated with their minimum

rate data and infinite delays associated with their excess rate data. Since successive decod-

ing is needed in the broadcast channel, strong users are required to decode and cancel out

the codewords intended for weaker users before being able to decode their own codewords.

This must include a cancellation of the minimum rate data and the excess rate data of other

users. Thus, the decoding delay of the strongest user is at least as large as the maximum of

the decoding delay of all other users. If users have a possibly infinite delay associated with

decoding the excess rate data, then the decoding delay associated with the minimum rate

codebook of the strongest user will also be infinite. One possibility is for all users to treat

all excess rate codewords (including their own) as noise while decoding their minimum rate

codewords, but this appears to be quite sub-optimal. In this section we concentrate solely

on the slow-fading channel in which coding can be performed in each fading state and we

leave the subject of minimum rate capacity for fast-fading channels as a topic for future

research.

Relationship with Ergodic and Zero-Outage Capacity Regions

The minimum rate capacity region is closely related to the zero-outage and ergodic capacity

regions because minimum rate capacity is essentially a combination of these two capacities.

Some fraction of the available power is used to achieve the minimum rates in all fading

states, while the remaining power is used to maximize the long-term rates achievable in

excess of the minimum rates. For the minimum rate problem to be feasible, the minimum

rate vector must be in the zero-outage capacity region of the channel in order for the rates to

be achievable in all fading states. For any R∗ ∈ Czero(P ;n), the boundary of the minimum
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Figure 5.1: Ergodic, zero-outage, and minimum rate capacity regions
for small (left) and large (right) minimum rates.

rate capacity region lies between the boundaries of the zero-outage capacity region and the

ergodic capacity region:

Czero(P ;n) ⊆ Boundary{Cmin(P ,R∗;n)} ⊆ Cergodic(P ;n) (5.7)

This follows from the definition of zero-outage capacity as the set of rates achievable in all

fading states and from the definition of ergodic capacity as the set of achievable average

rates, without any minimum rate constraints. If the minimum rates of all users are zero, the

minimum rate capacity region is the same as the ergodic capacity region. If the minimum

rate vector R∗ is on the boundary of the zero-outage capacity region, achieving the minimum

rate vector in all states consumes all available power and rates in excess of the minimum

rates are not possible. In this situation the minimum rate capacity region consists of only

one point, R∗. When R∗ is non-zero and not on the boundary of the zero-outage capacity

region, the boundary of the minimum rate capacity region lies strictly between Czero(P ;n)

and Cergodic(P ;n).

To illustrate the relationship between the different capacity regions, Fig. 5.1 shows the

ergodic, zero-outage, and minimum rate capacity regions for two different minimum rate

constraints. The corner point of the minimum rate capacity region corresponds to R∗. In

the graph on the left, the minimum rate vector is well within the zero-outage capacity region

and as a result the minimum rate capacity region extends significantly past the zero-outage

capacity region. In the second graph, the minimum rate vector is close to the boundary of

the zero-outage capacity region and therefore a large fraction of the power is used to simply
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achieve the minimum rates. Thus there is little power left over to exceed the minimum

rates and as a result the boundary of the minimum rate capacity region does not extend

much further out than the boundary of the zero-outage capacity region. Notice that in all

cases the minimum rate capacity region does not extend to the axes due to the minimum

rate constraints.

Since the minimum rate boundary lies between the ergodic and zero-outage boundaries,

the difference between the ergodic and zero-outage capacity regions is a good indicator of

the degradation in capacity (i.e. the difference between Cergodic(P ;n) and Cmin(P ,R∗;n))

due to minimum rates. If the zero-outage capacity region is much smaller than the ergodic

capacity region, the minimum rate capacity region is generally much smaller than the ergodic

capacity region. Alternatively, if the zero-outage capacity region is not much smaller than

the ergodic capacity region, the minimum rate capacity region is generally quite close to

the ergodic capacity region.

5.1.4 Explicit Characterization of Minimum Rate Capacity Region

In this section we explicitly characterize the boundary of the minimum rate capacity region

of a K-user broadcast channel and find the corresponding optimal power allocation scheme.

Directly characterizing the minimum rate capacity region yields a rather non-intuitive so-

lution, but we show that the minimum rate capacity region can be written in terms of the

ergodic capacity region of a related broadcast channel. This characterization is intuitively

easy to understand and allows the minimum rate capacity region to be calculated using

only the ergodic capacity techniques of [41].

Derivation of Minimum Rate Capacity Region

Due to the convexity of the minimum rate capacity region, for any R∗ ∈ Czero(P ;n) and

power constraint P , the boundary of the region can be traced out by the following maxi-

mization:

max
R

µ · R subject to R ∈ Cmin(P ,R∗;n) (5.8)

over all priority vectors µ = (µ1, . . . , µK) such that
∑K

i=1 µi = 1. By the definition of

Cmin(P,R∗;n), the following is an equivalent maximization:

max
P(n)

En

[

K
∑

i=1

µiRi(P(n))

]

(5.9)

subject to: En

[

K
∑

i=1

Pi(n)

]

≤ P , Ri(P(n)) ≥ R∗
i , ∀i,n

where Ri(P(n)) is defined in (5.3).
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For each fading state n, let π(.) be the permutation such that nπ(1) ≤ nπ(2) · · · ≤ nπ(K).

Since successive decoding is performed at each receiver in which the weakest user (i.e. the

user with the largest noise power), or User π(K)) is decoded first, Ri(P(n)) can be defined

as:

Rπ(i)(P(n)) = log

(

1 +
Pπ(i)(n)

nπ(i) +
∑

j<i Pπ(j)(n)

)

= C

(

Pπ(i)(n)

nπ(i) +
∑

j<i Pπ(j)(n)

)

(5.10)

where C(·) is defined as C(x) = log(1 + x).

In order for each user to achieve their respective minimum rates in each state, a minimum

amount of power must be allocated to each user in each fading state. We use P ∗
i (n) to

denote the minimum power that User i must be allocated in fading state n in order to

exactly achieve R∗
i . We define the minimum powers such that if all users are allocated

their minimum powers in a fading state, then all users will exactly achieve their respective

minimum rates. From the definition of Ri(P (n)) in (5.10) it follows that the minimum

power of each user is given by:

P ∗
π(i)(n) ,



nπ(i) +
∑

j<i

P ∗
π(j)(n)





(

e
R∗

π(i) − 1
)

. (5.11)

We define P̂i(n) as the power allocated to User i in excess of the minimum power. The

total power allocated to each user in fading state n is thus Pi(n) = P ∗
i (n) + P̂i(n). The

minimum rate constraints clearly imply Pi(n) ≥ P ∗
i (n), which implies P̂i(n) ≥ 0.

Since the rates are direct functions of the power allocation, we can replace the rate con-

straints in (5.9) with a power constraint to result in the following equivalent maximization:

max
P̂(n)

En

[

K
∑

i=1

µiC

(

P ∗
π(i)(n) + P̂π(i)(n)

nπ(i) +
∑

j<i Pπ(j)(n)

)]

(5.12)

subject to: En

[

K
∑

i=1

P̂i(n)

]

≤ P ′, P̂π(i)(n) ≥ (eR∗
i − 1)

∑

j<i

P̂π(j)(n) ∀i,n

where P ′ , P − En

[

∑K
i=1 P ∗

i (n)
]

is the total excess power. Notice that the maximization

is over the excess power allocation P̂(n) only. The minimum rate constraints make this

problem more difficult than maximizing ergodic capacity. However, with some algebraic

manipulation we will see that the minimum rate capacity maximization is equivalent to a

related ergodic capacity maximization.

Using the rate-splitting identity (i.e. C(a+b
n ) = C( a

n) + C( b
a+n)), we can simplify the
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rate equation in (5.10). We have omitted the dependence on the fading state n for brevity.

Rπ(i)(P(n)) = C

(

P ∗
π(i) + P̂π(i)

nπ(i) +
∑

j<i Pπ(j)

)

= C





P ∗
π(i) + (e

R∗
π(i) − 1)

∑

j<i P̂π(j)

nπ(i) +
∑

j<i Pπ(j)



+

C





P̂π(i) − (e
R∗

π(i) − 1)
∑

j<i P̂π(j)

nπ(i) +
∑

j<i Pπ(j) + P ∗
π(i) + (e

R∗
π(i) − 1)

∑

j<i P̂π(j)





= C





P ∗
π(i) + (e

R∗
π(i) − 1)

∑

j<i P̂π(j)

nπ(i) +
∑

j<i P ∗
π(j) +

∑

j<i P̂π(j)



+

C





P̂π(i) − (e
R∗

π(i) − 1)
∑

j<i P̂π(j)

nπ(i) +
∑

j≤i P ∗
π(j) + e

R∗
π(i)
∑

j<i P̂π(j)





= R∗
π(i) + C





P̂π(i) − (e
R∗

π(i) − 1)
∑

j<i P̂π(j)

nπ(i) +
∑

j≤i P
∗
π(j) + e

R∗
π(i)
∑

j<i P̂π(j)





where we have used the definition of P ∗
i (n) to obtain the final step. From this simplification

it should be clear that power P ∗
π(i) + (eR∗

i − 1)
∑

j<i P̂π(j) maintains the minimum rate of

each user, while power P̂π(i) − (eR∗
i − 1)

∑

j<i P̂π(j) (which is non-negative by the power

constraint in (5.12)) increases the rate above the minimum rate. Let us introduce the

following effective noise and power terms (for each joint fading state), denoted by P e
i (n)

and ne
i :

ne
π(i) ,



nπ(i) +
∑

j≤i

P ∗
π(j)(n)



 e
P

j>i R∗
π(j) (5.13)

P e
π(i)(n) ,



P̂π(i)(n) − (e
R∗

π(i) − 1)
∑

j<i

P̂π(j)(n)



 e
P

j>i R∗
π(j) (5.14)

Substituting these terms into our previous expression, we get

Rπ(i)(P(n)) = R∗
π(i) + C





P e
π(i)(n)

ne
π(i) + e

P

j≥i R∗
π(j)
∑

j<i P̂π(j)(n)



 .

In Chapter 5.4.1 we show that
∑

j<i P
e
π(j)(n) = e

P

j≥i R∗
π(j)
∑

j<i P̂π(j)(n). Thus we can
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finally rewrite the rate expression as:

Rπ(i)(P(n)) = R∗
π(i) + C

(

P e
π(i)(n)

ne
π(i) +

∑

j<i P
e
π(j)(n)

)

, (5.15)

which is identical to the rate equations for ergodic capacity for a channel with noises

ne
1, . . . , n

e
K . Since the rate of each user can be written explicitly in terms of effective power

and effective noise, we can in fact maximize the weighted sum rate as a function of only the

effective noises and effective powers. In Chapter 5.4.2 we show that every set of excess pow-

ers satisfying the minimum rate constraints in (5.12) maps uniquely to a set of non-negative

effective powers, and vice versa. In Chapter 5.4.3, we show that the the mapping from noise

state to effective noise state is one-to-one for a fixed minimum rate vector and strictly un-

equal noise powers (which is true with probability 1 for a continuous fading distribution).

Thus, we can write the effective power allocation as a function of the joint effective noise

state instead of the joint noise state. Furthermore,
∑k

i=1 P e
i (n) =

∑K
i=1 P̂i(n) by Chapter

5.4.1. Therefore, the maximization in (5.12) is equivalent to:

K
∑

i=1

µiR
∗
i + max

Pe(n)
En

[

K
∑

i=1

µiC

(

P e
π(i)(n)

ne
π(i) +

∑

j<i P
e
π(j)(n)

)]

(5.16)

subject to: En

[

K
∑

i=1

P e
i (n)

]

≤ P ′, P e
i (n) ≥ 0 ∀i, n.

In Chapter 5.4.4 we show that the ordering of the effective noises is the same as the ordering

of the actual noises, i.e. ne
π(1) ≤ · · · ≤ ne

π(K). Thus, the above maximization is identical to

the problem of maximizing µ · R in the ergodic capacity region of the channel with noises

defined as in (5.13) and power P ′. We refer to the channel with noises ne
i and power P ′

as the effective channel. The joint distribution of ne can be derived from the mapping in

(5.13).

Without the constant term
∑K

i=1 µiR
∗
i , (5.16) is identical to the ergodic capacity maxi-

mization expression of the effective broadcast channel [25, 41]. Therefore the average rates

achievable in excess of the minimum rates are equal to the rates achievable in the effective

channel, or to the ergodic capacity region of the effective channel. The minimum rate ca-

pacity region is therefore equal to the ergodic capacity region of the effective channel plus

the minimum rates2:

Cmin(P,R∗;n) = R∗ + Cergodic(P
′;ne) (5.17)

where Cergodic(P
′;ne) refers to the ergodic capacity of the effective channel. In Figure 5.2

the ergodic capacity region of the effective channel and the minimum rate capacity region

2The sum here refers to the set found by adding R
∗ to every element in Cergodic(P

′; ne
1, . . . , n

e
K).
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Translate by R∗

Minimum Rate Capacity Region

R2

R1

R∗

R2

R1

Figure 5.2: Ergodic capacity of effective channel and minimum rate
capacity region

are plotted as an example of this relationship.

Optimal Power Allocation Policies

The optimal power allocation scheme to achieve the boundary of the minimum rate capac-

ity region can be found by finding the optimal power allocation to achieve the boundary

of the ergodic capacity region of the effective channel. The allocation of minimum power

is pre-determined by the minimum rate requirements and the noise powers, while the op-

timal allocation of excess power is related to the optimal power allocation to achieve the

ergodic capacity region of the effective channel. More specifically, to find the optimal power

allocation policy that maximizes µ · R in Cmin(P,R∗;n) for some fixed priority vector µ,

we define the optimal allocation of effective power (i.e. P e
i (ne)) to be the optimal power

allocation policy that maximizes µ · R in Cergodic(P
′;ne) for the same priority vector µ.

We can then transform the effective power allocation P e
i (ne) to the excess power alloca-

tion P̂i(n) by the relationships given in (5.13) and (5.14). The minimum power allocation

P ∗
i (n) is defined in (5.11), and the total power allocated to each user in every fading state

is Pi(n) = P ∗
i (n) + P̂i(n).

The optimal power allocation scheme for ergodic capacity maximization is described

in [41, Chapter III]. We briefly discuss the power allocation here, but we defer the reader

to [41] for a more complete description. The optimal power allocation is a more complicated

version of the single-user waterfilling algorithm derived in [20]. In each fading state, power

can be allocated to any of the K users, or none at all. The total amount of power allocated
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to each fading state can be described in the following compact form:

K
∑

i=1

P e
i (n) =

[

max
i=1,...,K

(µi

λ
− ne

i

)

]+

(5.18)

where [x]+ , max(x, 0) and 1
λ is the water-filling level chosen such that the power constraint

P ′ is met with equality. This is akin to waterfilling to the “best” user in each fading state,

where the notion of best user depends not only on the noise power but also on the user-

by-user priorities. Notice, however, that this is only the allocation of total power to each

fading state. The actual distribution of power between users in each fading state is rather

involved and we defer the reader to [41] for more details. A greedy algorithm to find the

optimal power allocation policy (over fading states and users) can also be found in [41, 63]

If the maximum sum rate of the minimum rate capacity region is being found (i.e.

µ1 = · · · = µK), then from results on ergodic capacity we know that it is optimal to only

allocate effective power to the user with the smallest noise power. Thus, at most one user per

fading state strictly exceeds his minimum rate requirement. However, for general priorities

this is not true. Note that we are discussing only the allocation of effective power, which

relates directly to the excess power. Of course, each user must be allocated the minimum

power in every fading state, so all K users are active in every fading state.

Figure 5.3 illustrates the optimal amount of effective power in a two-user system that is

allocated to each fading state for a discrete, four state fading distribution where µ2 > µ1.

Note that the breakdown of power between the two users, which requires the iterative

algorithm of [41], is not indicated in this figure. Water-level µ1

λ is used for channels that

are allocated excess power on ne
1 and µ2

λ is used for channels allocated excess power on

ne
2. Water-filling is done on the effective noise-level that corresponds to the largest power

allocation in that state. In the first state water-filling is done on ne
2 because although

ne
2 > ne

1, the higher water-level of ne
2 compensates for this difference. Because µ2 > µ1 in

the figure, water-filling is done on ne
1 only when ne

1 � ne
2, as in state 2. In states 3 and 4,

water-filling is done on ne
2.

Interpretation of Effective Channel

The effective channel encapsulates how power allocated to one user manifests itself into

additional required power for other users due to the minimum rate requirements. Consider

the power allocated to each user as consisting of two components: a part that achieves

the minimum rate, and the part that leads to excess rate above the minimum rate. The

minimum power P ∗
i (n) allocated to each user leads to the minimum rates of each user only if

all other users are allocated exactly their minimum power levels. The minimum power does

not take into account excess power allocated to users who are seen as interference. Every

increment of power δP allocated to User π(i) forces User π(i+1) to allocate δP ·(eR∗
π(i+1)−1)
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Figure 5.3: Water-filling diagram for two-user channel with minimum
rates

to maintain his minimum rate. User π(i+2) must then compensate for power δP and power

δP · (eR∗
π(i+1) −1). This forces User π(i+2) to allocate δP · eR∗

π(i+1)(e
R∗

π(i+2) −1) to maintain

his minimum rate. This process continues up to the weakest user. In total, every increment

of power δP allocated to User π(i) corresponds to a total allocation of power δP ·e
P

j>i R∗
π(j)

to Users π(i), . . . , π(K). Thus, allocation of excess power must capture two elements. First,

excess power allocated to stronger users(i.e.
∑

j<i P̂π(j)) must be compensated for. The left-

over excess power of User π(i) after compensating for the excess power of stronger users thus

is P̂π(i)(n)− (e
R∗

π(i) −1)
∑

j<i P̂π(j). However, this left-over excess power must be multiplied

by the factor e
P

j>i R∗
π(j) to account for the fact that weaker users must compensate for any

left-over excess power allocated to User π(i). Therefore, the effective power of User i is
(

P̂π(i)(n) − (e
R∗

π(i) − 1)
∑

j<i P̂π(j)(n)
)

e
P

j>i R∗
π(j) . It seems that the effective noise of each

user should be equal to the actual noise plus the minimum power allocated to stronger users.

However, the actual effective noise is multiplied by the factor e
P

j>i R∗
π(j) to compensate for

the fact that the effective power of User i is multiplied by the same factor.

Single User Channel

A single user channel can be viewed as the broadcast channel described in Chapter 5.1.1

with K = 1. Thus, the characterization of minimum rate capacity derived in Chapter

5.1.4 can be applied to the single-user channel as well. Clearly, the minimum power for

each state is defined as P ∗(n) , n(eR∗ − 1). As before, the minimum rate capacity can

be found by solving the ergodic capacity of the effective channel. From the expressions in

(5.13) and (5.14), we see that ne = n + P ∗(n) and P e(n) = P̂ (n). The power constraint of

the effective channel is P ′ = P − En[P ∗(n)]. Since waterfilling over time achieves ergodic

capacity of a single-user fading channel [20], the optimal allocation of effective power is
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found by waterfilling over the effective noise ne:

P̂ (n) =







1
λ − (n + P ∗(n)) n + P ∗(n) ≤ 1

λ

0 n + P ∗(n) > 1
λ

where 1
λ is the water-filling level satisfying the excess power constraint P ′.

This simple power allocation scheme yields a closed-form expression for the capacity of

a single-user channel with power constraint P and minimum rate R∗:

Cmin(P , R∗; n) = R∗Pr

[

n ≥ 1

λ
e−R∗

]

+

∫ 1
λ

e−R∗

0
log

(

1

λn

)

p(n)dn

In this expression we use the fact that n + P ∗(n) = neR∗
.

Figure 5.4 illustrates the water-filling procedure for zero and non-zero minimum rates

for a single-user three state channel. State 1 is the weakest of the three channels. The graph

on the left shows the power allocation scheme without minimum rates. We see that all three

channels are allocated power, but the rate achieved in states 1 and 2 may be quite small.

When minimum rates are applied, the minimum power P ∗ becomes an additional source

of noise. Because P ∗(n) is an increasing function of n, the effective noise term of state 1

becomes much larger than the other two terms. When water-filling is done on the effective

noise terms, additional power is only allocated to states 2 and 3 because the effective noise

term of state 1 is too large and because much of the power was used to simply achieve

the minimum rates in all three states. In state 1 transmission will be done at exactly R∗,

whereas the minimum rate will be exceeded in the other two states due to the excess power

allocated to those states.

As briefly mentioned earlier, in a single-user channel data can be transmitted at the
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minimum rate with a decoding delay that is independent of the rate of channel variation

while simultaneously transmitting delay-insensitive data that takes advantage of the ergodic

nature of the channel. This can be accomplished through the use of a separate minimum

rate codebook and an ergodic rate codebook and the idea of rate-splitting [53]. Notice that

the rate in each fading state can be expanded as:

R(n) = C

(

P ∗(n) + P̂ (n)

n

)

= C

(

P̂ (n)e−R∗

n

)

+ C

(

P ∗(n) + P̂ (n)(1 − e−R∗
)

n + P̂ (n)e−R∗

)

= R̂(n) + R∗(n)

where the excess rate is R̂(n) = C
(

P̂ (n)e−R∗

n

)

= C
(

P̂ (n)
n+P ∗(n)

)

.

A minimum rate codebook of size 2nminR∗
with blocklength nmin can be used to transmit

data at the minimum rate, while a codebook of size 2nE[R̂(n)] with blocklength n that is an

integer multiple of nmin can be used to transmit data at the excess rate. Codewords from

both codebooks are simultaneously sent. The minimum rate codeword is scaled by the

quantity P ∗(n) + P̂ (1− e−R∗
), while the ergodic codeword is scaled by P̂ (n)e−R∗

. Treating

the ergodic codeword as interference, it is easy to show that the received SINR of the

minimum rate codeword is exactly eR∗ − 1, as required to transmit at rate R∗. Thus, the

minimum rate codeword can be successfully decoded while treating the ergodic codeword as

interference. After decoding and subtracting out the minimum rate codewords, the ergodic

codeword can be decoded at the end of the ergodic blocklength, since only the actual noise

remains in the channel.

This two-codebook strategy cannot be used for the broadcast channel because the

strongest user must decode both the ergodic and minimum rate codeword of every other

weaker user before being able to decode his own minimum rate codeword. This eliminates

the possibility of decoding the minimum rate codewords before the ergodic codewords.

5.1.5 Alternative Constraints on Transmitted Power

We have derived the minimum rate capacity region of a broadcast channel subject to an

average power constraint. The optimal transmitted power is a function of the joint fading

state and can be quite large in some fading states. In practical broadcast situations, there is

generally a peak power constraint and there may or may not be an average power constraint.

In this section we characterize the minimum rate capacity region of a K-user broadcast

channel subject to two different constraint sets: a peak power constraint only, and both a

peak and an average power constraint.
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Peak Power Constraint

We now consider the problem of maximizing minimum rate capacity subject to only a peak

power constraint Ppeak in each fading state. The capacity region can then be defined as the

set of all achievable average rates subject to minimum rate, peak, and power constraints

as it was for the average power constraint case in Chapter 5.1.3. We let F ′′ denote the

set of feasible power policies satisfying the peak power constraint and the minimum rate

constraint in all fading states:

F ′′ ≡







P :
K
∑

j=1

Pj(n) ≤ Ppeak, Rj(P(n)) ≥ R∗
j ∀j,n







.

The capacity region subject to peak power constraint Ppeak is then:

Cpeak
min (Ppeak,R

∗;n) = Co

(

⋃

P∈F ′′

Cmin(P)

)

. (5.19)

To find the boundary of the capacity region, we perform a maximization similar to (5.9),

except with a peak power constraint replacing the average power constraint.

Since the weighted sum of the rates is an increasing function of the total power allocated

to each fading state, each fading state should be allocated the peak power. Clearly the

minimum rates must be achievable in each state under the peak power constraint Ppeak

which implies Ppeak ≥
∑K

i=1 P ∗
i (n) ∀n. Given that each fading state is allocated the peak

power, the remaining task is to optimally allocate Ppeak between the K users in each fading

state. We may first allocate the minimum power required to achieve the minimum rates

in each state, leaving excess power Ppeak −∑K
i=1 P ∗

i (n) in each fading state. The excess

power must then be optimally distributed between the K users to maximize the weighted

sum of their rates in excess of the minimum rates. The set of achievable excess rates is

equal to the capacity region of the effective broadcast channel, which takes the form of a

constant broadcast channel in each fading state. However, maximizing weighted sum rate

for a constant channel turns out to be nearly as difficult as maximizing weighted sum rate

for a fading channel. First, a different waterfilling level 1
λ(n) must be chosen for each fading

state to satisfy:

Ppeak −
K
∑

i=1

P ∗
i (n) = max

i=1,...,K

(

µi

λ(n)
− ne

i

)

.

The effective power Ppeak−
∑K

i=1 P ∗
i (n) is then allocated to the K users in each fading state

according to the procedure detailed in [41, Section III]. As before, the actual excess power

allocation policy can be inferred from the allocation of effective power by the relationship

in (5.13) and (5.14).
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Peak and Average Power Constraint

In this section we find the minimum rate capacity subject to average power constraint P

and peak power constraint Ppeak. We assume Ppeak > P . If this condition is not satisfied,

the average power constraint is meaningless. The capacity region can be defined as it was

for the average power constraint case in Chapter 5.1.3. We let F ′′′ denote the set of feasible

power policies:

F ′′′ ≡







P : En





K
∑

j=1

Pj(n)



 ≤ P ,
K
∑

j=1

Pj(n) ≤ Ppeak ∀n, Rj(P(n)) ≥ R∗
j ∀j,n







.

The capacity region subject to peak power constraint Ppeak can then be characterized as:

Cpeak+avg
min (P , Ppeak,R

∗;n) = Co

(

⋃

P∈F ′′′

Cmin(P)

)

. (5.20)

To find the boundary of the K-user capacity region, we perform a maximization similar

to (5.9) with the addition of a state-by-state peak power constraint. We can therefore

allocate minimum power to both users and reduce the problem to an ergodic capacity

maximization problem. As stated before, the minimum power required in each state to

meet the minimum rate requirements must not violate the peak power constraint. However,

we must maximize the ergodic capacity of the effective channel subject to average power

constraint P ′ , P−En

[

∑K
i=1 P ∗

i (n)
]

and peak power constraint Ppeak−
∑K

i=1 P ∗
i (n) in each

fading state. The optimal power allocation with both average and peak power constraints

is simply a truncated version of the optimal power allocation policy with only an average

power constraint. This is easiest to see by considering the greedy algorithm [63, Section

3.2] [41, Section III.A] to allocate power with only an average power constraint. In the

greedy algorithm, each user is represented via a utility function which is a function of the

amount of power allocated in each fading state. The peak power constraint effectively

truncates the utility functions of all users at z = Ppeak −
∑K

i=1 P ∗
i (n) in each fading state.

Then it is easy to show that the total effective power allocated to each fading state is given

by:
K
∑

i=1

P e
i (n) = min

(

Ppeak −
K
∑

i=1

P ∗
i (n),

[

max
i=1,...,K

(µi

λ
− ne

i

)

]+
)

The only difference between this scheme and the optimal excess power allocation scheme

without the peak power constraint is that the excess power allocated to a state is truncated

at Ppeak −
∑K

i=1 P ∗
i (n), which in turn affects the optimal water-filling level 1

λ . The distribu-

tion of excess power to the K users within each fading state follows the procedure detailed

in [41, Section III], with the simple caveat that the total effective power allocated to each

fading state cannot be larger than Ppeak −∑K
i=1 P ∗

i (n).
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5.1.6 Minimum Rate Outage Capacity

In this section we discuss minimum rate capacity with outage subject to an average power

constraint. In minimum rate capacity, minimum rates must be maintained in all fading

states. With outage, however, this constraint is loosened slightly and the minimum rate of

every user must only be met subject to outage probabilities Pout = (P out
1 , . . . , P out

K ). In

other words, ergodic capacity is maximized subject to the constraint that the minimum rate

of user k must be met with at least probability (1− P out
k ) for k = 1, . . . , K. Minimum rate

outage allows minimum rate transmission to be suspended to users when their channels are

very poor. Transmission is allowed during outages, but minimum rates are not required to be

met during these times. In more practical terms, delay-sensitive data must be transmitted

at the minimum rates a certain percentage of the time, whereas delay-insensitive data has no

such constraint. This is different than the definition of outage capacity [42,43] in which no

data is transmitted during outages and the only concern is the constant channel achievable

during non-outages.

In certain severe fading distributions (i.e. Rayleigh fading), it is not possible to maintain

a constant data rate at all times with an average power constraint. This implies that

channels with such distributions have no zero-outage capacity region and therefore have no

minimum rate capacity region. However, most fading channels can support a constant rate

with outage and thus have a minimum-rate outage capacity region.

In this section we analyze the scenario where outage is declared on a user-by-user basis

as opposed to declaring a common outage during which no user is required to meet his

minimum rate [42]. We will see that the case of common outage is a special case of the

more general independent outage formulation.

Minimum Rate Outage Capacity Region with Independent Outage

To find the minimum rate outage capacity, we first define the outage function w(n) =

(w1(n), . . . , wK(n)) over all fading states where wk(n) = 1 for fading states in which the

minimum rate of User k must be satisfied and wk(n) = 0 otherwise3. Due to the outage

constraints, the outage function must satisfy En[wk(n)] ≥ (1 − P out
k ) for each user. The

outage function is an indicator function that determines which states are required to main-

tain the minimum rates of the different users. Maximizing ergodic capacity given outage

function w(n) is very similar to finding non-outage minimum rate capacity, except with

time-varying minimum rates R∗(n, w(n)). We define R∗(n, wk(n)) as:

R∗
k(n, wk(n)) =







0 wk(n) = 0

R∗
k wk(n) = 1

(5.21)

3We need not consider 0 < wk(n) < 1 since we are only concerned with continuous fading distributions
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where R∗
k is assumed to be the actual desired minimum rate of User k. We then write the

time-varying minimum rates as R∗(n,w(n)) = (R∗
1(n, w1(n)), . . . , R∗

K(n, wK(n))).

Though the minimum rates were assumed to be constant in the original minimum rate

capacity formulation, time-varying minimum rates can be handled using almost the iden-

tical solution. To achieve the minimum rate capacity with time-varying minimum rates

R∗(n,w(n)), we simply need to replace R∗ with R∗(n,w(n)) in the optimal power allo-

cation scheme derived in Chapter 5.1.4. The fact that the fading broadcast channel was

decomposed into a parallel set of constant broadcast channels, one for each fading state,

allows us to optimally deal with time-varying minimum rates using this simple substitution.

With this in mind, we define Cmin(P,R∗(n,w(n));n) to be the minimum rate capacity

of the broadcast channel with time-varying minimum rates R∗(n,w(n)). For each outage

function w(n) satisfying the outage constraints, Cmin(P ,R∗(n,w(n);n) defines an achiev-

able rate region that satisfies both the average power constraint and the outage constraints.

Definition 5.2 The minimum rate outage capacity of a fading broadcast channel with per-

fect CSI at the transmitter and receivers, average power constraint P , minimum rate con-

straint R∗ = (R∗
1, R

∗
2, . . . , R

∗
K) ∈ Cout(P ,Pout), and outage probabilities

Pout = (P out
1 , . . . , P out

K ) is:

Coutage
min (P ,R∗,Pout;n) = Co





⋃

w(n)

Cmin(P ,R∗(n,w(n));n)





where the union is over all w(n) satisfying En[wk(n)] ≥ (1 − P out
k ) ∀k = 1, . . . , K.

Notice that the minimum rate vector R∗ must be in the independent outage capacity

region [42], i.e. R∗ ∈ Cout(P ,Pout), for the minimum rates to be achievable with the given

outage probability.

Minimum Rate Outage Capacity Region with Common Outage

The minimum rate outage capacity with common outage can be characterized using the

expression for minimum rate outage capacity with independent outage. With common out-

age, the outage function w(n) must satisfy the additional constraint w1(n) = w2(n) = · · · =

wK(n) ∀n. In addition, the vector outage constraint becomes a scalar outage probability

P out. The capacity region then is:

Coutage
min (P,R∗, P out) = Co





⋃

w(n)

Cmin(P ,R∗(n,w(n)))





where the union is over all w(n) satisfying En[w1(n)] ≥ (1−P out). Notice that the minimum

rate vector R∗ must be in the common outage capacity region [42], i.e. R∗ ∈ Cout(P , P out),
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for the minimum rates to be achievable with common outage and with the given outage

probability.

Minimum Rate Outage Capacity for a Single-User Channel

The definition of minimum rate outage capacity given in Definition 5.2 applies to single-user

channels as well, but the expression can be simplified significantly in the single-user case.

For a single-user channel, the outage function w(n) is only a function of the fading state

because there is only one user and the capacity region is one-dimensional. Finding the

largest achievable rate subject to the power and outage constraint therefore is equivalent

to finding the outage function that corresponds to the largest achievable rate. In [46], the

concept of minimum rate capacity with outage was independently proposed and the optimal

outage function w∗(n) was found to be:

w∗(n) =







1 n < s∗

0 n ≥ s∗
(5.22)

where the threshold s∗ is chosen to satisfy En[w∗(n)] = Pr{n < s∗} = 1 − P out.

The optimal scheme is therefore seen to be a threshold policy: minimum rates must be

maintained in all states better (i.e. smaller noise values) than the threshold, while minimum

rates need not be maintained in states worse than the threshold. This is very similar to

the solution to the minimum outage probability problem under a long-term average power

constraint for a single user channel solved in [6]. When maximizing outage capacity, all

power available goes towards maintaining a constant rate in non-outage states. In minimum

rate outage capacity, however, some fraction of the power maintains the minimum rate in

non-outage states. The excess power, however, is water-filled over the fading states with

respect to the effective channel to maximize rates achieved in excess of the minimum rates.

Unfortunately, the multi-user broadcast channel does not appear to have such a simple

solution for either common outage or independent outage because the relationship between

the minimum power allocation, effective noise terms, and the effectiveness of each fading

state and user is much more complicated than the single-user case.

5.1.7 Numerical Results

In this section we present numerical results on the capacity of a two user broadcast channel

with minimum rate constraints with an average power constraint and no outage. In all plots

the total transmitted power is 10 mW, the bandwidth is 100 kHz, and the noise distribution

is symmetric. Furthermore, the minimum rates are symmetric in Figs. 5.5-5.8.

In Fig. 5.5 the capacity region of a two-user channel with very different noise levels is

plotted. In one fading state, n1 is 40 dB less than n2 (i.e. the SNR of user 1 would be
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40 dB larger than the SNR of user 2 assuming each user was allocated the same power),

and vice versa in the second fading state. Without minimum rates, capacity is achieved

by allocating almost all power to the better of the two users in each channel state. This

causes the capacity region to be highly convex. When minimum rate constraints are applied,

however, power must also be allocated to the weaker user in every fading state to satisfy

the minimum rates, leading to a large capacity reduction. It is clear from Fig. 5.5 that

the minimum rate capacity region is significantly smaller than the ergodic capacity region,

especially for large minimum rates.

The zero-outage capacity region in Fig. 5.5 is significantly smaller than the ergodic

capacity region. As expected, the minimum rate capacity region is significantly smaller

than the ergodic capacity region. We will see a similar relationship between the zero-outage

and minimum rate capacity regions for the other channel models.

The capacity region of a channel where n1 and n2 differ by 20 dB in each fading state

is plotted in Fig. 5.6. The ergodic capacity region is much less convex than in Fig. 5.5

because the channels of the two users are more similar in each state. This is because the

optimal power allocation scheme is not so heavily weighted towards the better user in each

state so even the poorer user is allocated significant power in each state. Minimum rate

constraints force allocation of additional power to the poorer user in each fading state, but

this is not as sub-optimal as it is for the first example. We see in Fig. 5.6 that the minimum

rate capacity region is smaller than the ergodic capacity region, but not by as much as in

Fig. 5.5.

In the final two plots, results for more realistic channel models are presented. Inde-

pendent fading is assumed for both receivers and the channel gain is incorporated into the

noise power, as described in Chapter 5.1.1. Rician fading with K = 1 is modeled in Fig.

5.7. This is not as severe as Rayleigh fading, which has no zero-outage capacity region, but

the power of the multipath component is equal to the power of the line-of-sight component.

The noise levels take on a wide range of values, as they do in the channel plotted in Fig.

5.5. As expected by our earlier results, minimum rates reduce capacity significantly. Once

again we see that the zero-outage capacity region is much smaller than the ergodic capacity

region.

In Fig. 5.8, Rician fading with K = 5 is modeled. Because the power of the line of sight

component is five times as strong as the multipath component, both users generally have

strong channels and this channel resembles the channel plotted in Fig. 5.6. As expected,

minimum rates do not reduce capacity significantly.

Finally, in Fig. 5.9, the capacity regions of a Rician fading channel with K = 1 and

asymmetric minimum rates are plotted. In the graph the capacity regions for minimum

rates of (100 kbps, 100 kbps), (100 kbps, 50 kbps), and (100 kbps, 0 kbps) are shown. This

relates to a scenario where one user has stricter requirements than the other or only one of
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Figure 5.5: Capacity of symmetric channel with 40 dB difference in SNR
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Figure 5.6: Capacity of symmetric channel with 20dB difference in SNR

the two users requires a minimum rate. We see that the capacity region for the asymmetric

minimum rate pair is considerably larger than the capacity region for the symmetric rate

pair. Notice that reducing the minimum rate of user 2 increases the capacity of both users,

not just user 2, because reducing R∗
2 frees up power that can be allocated to either user.

From these results it is clear that minimum rates decrease the capacity regions of fading

channels in which the noise levels of the users differ significantly in many channel states, i.e.

when either of the two users has a significantly larger channel gain than the other user in

many channel states. When the channels of the users do not differ significantly, minimum

rates do not reduce the capacity region significantly.

5.1.8 Multiple-Access Channel with Minimum Rate Constraints

In this section we derive the minimum rate capacity region of the fading multiple-access

channel using the concept of duality. We define the minimum rate capacity region to be the

set of achievable average rates, subject to minimum rate constraints R∗ = (R∗
1, . . . , R

∗
K)
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Figure 5.7: Rician fading with K = 1, Average SNR = 10 dB
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Figure 5.8: Rician fading with K = 5, Average SNR = 10 dB
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Figure 5.9: Rician fading with K = 1, Average SNR = 10 dB,
Asymmetric Minimum Rates
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in each fading state. From this definition and the characterization of the ergodic ca-

pacity region of the fading MAC given in Chapter 2.2.4, it follows that a rate vector

R is in Cmin
MAC(P , R∗;n) if and only if there exists R(n) such that R ≤ En[R(n)] with

R(n) ∈ CMAC(
∑K

i=1 P M
i (n);n) ∀n and R(n) ≥ R∗ for all n, for some power policy

P M (n) satisfying the power constraints. Using the methodology from the proof of Theo-

rem 3.4, it is easy to see that the BC minimum rate capacity region equals the sum power

MAC minimum rate capacity region:

Cmin
BC (P , R∗;n) =

⋃

{P : 1·P=P}

Cmin
MAC(P , R∗;n). (5.23)

The most interesting application of duality to minimum rate capacity is characterizing

the minimum rate capacity region of the MAC via the dual BC. Directly finding the mini-

mum rate capacity of the MAC appears to be quite difficult4 , but duality allows us to do

so directly from the dual BC. A straightforward application of Theorem 3.2 gives:

Cmin
MAC(P , R∗;n) =

⋂

α>0

Cmin
BC

(

1·P
α

, R∗; αn

)

. (5.24)

Since every point on the boundary of the MAC minimum rate capacity region is also on

the boundary of the scaled BC minimum rate capacity region, we can also find the optimal

power policy and decoding order for the MAC. As always in the BC, users are decoded

in order of increasing channel gain. In the case of a scaled channel, this corresponds to

decoding in order of increasing hi
λ∗

i
. By duality, users in the MAC should be decoded in

order of decreasing hi
λ∗

i
. The optimal MAC power allocation policy can be derived from the

optimal power policy of the scaled BC.

The MAC minimum rate capacity region for a discrete fading distribution channel is

plotted in Figure 5.10. In the figure, the MAC ergodic, zero-outage, and minimum rate

capacity region boundaries are all shown. The corresponding dual BC capacity region

(ergodic, zero-outage, and minimum rate) boundaries are indicated with dotted lines. The

minimum rate capacity region is shown for symmetric minimum rates of 200 Kbps for each

user. In the figure, all three MAC capacity regions were calculated using duality, i.e. by

taking the intersection of scaled BC capacity regions. However, we show only the unscaled

BC capacity regions in the plot for simplicity. Note that the MAC minimum rate capacity

region lies between the zero-outage and ergodic capacity regions as it does for the BC

minimum rate capacity region [30].

4Even given the MAC decoding order (which duality provides), it still does not seem possible to deter-
mine the optimal power policy that maximizes the weighted sum rate while satisfying the minimum rate
constraints. This is related to the difficulty in finding the zero-outage capacity. The zero-outage capacity
region has only been characterized implicitly by minimizing the weighted sum power needed to achieve a
rate vector [22].
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Figure 5.10: MAC Minimum Rate (200 Kbps Min Rate), Ergodic, and
Zero-Outage Capacity Regions

5.2 Broadcast Channels with Common Messages

In the previous portion of this chapter, we considered a fading broadcast channel in which

the transmitter only wished to send independent information to each of the users. However,

as wireless networks evolve, it is becoming apparent that multi-cast (i.e. sending a common

message to all users on a downlink channel) is an important mode of communication that

systems will require in the future. In cellular networks, for example, multi-cast information

could be common information such as news updates or location-based information. It is

reasonable to assume that networks will want to transmit a mixture of common information

to all users and independent information to each of the users. With this in mind, we consider

broadcast channels with both common and independent information.

We consider parallel two-user Gaussian broadcast channels, where the transmitter wants

to send independent information to users 1 and 2 at rates R1 and R2, respectively, and a

common message (i.e. a message decodable by both users) at rate R0. For degraded

broadcast channels, the common message rate and the independent information rate to the

degraded user are interchangeable, because the strongest user can decode anything that the

degraded user can. However, we consider parallel channels where in some channels User

1 is the degraded user, but in other channels User 2 is the degraded user. The capacity

region of this channel (for both discrete memoryless channels and for Gaussian channels)

was characterized in [18] in terms of a union of regions, where the union was taken over

different power distributions between the different channels. We first derive an equivalent

expression for this capacity region that is more amenable to optimization techniques. We

then pose the problem of characterizing the optimal power and rate allocation schemes

that achieve the boundary of the three-dimensional region using Lagrangian techniques.

We then apply the utility function approach used for the broadcast channel [63] without
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common information, but we find that this approach does not work in general. We use a

more direct approach to maximize the Lagrangian function and obtain the capacity region

with common messages using this approach. Using this method, the optimal allocation is

found by performing a finite maximization in each channel.

Finally, we consider MIMO broadcast channels, which in general are not degraded. Thus,

the capacity region with or without common messages is not known for this channel. We

propose an achievable region based on dirty paper coding. We also consider the maximum

common rate achievable on these channels, i.e. the common message capacity.

The remainder of this section is organized as follows. In Chapter 5.2.1 we describe the

system model, followed by the capacity region of the broadcast channel in 5.2.2. In Chapter

5.2.3 we describe the Lagrangian formulation used to find the optimal power allocation,

along with a method to maximize the Lagrangian. In Chapter 5.2.5 we describe a simple

procedure to find the optimal Lagrangian multipliers, followed by some numerical results

in 5.2.6. Finally, we discuss MIMO broadcast channels in Chapter 5.2.7.

5.2.1 System Model

We consider a set of N parallel two user broadcast channels, which can be viewed as a

discrete approximation of a fading channel. As in the previous section (Chapter 5.1.1), we

incorporate the channel gain into the noise power to get:

yj(i) = x(i) + zj(i) i = 1, . . . , N (5.25)

for j = 1, 2 and where z1(i) ∼ N(0, N1(i)) and z2(i) ∼ N(0, N2(i)). If N1(i) ≤ N2(i) for all

i, then this is a degraded broadcast channel. For such a channel, the common message and

independent message sent to User 2 are interchangeable, and the optimal power allocation

is essentially equivalent to that for channels with only independent information [41,63]. We

will only consider the non-degraded case, i.e. where for some i we have N1(i) ≤ N2(i) and

for some other i we have N2(i) ≤ N1(i). The resultant channel is referred to as a product

of reversely degraded, or unmatched, broadcast channels [18]. We impose an average power

constraint P on the input, i.e.
∑N

i=1 E[x(i)2] ≤ P .

5.2.2 Capacity Region Characterization

In [18], the capacity region for two parallel Gaussian broadcast channels (non-degraded) with

a common message and independent messages for both users is given. This characterization

can be extended to N > 2 parallel channels and given in the following simplified form.

Theorem 5.1 The capacity region CBC(P ) of N parallel two-user broadcast channels is
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equal to the convex hull of all rate triplets (R0, R1, R2) satisfying

R0 ≤ min

(

N
∑

i=1

C

(

P0(i)

P1(i) + P2(i) + N1(i)

)

,
N
∑

i=1

C

(

P0(i)

P1(i) + P2(i) + N2(i)

)

)

(5.26)

R1 ≤
∑

i∈A

C

(

P1(i)

N1(i)

)

+
∑

i∈B

C

(

P1(i)

P2(i) + N1(i)

)

(5.27)

R2 ≤
∑

i∈A

C

(

P2(i)

P1(i) + N2(i)

)

+
∑

i∈B

C

(

P2(i)

N2(i)

)

(5.28)

for some P0(i), P1(i), P2(i) such that
∑N

i=1 P0(i) + P1(i) + P2(i) ≤ P . Here A denotes the

set of i ∈ 1, . . . , N such that N1(i) ≤ N2(i) and B is the complementary set, i.e. the set of

i such that N2(i) < N1(i), and C(x) = log(1 + x).

Proof: See Chapter 5.4.5. �

The powers (P0(i), P1(i), P2(i)) can be interpreted as the power allocated to send the

common message, the independent message to user 1, and the independent message to user

2, respectively. The common message is decoded first, with the powers P1(i)+P2(i) treated

as interference, followed by the independent messages. For i ∈ A, User 1 can decode and

subtract out the codeword intended for User 2 before decoding his own codeword. For

i ∈ B, User 1 must treat P2(i) as interference while decoding his independent message.

Similarly, User 2 can decode and subtract out the codeword intended for User 1 for i ∈ B,

but must treat User 1’s codeword as interference for i ∈ A.

For transmission of the independent messages, separate codebooks and rates are used

for each user on each of the N channels. These codewords are decoded independently on

each channel. However, the common message codebook cannot be broken into different

codebooks for each channel, i.e. joint encoding and joint decoding must be performed

across the channels to achieve capacity. If the common message was broken into different

codebooks for each channel, the common rate transmitted on each channel would be limited

by the weakest user in each channel. The corresponding common rate would be given by
∑N

i=1 C
(

P0(i)
P1(i)+P2(i)+max(N1(i),N2(i))

)

. This is highly sub-optimal, and much higher common

message rates can be achieved by jointly decoding. Each user extracts a different amount

of information about the common message from each of the channels due to the different

noise powers of the users on each channel, and we consider the total amount of mutual

information across all channels.

5.2.3 Formulation of Optimization

From Theorem 5.1, the capacity region can be defined as the convex hull of all rate points

satisfying the inequalities in (5.26) - (5.28) for any power allocation satisfying the average
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power constraint. Since the capacity region is convex, we can fully characterize it by maxi-

mizing the weighted sum of rates. We wish to find the optimal power allocation policy that

maximizes the weighted sum of rates for all possible weights. This is given by the following

problem;

max
(R0,R1,R2)∈CBC(P )

µ1R1 + µ2R2 + µ0R0. (5.29)

Using standard convex optimization techniques, for the optimal λ, this is equivalent to:

max
P (i)

µ1R1(P (i)) + µ2R2(P (i)) + (5.30)

µ0(min(R01(P (i)), R02(P (i)))) − λ

(

N
∑

i=1

P (i) − P

)

where R1(P (i)) and R2(P (i)) are defined as:

R1(P (i)) =
N
∑

i=1

C

(

P1(i)

N1(i) + P2(i)1[i ∈ B]

)

R1(P (i)) =
N
∑

i=1

C

(

P2(i)

N2(i) + P1(i)1[i ∈ A]

)

and R0j(P (i)) is defined as:

R0j(P (i)) =
N
∑

i=1

C

(

P0(i)

Nj(i) + P1(i) + P2(i)

)

for j = 1, 2, and P (i) , P0(i) + P1(i) + P2(i). Through a standard convex optimization

procedure, the minimum operation can be replaced by a weighted sum of the two common

rates. It then follows that the optimal power allocation policy solves

max
P (i)

µ1R1(P (i)) + µ2R2(P (i)) + λ1R01(P (i)) + (5.31)

λ2R02(P (i)) − λ

(

N
∑

i=1

P (i) − P

)

for the optimal Lagrangian multipliers (λ, λ1, λ2), which each must be non-negative and

satisfy λ1 +λ2 = µ0 = (1−µ1 −µ2). Furthermore, for any λ, the solution to (5.30) is equal

to the solution to (5.31) for λ1 and λ2 such that the optimizing power allocation yields

either R01 = R02 or λi = 0 for one of the users.

In the next section we describe how to solve (5.31) for any (λ, λ1, λ2). In section 5.2.5

we describe a simple method to find the optimal Lagrange multipliers.
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5.2.4 Maximization of Lagrangian

In this section we describe a method to solve (5.31), i.e. maximize the weighted sum of

rates given the power price λ and the Lagrangian’s λ1 and λ2. First note that a power

allocation solves (5.31) if and only if it is the solution to

max
P0(i),P1(i),P2(i)

µ1R1(P (i)) + µ2R2(P (i)) + λ1R01(P (i)) (5.32)

+λ2R02(P (i)) − λ (P0(i) + P1(i) + P2(i))

for each i = 1, . . . , N . When there is no common message (i.e. λ1 = λ2 = 0), this can

be solved using an intuitive utility function approach [41, 63]. In Chapter 5.2.4 we show

that this approach does not work in general when there is a common message, and we must

instead use a more direct method.

Utility Function Approach

In this section we attempt to use the utility function approach developed in [63] to determine

the optimal power allocation policy given the Lagrangian multipliers, i.e. to solve (5.32).

In [63], utility functions were used to find the optimal power allocation for parallel broadcast

channels with only independent messages. Without loss of generality, we consider states

where N1(i) < N2(i). We define the following utility functions:

u1(z) =
µ1

N1(i) + z
− λ

u2(z) =
µ2

N2(i) + z
− λ

u0(z) =
λ1

N1(i) + z
+

λ2

N2(i) + z
− λ

If we let J∗ denote the solution to (5.32) and J∗ is achieved by (P0(i), P1(i), P2(i)), then

we have

J∗ =

∫ P1(i)

z=0
u1(z)dz +

∫ P1(i)+P2(i)

z=P1(i)
u2(z)dz +

∫ P0(i)+P1(i)+P2(i)

z=P1(i)+P2(i)
u0(z)dz

≤
∫ ∞

z=0

[

max
i

ui(z)

]+

dz

where the argument of the final integral is a pointwise maximum of the utility functions.

This upper bound is achievable if the maximum of the utility functions is in order of de-

creasing channel gains (i.e. u1(z) is the maximum function initially, followed by u2(z) and

then u0(z)). When there is no common message, then this condition is satisfied and the

upper bound is achievable [63]. Thus, the optimum power allocation can be found by taking

the pointwise maximum of the utility functions corresponding to both users. However, for
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Figure 5.11: Utility Functions for a sample channel with µ2 = 0

common messages, the ordering of the utility functions does not always satisfy this condi-

tion and thus the utility function approach can not be used in general. There are a number

of interesting scenarios where the utility function approach does work:

1. µ0 < µ1 and µ0 < µ2: If this condition is satisfied, then u0(z) ≤ uj(z) for all z ≥ 0,

where User j is the user with the smaller noise power. Thus, no common message is

transmitted in each state and the utility function u0(z) can be ignored. The situation

then simplifies to the standard independent messages BC, for which the utility function

approach works.

2. µ0 ≥ µ1 and µ0 ≥ µ2: In this scenario, u0(z) ≥ uj(z) for all z ≥ 0, where User j is

the user with the larger noise power. Thus we are left with the common rate user and

the better of two users. In this scenario it can be shown that the utility functions

are ordered correctly such that the upper bound is achievable. This includes the

interesting case when µ0 ≥ µ1 = µ2.

Interestingly, the utility function approach does not in general work when either µ1 = 0

or µ2 = 0. In Fig. 5.2.4, utility functions are shown for a channel where N1 = 1.5, N2 = 1,

µ1 = .54, λ1 = .1, and λ2 = .36. For 0 ≤ z ≤ 1.25, u0(z) is the largest utility function,

but for z > 1.25, u1(z) is the largest function. Therefore, the upper bound J∗ can not be

achieved, because User 0 must be allocated power after (i.e. for larger z) User 1 is allocated

power. It is also possible to find counter examples for situations where all three priorities

are non-zero.
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Direct Approach

Since the utility function approach does not work in general, we must consider a more

direct approach to maximize the Lagrangian function. The most straightforward way of

maximizing a continuous function is to consider the points where the derivatives of the

function are zero. The only complication is that the powers P0(i), P1(i), and P2(i) must all

be non-negative. Thus, for j = 1, 2, 3, the derivative of the objective function with respect

to Pj(i) must be equal to 0 if the optimal Pj(i) is strictly positive. Additionally, if P ∗
j (i) = 0

for some j, then the derivative with respect to Pj(i) at Pj(i) = 0 must be less than or equal

to zero. The simple structure of the objective function implies that each partial derivative is

equal to zero at only one point. Thus, it is sufficient to consider the 8 different combinations

of power allocations. The maximum of the objective function is then equal to the maximum

of these 8 possible combinations.

Without loss of generality, consider a state where N1(i) ≤ N2(i). The partial derivatives

of (5.32) are given by:

∂J

∂P1
=

µ1

P1 + N1
+

µ2

P1 + P2 + N2
− µ2

P1 + N2
+

λ1

P0 + P1 + P2 + N1

− λ1

P1 + P2 + N1
+

λ2

P0 + P1 + P2 + N2
− λ2

P1 + P2 + N2
− λ

∂J

∂P2
=

µ2

P1 + P2 + N2
+

λ1

P0 + P1 + P2 + N1
− λ1

P1 + P2 + N1
+

λ2

P0 + P1 + P2 + N2
− λ2

P1 + P2 + N2
− λ

∂J

∂P0
=

λ1

P0 + P1 + P2 + N1
+

λ2

P0 + P1 + P2 + N2
− λ.

Since there are three different powers to be allocated, there are three different sets of partial

derivatives to consider. First consider the four cases corresponding to P0 = 0. By setting

some of these derivatives to zero (i.e. the partials corresponding to users with non-zero

power), we find the optimal allocations are given by the following when P0 = 0:

1. P1 = P2 = 0

2. P1 > 0, P2 = 0: P1 = µ1

λ − N1

3. P2 > 0, P1 = 0: P2 = µ2

λ − N2

4. P1 > 0, P2 > 0: P1 = µ1N2−µ2N1

µ2−µ1
, P2 = µ2

λ − N2 − P1.

When P0 > 0 the power allocations are given by:

1. P0 > 0, P1 = P2 = 0: P0 = Pthresh

2. P0, P1 > 0, P2 = 0: P1 = λ2N1−(µ1−λ1)N2

µ1−µ0
, P0 = Pthresh − P1

146



3. P0, P2 > 0, P1 = 0: P2 = λ1N2−(µ2−λ2)N1

µ2−µ0
, P0 = Pthresh − P2

4. P0, P1, P2 > 0: P1 = µ1N2−µ2N1

µ2−µ1
, P2 = λ1N2−(µ2−λ2)N1

µ2−µ0
− P1, P0 = Pthresh − P1 − P2

where

Pthresh =
1

2λ
(µ0 − λ(N1 + N2) +

√

(λ(N1 + N2) − µ0)2 + 4λ(λ1N2 + λ2N1 − λN1N2)).

One of these 8 power allocations is guaranteed to achieve the maximum of (5.32). Thus

we can find the maximum of the Lagrangian in each state by evaluating all eight power

allocations, checking for non-negativity of powers, and then choosing the allocation that

maximizes the objective.

When there is only independent information, it can be shown that only one of the four

cases is feasible for different values of λ, i.e. the space λ > 0 can be decomposed into four

mutually exclusive intervals corresponding to the four different allocations. Thus, a closed

form solution for the optimal power allocation can be given in terms of λ. However, no

such simplification can be done for the situation when there is a common message. Thus,

in general, the maximum amongst the eight allocations must be taken.

5.2.5 Optimal Lagrange Multipliers

By the KKT conditions, the solution to the original Lagrangian characterization in (5.30)

for the optimal (λ, λ1, λ2) will satisfy the power constraint with equality. It is easy to see

that the power allocation solving (5.30) is a decreasing function of λ. Thus, the optimal λ

can be found by solving (5.30) for different values of λ determined by the bisection method

(over λ).

To maximize the Lagrangian function in (5.30), we work with the simplified maximiza-

tion in (5.31), where the minimum is replaced with a weighted sum of the common message

rates. It can be shown that for any λ, the solution to (5.30) is equal to the solution of (5.31)

for λ1 and λ2 such that the optimizing power allocation yields R01 = R02 or λi = 0 for

one of the two users. This follows intuitively because for any power allocation that yields

R01 6= R02, we can reallocate P0(i) over different channels without increasing the sum of

power to increase the smaller of the two common rates slightly, and thus increase the ob-

jective function. However, this is not possible if the allocation of power P0(i) is already

single-user optimal for the user with the smaller common rate (i.e. no reallocation of P0(i)

increases the common rate of the user with the smaller common rate). This corresponds to

the scenario where either λ1 = 0 or λ2 = 05. Furthermore, it can also be shown that the

optimizing R01 in (5.30) is a increasing function of λ1 and the optimizing R02 is a decreasing

function of λ2.

5In general, the minimum of two concave functions occurs at a point where the two functions meet, unless
the minimum of the two functions is equal to the maximum of one of the functions.
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Thus, the following procedure can be used to find the optimal Lagrange multipliers

(λ, λ1, λ2). First choose an initial positive value for λ. Then repeat the following algorithm:

1. Solve (5.30) by the following procedure:

(a) Solve (5.31) with (λ1 = 0, λ2 = µ0). If R01 ≥ R02 for the optimizing solution,

proceed to Step 2.

(b) Solve (5.31) with (λ1 = µ0, λ2 = 0). If R02 ≥ R01 for the optimizing solution,

proceed to Step 2.

(c) Use the bisection method to find λ1 such that the optimizing solution of (5.31)

satisfies R01 = R02.

2. If the solution of (5.30) exactly meets the power constraint, then exit. Otherwise,

if the solution of (5.30) is strictly larger/smaller than the power constraint, then

increase/decrease λ and return to Step 1.

Note that the update of λ can be performed using a one-dimensional bisection method, and

Step 1(c) can be performed with a one-dimensional bisection method on λ1. This procedure

is implemented in order to find numerical results in the next section.

5.2.6 Numerical Results

In this section we present numerical results on the capacity region of a two-user broadcast

channel. In Fig. 5.12 the capacity region of a two user channel is shown for N = 2. In state

1, user 1 has an average SNR of 10 dB and user 2 has an SNR of -10 dB. In state 2, the

SNR’s of the users are reversed from state 1. Notice that due to the large difference in SNR

of the two users, the capacity region when R0 = 0 (i.e. no common message) is far from the

straight line segment connecting the maximum single-user rate to users 1 and 2. However,

if R2 = 0 (or R1 = 0 by symmetry), the region is quite close to time-sharing between

transmitting only a common message and transmitting only independent information to

User 1. In Fig. 5.13 the capacity region of a two-user channel is shown where in state 1,

user 1 has an SNR of 0 dB while user 2 has an SNR of -10 dB. In state 2, the roles of the

users are reversed. We again see that the capacity region is relatively flat in the direction

of the common message (R0), which implies that time-sharing between sending common

messages and independent information comes quite close to the actual capacity-achieving

strategy.

5.2.7 MIMO Channels

In this section we consider multiple-input, multiple-output (MIMO) broadcast channels.

Since MIMO broadcast channels are not in general degraded, the capacity region with
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Figure 5.12: Plot of capacity region channel with 20 dB SNR difference
between the two users

common and independent messages is unknown even for a single constant channel (i.e.

N = 1). In the following sections we discuss an achievable region, followed by discussion of

transmitting only common messages over a multiple-input, single-output channel.

Achievable Region

An achievable region for the common and independent messages MIMO broadcast channel

can be established using dirty paper coding [8]. Dirty paper coding was shown to achieve

the sum rate capacity of the MIMO broadcast channel (i.e. the maximum of R0 + R1 + R2

in the capacity region) in [5, 69, 73, 82].

By first encoding the common message followed by the independent messages, the fol-

lowing rate triplet is achievable:

R0 = min
j=1,2

log

∣

∣I + Hj(Σ0 + Σ1 + Σ2)Hj
T
∣

∣

∣

∣I + Hj(Σ1 + Σ2)Hj
T
∣

∣

(5.33)

R1 = log

∣

∣I + H1(Σ1 + Σ2)H1
T
∣

∣

∣

∣I + H1Σ2H1
T
∣

∣

(5.34)

R2 = log
∣

∣I + H2Σ2H2
T
∣

∣ (5.35)

for any set of positive semi-definite covariances satisfying Tr(Σ0 + Σ1 + Σ2) ≤ P . Addi-

tionally, the ordering of users 1 and 2 can be switched so that user 1 sees no interference

and user 2 views Σ1 as interference. Notice the similarity between this region and the

dirty paper coding region for the MIMO broadcast channel with only independent messages

given in Chapter 2.2.5. As in the independent information scenario, the rate equations are
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Figure 5.13: Plot of capacity region channel with 10 dB SNR difference
between the two users

not concave functions of the input covariances, and thus finding the boundary region of

this achievable region (even for N = 1) seems to be difficult from a numerical perspective.

Furthermore, no apparent duality seems to hold when common messages are added to the

broadcast channel. An intuitive dual of the broadcast channel with common messages is

the multiple-access channel with correlated sources [12]. However, the common message re-

quirement actually reduces the achievable rates in the broadcast channel, while correlation

actually increases the capacity of the multiple-access channel.

Common Message Capacity

Though the above achievable region appears to be difficult to compute, it is far easier

to calculate the common message capacity (i.e. the maximum common rate) of a MIMO

broadcast channel. Since Gaussian inputs are optimal for MIMO channels, the common

rate capacity of a K-use broadcast channel is given by:

C0 = max
p(x):E[|x|2]≤P

min
i=1,...,K

I(X; Yi) = max
Σ≥0,T r(Σ)≤P

min
i=1,...,K

log
∣

∣I + HiΣHT
i

∣

∣ . (5.36)

The objective function of this maximization is a minimum of concave functions, and thus

is a concave function. Therefore, standard convex optimization techniques can be applied

to perform the maximization.

For the case of multiple-input, single-output channels (i.e. single antennas at each of the

receivers), it can be shown that a rank-one covariance matrix (i.e. beamforming) achieves

the common message capacity when there are two users. Interestingly, beamforming does

not in general achieve the common message capacity for more than two users. Consider a
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system of K unit norm users, each equally spaced around the unit circle. For any ε > 0, we

can find large enough K such that for any choice of a direction vector v, mini=1,...,K |Hiv| <

ε, since any direction is nearly orthogonal to at least one user because users are equally

spaced around the unit circle. The common rate when using covariance Σ = P
M vvT is

equal to mini=1,...,K log(1 + P
M HivvTHT

i ). Thus, using beamforming, the common rate

goes to 0 as K → ∞. However, by using an identity covariance, i.e. Σ = 1
M IM , the mutual

information of each user is log(1+ 1
M ||Hi||2) = log(1+ 1

M ) which is independent of K. Thus,

the common message capacity is not achieved by beamforming for large enough K.

5.3 Summary

In this chapter we analyzed time-varying broadcast channels and derived the optimal adap-

tive transmission policy for two different settings. We first considered a flat-fading broadcast

channel in which we wished to maximize long-term average rates subject to a lower bound

on the instantaneous rate of each user in every fading state. We termed this the minimum

rate capacity, and found that the optimal power allocation scheme can be characterized in

terms of the optimal power policy achieving the ergodic capacity (i.e. long-term average

rates only) of a related effective channel. Furthermore, we were able to exploit the duality

relationship established in Chapter 3 to find the minimum rate capacity region of the fading

multiple-access channel using our characterization of the minimum rate capacity region of

the dual broadcast channel.

In addition to minimum rate capacity, we considered parallel broadcast channels in

which there are both independent and common messages. In the two-user scenario, this

corresponds to independent messages for each of the two users, and a common message

that must be decodable by both users. We found that the addition of common messages

significantly changes the structure of the optimal power allocation policy. Most importantly,

the intuitive water-filling and utility function interpretations that applied to the broadcast

channel with independent messages do not apply when common messages are included. We

also briefly considered MIMO broadcast channels with common information and proposed

an achievable region for such channels based on dirty paper coding. In general, it seems that

the broadcast channel with common and independent messages has been largely ignored and

seems ripe for further research activity.
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5.4 Appendix

5.4.1 Proof of Excess and Effective Power Relationship

In this section we prove the following result:

∑

j<i

P e
π(j) = e

P

j≥i R∗
π(j)

∑

j<i

P̂π(j) (5.37)

for i = 2, . . . , K +1 by induction. First notice that for i = 2, we have P e
π(1) = P̂π(1)e

PK
i=2 R∗

i

by the definition of P e
π(i) in (5.14). Assume (5.37) holds for i. We will show it holds for

i + 1 as well. Using the inductive hypothesis to get the second line, we have:

∑

j≤i

P e
π(j) = P e

π(i) +
∑

j<i

P e
π(j)

= e
P

j>i R∗
π(j)



P̂π(i)(n) −
(

e
R∗

π(i) − 1
)

∑

j<i

P̂π(j)(n)



+ e
P

j≥i R∗
π(j)

∑

j<i

P̂π(j)

= e
P

j>i R∗
π(j)



P̂π(i)(n) −
(

e
R∗

π(i) − 1
)

∑

j<i

P̂π(j)(n) + e
R∗

π(i)

∑

j<i

P̂π(j)





= e
P

j>i R∗
π(j)

∑

j≤i

P̂π(j)

= e
P

j≥i+1 R∗
π(j)

∑

j<i+1

P̂π(j)

Notice that for i = K + 1, this implies
∑K

j=1 P e
π(j) =

∑K
j=1 P̂π(j), or that the sum of

effective powers equals the sum of excess powers.

5.4.2 Proof that Excess to Effective Power Transformation is One-to-One

In this section we show that every set of non-negative effective powers (P e
1 (n), . . . , P e

K(n))

corresponds uniquely to a valid (i.e. powers that meet or exceed all minimum rate con-

straints) set of excess powers (P̂1(n), . . . , P̂K(n)), and vice versa. This property is required

so that the maximization over non-negative effective powers in (5.16) is equivalent to the

original maximization over excess powers in (5.12).

First, by the definition of effective power given in (5.14) it is easy to see that any set of

excess powers (P̂1(n), . . . , P̂K(n)) that meet the constraints of (5.12) map to non-negative

effective powers. Note also that the transformation preserves sum power in each fading

state, and thus preserves average power as well.

To show equivalence in the other direction, first note that the effective power transfor-

mation in (5.14) can be written in matrix form as Pe(n) = AP̂(n) where A is a K × K

matrix with A(i, i) = e
P

j>i R∗
π(j) > 0 and A(i, j) = −e

P

j>i R∗
π(j)(e

R∗
π(i) − 1) ≤ 0 for all
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j < i. Thus A is lower-triangular with strictly positive diagonal entries (which ensures

invertibility) and negative entries below the diagonal. It is straightforward to show that

the inverse of such a matrix is lower-triangular with all non-negative entries. Thus, by

using A−1, we can map uniquely from non-negative effective powers to non-negative excess

powers. Furthermore, since the powers satisfy (5.14) by definition, for all i and n we have

P̂π(i)(n) − (e
R∗

π(i) − 1)
∑

j<i

P̂π(j)(n) =
P e

π(i)(n)

e
P

j>i R∗
π(j)

≥ 0

since Pe(n) ≥ 0 by assumption. Also, as noted earlier, the sum of the effective powers

equals the sum of the excess powers in each fading state. Thus, the excess powers corre-

sponding to any non-negative set of effective powers satisfy all constraints in the original

rate maximization in (5.12).

5.4.3 Proof that Noise to Effective Noise Transformation is One-to-One

Here we show that the transformation from noise state n to effective noise state ne is a

one-to-one transformation by showing that the map from n to ne is an invertible linear

transformation from <K to <K . The effective noise is defined in (5.13) as:

ne
π(i) ,



nπ(i) +
∑

j≤i

P ∗
π(j)(n)



 e
P

j>i R∗
π(j)

One can inductively show that

∑

j≤i

P ∗
π(j)(n) =

i
∑

k=1

nπ(k)(e
R∗

π(k) − 1)e
Pi

l=k+1 R∗
π(l) . (5.38)

Substituting this expression into the definition of effective noise, we get:

ne
π(i) = nπ(i)e

P

j≥i R∗
π(j) +

i−1
∑

k=1

nπ(k)(e
R∗

π(k) − 1)e
P

j>k R∗
π(j) . (5.39)

In matrix terms, we can write the effective noise as ne = Bn where B is a lower-triangular

K×K matrix defined by the coefficients given in (5.39). Notice that B(i, i) = e
P

j≥i R∗
π(j) >

0, which implies that the matrix B is invertible and thus the transformation is one-to-one.

5.4.4 Proof of Effective Noise Ordering Equivalence

In this section we prove that the effective noise terms ne
1, . . . , n

e
K have the same ordering as

the original noises n1, . . . , nK . Since nπ(1) ≤ nπ(2) ≤ · · · ≤ nπ(K) by the definition of π(·),
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we wish to show that ne
π(1) ≤ ne

π(2) ≤ · · · ≤ ne
π(K), or that ne

π(i) ≤ ne
π(i+1). We can expand

ne
π(i+1) as

ne
π(i+1) =





∑

j≤i+1

P ∗
π(j) + nπ(i+1)



 e
P

j>i+1 R∗
π(j)

=





∑

j≤i

P ∗
π(j) + nπ(i+1) + P ∗

π(i+1)



 e
P

j>i+1 R∗
π(j)

=





∑

j≤i

P ∗
π(j) + nπ(i+1)



 e
R∗

π(i+1)e
P

j>i+1 R∗
π(j)

=





∑

j≤i

P ∗
π(j) + nπ(i+1)



 e
P

j>i R∗
π(j)

= ne
π(i) +

(

nπ(i+1) − nπ(i)

)

e
P

j>i R∗
π(j) .

Since nπ(i+1) ≥ nπ(i) by our choice of π(·), we have ne
π(i+1) ≥ ne

π(i).

5.4.5 Proof of Theorem 5.1

In this section we prove that the capacity region of N parallel Gaussian broadcast channels

is given by the expression in Theorem 5.1. First note that the capacity region of N parallel

Gaussian broadcast channels is equal to all rate triples (R0, R1, R2) that satisfy the following
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set of inequalities:

R0 ≤
N
∑

i=1

C

(

αiP (i)

N1(i) + αiP (i)

)

(5.40)

R0 ≤
N
∑

i=1

C

(

αiP (i)

N2(i) + αiP (i)

)

(5.41)

R0 + R1 ≤
∑

i∈A

C

(

P (i)

N1(i)

)

+
∑

i∈B

C

(

αiP (i)

N1(i) + αiP (i)

)

(5.42)

R0 + R2 ≤
∑

i∈B

C

(

P (i)

N2(i)

)

+
∑

i∈A

C

(

αiP (i)

N2(i) + αiP (i)

)

(5.43)

R0 + R1 + R2 ≤
∑

i∈A

C

(

P (i)

N1(i)

)

+
∑

i∈B

(

C

(

αiP (i)

N1(i) + αiP (i)

)

+C

(

αiP (i)

N2(i)

))

(5.44)

R0 + R1 + R2 ≤
∑

i∈B

C

(

P (i)

N2(i)

)

+
∑

i∈A

(

C

(

αiP (i)

N2(i) + αiP (i)

)

+C

(

αiP (i)

N1(i)

))

(5.45)

for some choice of αi ∈ [0, 1] and P (i) ≥ 0 such that
∑N

i=1 P (i) = P .

Note that this is a generalization of Theorem 2 in [18] to N > 2 parallel channels.

Achievability follows from the argument in [18]. The converse mirrors the converse for the

N = 2 case given in [18] except for the addition of one extra step when using the entropy

power inequality (EPI). Without loss of generality, assume N1(i) ≤ N2(i) for 1 ≤ i ≤ L < N ,

and N2(i) < N1(i) for L+1 ≤ i ≤ N . Note that we use Y = Y1, . . . , YN and Z = Z1, . . . , ZN .

Furthermore, we let A = {1, . . . , L} and B = {L + 1, . . . , N}, and thus YA = Y1, . . . , YL,

YB = YL+1, . . . , YN , ZA = Z1, . . . , ZL, and ZB = ZL+1, . . . , ZN . Furthermore, all quantities

of the form Yi or Zi are in fact n-vectors, where n is the block-length. With this notation, the

converse is nearly identical to the converse in [18] if YA, YB, ZA, ZB, XA, XB are substituted

for Y1, Y2, Z1, Z2, X1, X2. The only difference is in the use of the EPI going from (5.53) to

(5.58).

First, by Fano’s inequality we have:

H(W0, W1|Y ) ≤ Pen(R0 + R1) + 1 , nε1n (5.46)

H(W0, W2|Z) ≤ Pen(R0 + R2) + 1 , nε2n. (5.47)

155



Then

nR0 = H(W0) = I(W0; Y ) + H(W0|Y ) ≤ I(W0; Y ) + nε1n

= I(W0; YB) + I(W0; YA|YB) + nε1n

≤ I(W0, W1, ZA; YB) + H(YA|YB) − H(YA|YB, W0) + nε1n

≤ I(W0, W1, ZA; YB) + H(YA) − H(YA|YB, W0, W2) + nε1n

= I(W0, W1, ZA; YB) + I(W0, W2, YB; YA) + nε1n

= H(YB) − H(YB|W0, W1, ZA) + H(YA)H(YA|W0, W2, YB) + nε1n (5.48)

Due to the entropy-maximizing property of Gaussian random variables, we have

H(YA) ≤
∑

i∈A

H(Yi) ≤
n

2

∑

i∈A

log 2πe(N1(i) + P (i)) (5.49)

H(YB) ≤
∑

i∈B

H(Yi) ≤
n

2

∑

i∈B

log 2πe(N1(i) + P (i)) (5.50)

H(ZA) ≤
∑

i∈A

H(Zi) ≤
n

2

∑

i∈A

log 2πe(N2(i) + P (i)) (5.51)

H(ZB) ≤
∑

i∈B

H(Zi) ≤
n

2

∑

i∈B

log 2πe(N2(i) + P (i)) (5.52)

where
∑N

i=1 P (i) ≤ P due to the power constraint.

Now, it is easy to see that there exist α1, . . . , αN ∈ [0, 1] such that:

exp((2/n)H(Zj|W0, W1, ZA, ZL+1, . . . , Zj−1)) = 2πe(N2(j) + αjPj) (5.53)

for j = L + 1, . . . , N , and

exp((2/n)H(Yi|W0, W2, YB, Y1, . . . , Yi−1)) = 2πe(N1(i) + αiP (i)) (5.54)

for i = 1, . . . , N . Notice the extra conditioning on (ZL+1, . . . , Zj−1) and on (Y1, . . . , Yi−1)

is not present in Equations 44-45 of [18].
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We now have

H(ZB|W0, W1, ZA) =
N
∑

j=L+1

H(Zj |W0, W1, ZA, ZL+1, . . . , Zj−1)

=
n

2

N
∑

j=L+1

log 2πe(N2(j) + αjPj) (5.55)

H(YA|W0, W2, YB) =
L
∑

i=1

H(Yi|W0, W2, YB, Y1, . . . , Yi−1)

=
n

2

L
∑

i=1

log 2πe(N1(i) + αiP (i)) (5.56)

Using the conditional form of the entropy power inequality, we get:

exp((2/n)H(Yj|W0, W1, ZA, ZL+1, . . . , Zj−1)) ≥ exp((2/n) ·
H(Zj |W0, W1, ZA, ZL+1, . . . , Zj−1))

+2πe(N1(j) − N2(j))

= 2πe(αjPj + N1(j))

exp((2/n)H(Zi|W0, W2, YB, Y1, . . . , Yi−1)) ≥ exp((2/n) ·
H(Yi|W0, W2, YB, Y1, . . . , Yi−1))

+2πe(N2(i) − N1(i))

= 2πe(αiP (i) + N2(i))

for i = 1, . . . , L and j = L + 1, . . . , N . Therefore we get

H(YB|W0, W1, ZA) =

N
∑

j=L+1

H(Yj|W0, W1, ZA, YL+1, . . . , Yj−1)

≥
N
∑

j=L+1

H(Yj|W0, W1, ZA, ZL+1, . . . , Zj−1)

≥ n

2

N
∑

j=L+1

log 2πe(αjPj + N1(j)) (5.57)

where we used the degradedness of the channel from Z3 to Y3 in the second line. Similarly
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we get

H(ZA|W0, W2, YB) =
L
∑

i=1

H(Zi|W0, W2, YB, Z1, . . . , Zi−1)

≥
L
∑

i=1

H(Zi|W0, W2, YB, Y1, . . . , Yi−1)

≥ n

2

L
∑

i=1

log 2πe(αiP (i) + N2(i)) (5.58)

Plugging (5.49), (5.50), (5.56), and (5.57) into (5.48) we get

nR0 ≤ n

2

∑

i∈A

log 2πe(N1(i) + P (i)) − n

2

L
∑

i=1

log 2πe(N1(i) + αiP (i))

+
n

2

∑

i∈B

log 2πe(N1(i) + P (i)) − n

2

N
∑

j=L+1

log 2πe(αjPj + N1(j)) + nε1n

= n

N
∑

i=1

C

(

αiP (i)

N1(i) + αiP (i)

)

+ nε1n (5.59)

where we let C(x) = 1
2 log(1 + x). Similarly, we can get

nR0 ≤ n
N
∑

i=1

C

(

αiP (i)

N2(i) + αiP (i)

)

+ nε2n (5.60)

Furthermore, using Fano’s again we have

n(R0 + R1) ≤ I(W0, W1; Y ) + nε1n

= I(W0, W1; YB) + I(W0, W1; YA|YB) + nε1n

= I(W0, W1; YB) + H(YA|YB) − H(YA|W0, W1, YB) + nε1n

≤ I(W0, W1; YB) + H(YA) − H(YA|XA) + nε1n

≤ I(W0, W1, ZA; YB) + I(XA; YA) + nε1n (5.61)

where we used H(YA|XA) ≤ H(YA|W0, W1, YB) (due to the memoryless nature of the chan-

nel) in the fourth line.

From earlier inequalities we have

I(W0, W1, ZA; YB) ≤ n

2

∑

i∈B

log 2πe(N1(i) + P (i)) − n

2

∑

i∈B

log 2πe(αiP (i) + N1(i))

=
∑

i∈B

nC

(

αiP (i)

N1(i) + αiP (i)

)

(5.62)
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We also have

I(XA; YA) = H(YA) − H(YA|XA)

= H(YA) − n

2

L
∑

i=1

log 2πeN1(i)

≤ n

2

∑

i∈A

log 2πe(N1(i) + P (i)) − n

2

∑

i∈A

log 2πeN1(i)

=
∑

i∈A

nC

(

P (i)

N1(i)

)

. (5.63)

Thus, R0 + R1 must satisfy:

R0 + R1 ≤
∑

i∈A

C

(

P (i)

N1(i)

)

+
∑

i∈B

C

(

αiP (i)

N1(i) + αiP (i)

)

+ ε1n (5.64)

Similarly, we can show R0 + R2 must satisfy:

R0 + R2 ≤
∑

i∈B

C

(

P (i)

N2(i)

)

+
∑

i∈A

C

(

αiP (i)

N2(i) + αiP (i)

)

+ ε2n (5.65)

From Equation (30) of [18] we have

n(R0 + R1 + R2) ≤ I(W0, W1, ZA; YB) + I(XA; YA)

+I(W2; ZB|W0, W1, ZA) + nε1n + nε2n. (5.66)

Notice that

I(W2; ZB |W0, W1, ZA) = H(ZB|W0, W1, Z1, Z2) − H(ZB|W0, W1, W2, ZA)

≤ H(ZB|W0, W1, ZA) − H(ZB|XB)

=
n

2

N
∑

j=L+1

log 2πe(N2(j) + αjPj) −
n

2

N
∑

j=L+1

log 2πeN2(j)

=
∑

i∈B

nC

(

αiP (i)

N2(i)

)

(5.67)

where we used H(ZB|W0, W1, W2, ZA) ≥ H(ZB|XB) (due to the memoryless nature of the

channel) to get the second line. Plugging in the expressions in (5.62), (5.63), and (5.67)

into the upper bound in (5.66) we get

R0 + R1 + R2 ≤
∑

i∈A

C

(

P (i)

N1(i)

)

+
∑

i∈B

C

(

αiP (i)

N1(i) + αiP (i)

)

+
∑

i∈B

C

(

αiP (i)

N2(i)

)

.

159



Equation (31) of [18] similarly gives us

n(R0 + R1 + R2) ≤ I(W0, W2, YB; ZA) + I(XB; ZB)

+I(W1; YA|W0, W2, YB) + nε1n + nε2n. (5.68)

which yields

R0 + R1 + R2 ≤
∑

i∈B

C

(

P (i)

N2(i)

)

+
∑

i∈A

C

(

αiP (i)

N2(i) + αiP (i)

)

+
∑

i∈A

C

(

αiP (i)

N1(i)

)

.

This completes the proof of the converse of the region specified by the inequalities in (5.40)

- (5.45).

Now it is only left to show that the capacity region specified by the six inequalities is

equivalent to the region given in Theorem 5.1, which we refer to as Region B. Since it is

easy to show that any rate triplet in Region B is achievable, we only need to show that any

rate triplet in the capacity region (i.e. any rate triplet satisfying (5.40) - (5.45)) is also in

Region B.

For fixed values of αi and P (i), the inequalities in (5.40) - (5.45)) define a polyhedron.

Due to the convexity of Region B, it is sufficient to show that the corner points of the

polyhedron are in Region B. Let C0a, C0b, C01, C02, C012a, C012b denote the six inequalities,

respectively. Furthermore, let C0 = min(C0a, C0b) and C012 = min(C012a, C012b). It is easy

to see that C0a ≤ C01 ≤ C012a, C0b ≤ C02 ≤ C012b, C01+C02 ≤ C012a, and C01+C02 ≤ C012b.

We consider two cases, C012a = C012b and C012a 6= C012b. Let us first assume C012a =

C012b. Notice that

C012a =
∑

i∈A

C

(

P (i)

N1(i)

)

+
∑

i∈B

(

C

(

αiP (i)

N1(i) + αiP (i)

)

+ C

(

αiP (i)

N2(i)

))

=
∑

i∈A

(

C

(

αiP (i)

N1(i)

)

+ C

(

αiP (i)

N1(i) + αiP (i)

))

+
∑

i∈B

(

C

(

αiP (i)

N1(i) + αiP (i)

)

+ C

(

αiP (i)

N2(i)

))

= C0a +
∑

i∈A

C

(

αiP (i)

N1(i)

)

+ +
∑

i∈B

C

(

αiP (i)

N2(i)

)

Similarly, C012b = C0b +
∑

i∈A C
(

αiP (i)
N1(i)

)

+
∑

i∈B C
(

αiP (i)
N2(i)

)

, which implies C0a = C0b.

The corner points of the polyhedron lie in either the R0 = 0 plane or the R0 = C0 plane.

Since C01 +C02 ≥ C012a = C012b and C01 ≤ C012a and C02 ≤ C012a, the polyhedron has four

corner points along the R0 = 0 plane: (R1 = C01, R2 = 0), (R1 = C01, R2 = C012 − C01),

(R1 = C012 − C02, R2 = C02), and (R1 = 0, R2 = C02). Clearly we need only consider the
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middle two of these four points. First consider (R1 = C01, R2 = C012 − C01). We have

R1 = C01 =
∑

i∈A

C

(

P (i)

N1(i)

)

+
∑

i∈B

C

(

αiP (i)

N1(i) + αiP (i)

)

R2 = C012 − C01 = C012a − C01

=
∑

i∈B

C

(

αiP (i)

N2(i)

)

Let P1(i) = P (i) and P2(i) = 0 for i ∈ A, and P1(i) = αiP (i) and P2(i) = αiP (i) for i ∈ B.

Plugging into (5.27) and (5.28), we can see that (R0 = 0, R1 = C01, R2 = C012a −C01) is in

Region B. Similarly, we can show that (R0 = 0, R1 = C012b − C02, R2 = C02) is in Region

B. Thus, the four corner points along the R0 = 0 plane are contained in Region B.

It is easy to show that there are only three corner points along the R0 = C0 plane (i.e.

the face is a rectangle instead of a pentagon), which are (R0 = C0, R1 = C01 −C0, R2 = 0),

(R0 = C0, R1 = C01 − C0 = C012 − C02, R2 = C012 − C01 = C02 − C0), and (R0 = C0, R1 =

0, R2 = C02 − C0). Clearly, we need only consider the middle of these three points, i.e.

(R0 = C0, R1 = C01 − C0, R2 = C012 − C01). Note that the rate triplet

R0 = C0 =
N
∑

i=1

C

(

αiP (i)

N1(i) + αiP (i)

)

=
N
∑

i=1

C

(

αiP (i)

N2(i) + αiP (i)

)

R1 = C01 − C0 = C01 − C0a =
∑

i∈A

C

(

αiP (i)

N1(i)

)

R2 = C012 − C01 = C012a − C01 =
∑

i∈B

C

(

αiP (i)

N2(i)

)

is achievable if we choose P0(i) = αiP (i) for all i, P1(i) = αiP (i) for i ∈ A and P1(i) = 0 for

i ∈ B, and P2(i) = αiP (i) for i ∈ B and P2(i) = 0 for i ∈ A. Thus, we have shown that the

polyhedron defined by the six inequalities is contained in Region B whenever C012a = C012b.

Now let us consider the other case, i.e. C012a 6= C012b. Without loss of generality,

assume C012a > C012b. Notice that C012a is a decreasing function of αi for i ∈ B because

N1(i) ≥ N2(i) for i ∈ B. However, C0a, C0b, and C01 are increasing functions of αi for

i ∈ B and C02 and C012b are not affected by αi for i ∈ B. Thus, we can increase αi for

i ∈ B until we have C012a = C012b. Since the five inequalities other than C012a increased,

this corresponds to a larger region of rates. Furthermore, we previously showed that the

corner points of the polyhedron are contained in Region B whenever C012a = C012b, which

implies that the original polyhedron, corresponding to the original values of αi, is also in

Region B.

Notice, however, that there is the possibility that C012a > C012b even if αi = 1 for all

i ∈ B. Again, this clearly corresponds to a larger polyhedron than with the original choice

of αi, but we must explicitly show the corner points are contained in Region B. With αi = 1
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for all i ∈ B, we have

C012a =
∑

i∈A

C

(

P (i)

N1(i)

)

+
∑

i∈B

(

C

(

αiP (i)

N1(i) + αiP (i)

)

+ C

(

αiP (i)

N2(i)

))

=
∑

i∈A

C

(

P (i)

N1(i)

)

+
∑

i∈B

C

(

P (i)

N1(i)

)

= C01.

Thus C012a = C01 > C012b ≥ C02. Furthermore, from the expansion of C012a in (5.69) it

is easy to see that C012a > C012b implies C0a > C0b. Also notice that C02 = C0b. Thus,

the following three inequalities define the polyhedron: R0 ≤ C0b, R0 + R2 ≤ C0b, and

R0 + R1 + R2 ≤ C012b. Along the R0 = 0 face, there are three corner points: (R1 =

C012b, R2 = R0 = 0), (R1 = C012b − C0b, R2 = C0b), and (R0 = R1 = 0, R2 = C0b). Since

R1 = C012a > C012b is clearly achievable by letting P1(i) = P (i), the first point is achievable.

Since C0b =
∑

i∈A C
(

αiP (i)
N2(i)+αiP (i)

)

+
∑

i∈B C
(

P (i)
N2(i)

)

and C012b − C0b =
∑

i∈A C
(

αiP (i)
N1(i)

)

,

the second point is achievable by choosing P1(i) = αiP (i) and P2(i) = αiP (i). This in turn

implies that the third point is achievable.

Now consider the R0 = C0 = C0b plane. Since R0+R2 ≤ C0b, this implies R2 = 0. Thus,

we need only consider R0 = C0b and R1 = C012b − C0b =
∑

i∈A C
(

αiP (i)
N1(i)

)

. By choosing

P0(i) = αiP (i) and P1(i) = αiP (i), this rate is achievable. Thus, the entire polyhedron is

contained in Region B. Thus, the capacity region is contained in Region B. Since Region B

is also achievable, this completes the proof of Theorem 5.1.
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Chapter 6

Capacity of Cooperative Ad-Hoc

Networks

Sensor networks and ad-hoc networks are receiving more and more attention from the

research community. In such networks, it is easy to envision a group of nodes that wish

to communicate data to another distant group of nodes. For example, a group of nodes

may sense a phenomenon and then wish to communicate their measurements to surrounding

sensors. Thus, it is feasible to consider a closely packed group of nodes that wish to transmit

information to another group of nodes.

In this chapter, we consider a scenario where there are two independent transmitting

nodes, and two independent receivers. Each transmitter wants to send a message to a

different receiver. In information theory, this channel is classified as an interference chan-

nel [13, Ch. 14], and is one of the most fundamental open problems in multi-user information

theory. We attack this problem from a different perspective and ask the following question:

How much does allowing cooperation between the transmitters and/or cooperation between

the receivers increase the set of achievable data rates? However, we do not allow this cooper-

ation to occur for free and instead explicitly constrict cooperation to consist of transmitting

messages between the two transmitters and/or transmitting messages between the two re-

ceivers. To capture the cost of cooperation, we place a sum power constraint on the total

power transmitted in the system by all nodes.

The notion of cooperative communication has been considered in several recent works.

Sendonaris et. al. [57] considered the rates achievable in a channel with two cooperative

transmitters and a single receiver. Yazdi et. al. [80] is a more recent work on the same

channel model. A channel with two cooperative transmitters (using low-complexity schemes

such as amplify-and-forward) and two non-cooperative receivers was considered in terms of

outage and diversity for fading channels without transmitter channel state information

in [40]. Recent work by Host-Madsen [24] analyzed the same channel without fading, but

with more complicated transmitter cooperation schemes involving dirty paper coding. The
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cooperative nature of these channels makes them closely related to the classical relay channel

[11].

In this chapter we consider the two transmitter, two receiver case from the capacity

region perspective for the case of no fading, or slow fading with perfect channel state

information at all transmitters and receivers. We are concerned solely with achievable rates,

as opposed to outage and diversity as many of the works in this area have considered. For

transmitter cooperation we use dirty paper coding, which we earlier showed (Chapter 4.2)

achieves the sum capacity of the multiple-antenna broadcast channel. Our work differs from

previous research in this area in that 1) we consider cooperation schemes that asymptotically

(i.e. as the distance between nodes in a cluster decreases to zero) achieve the information

theoretic upper bounds, yet are simple enough to facilitate numerical computation of the

achievable rates and therefore give general insight about the underlying problem, and 2) we

consider receiver cooperation in addition to transmitter cooperation, which, to the best of

our knowledge, no previous work has considered in this setting.

For simplicity and to gain intuition, we consider the scenario where the channel between

the two transmitters, the channel between the transmitters and the receivers, and the chan-

nel between the two receivers are orthogonal (i.e. on separate frequency bands or time

slots). We are most interested in the scenario where the distance between the two transmit-

ters and the distance between the two receivers are small relative to the distance between

each transmitter-receiver pair. This allows high-rate communication between the two trans-

mitters or between the two receivers using small amounts of power. We consider the rates

achievable without cooperation versus rates achievable with transmitter-only cooperation,

receiver-only cooperation, and transmitter and receiver cooperation. We compare these

achievable rates to three different information theoretic upper bounds: 1) perfect trans-

mitter cooperation (multiple-antenna broadcast channel [5, 69, 73, 82]), 2) perfect receiver

cooperation (multiple-antenna multiple-access channel [61]), and 3) perfect receiver coop-

eration and perfect transmitter cooperation (multiple-antenna point-to-point channel [61]).

The remainder of this chapter is organized as follows: In Chapter 6.1 we describe the

system model. In Chapters 6.4 - 6.6 we describe different cooperation schemes. In Chapter

6.7 we describe upper bounds to the rates achievable using cooperation. Finally, in Chapter

6.8 we give some numerical results. Material in this chapter also appears in [34].

6.1 System Model

Consider a system with two transmitters and two receivers as shown in Fig. 6.1. We assume

that the distance between each of the four transmitter-receiver pairs is the same, which is

roughly true if the distance between the transmitter and receiver clusters is large. Thus, we

assume that the channel gains between every transmitter and receiver has norm one. Thus,

the channels between each transmitter-receiver pair are the same, except for random phases,
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Figure 6.1: System Model

denoted by θi, which are assumed to be uniformly distributed in [0, 2π]. This simplifying

assumption is largely made to aid intuition, but can easily be removed so that more general

fading processes can be studied as well.

There are three orthogonal communication channels: the channel between the transmit-

ters and receivers, the channel between the two transmitters, and the channel between the

two receivers. We first describe the channel connecting the transmitters and receivers. We

let x1 and x2 denote the two transmit signals, and y1 and y2 denote the two corresponding

received signals. Transmitter 1 wishes to communicate to receiver 1, and transmitter 2

wishes to communicate to receiver 2. In matrix form, the channel can be written as:

[

y1

y2

]

= H

[

x1

x2

]

+

[

n1

n2

]

(6.1)

where n1 and n2 are independent N(0, 1) noises. As shown in Fig. 6.1, the channel gains

Hi,j are only phases: H1,1 = ejθ1 , H1,2 = ejθ2, H2,1 = ejθ3 , and H2,2 = ejθ4.

There is also an AWGN channel between the two transmitters, with channel gain equal

to
√

G. If there is only distance based path-loss with 1/d2 attenuation, this corresponds

to the scenario when the distance between the two clusters is
√

G times larger than the

distance between nodes in a cluster. For simplicity, we assume that the two transmitters

can simultaneously transmit and receive on this channel. We let x′
1 denote the signal that

transmitter 1 sends to transmitter 2, and we let y′2 denote the corresponding received signal

at transmitter 1. The channels are then defined by y′1 =
√

Gx′
2 + n3 and y′2 =

√
Gx′

1 + n4,

where n3 and n4 are independent unit-variance Gaussian noises. There is an analogous

AWGN channel between the two receivers, also with channel gain equal to
√

G. If we let

x′′
1 denote the signal that receiver 1 transmits to receiver 2 on this channel, and we let

y′′2 denote the corresponding received signal at receiver 2, then this channel is defined by

y′′1 =
√

Gx′′
2 + n5 and y′′2 =

√
Gx′′

1 + n6, where n5 and n6 are independent unit-variance

Gaussian noises. Here x′′
1 and x′′

2 are constrained to be functions of the previously received
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signals y1 and y2, respectively.

We assume that transmitter 1 has a message intended for receiver 1, and transmitter 2

has a message intended for receiver 2. We impose a total system power constraint of P on

the total transmit energy, i.e. we require

E[x2
1 + x2

2 + x′2
1 + x′2

2 + x′′2
1 + x′′2

2 ] ≤ P.

This power constraint is intended to capture the system-wide cost of transmitter and receiver

cooperation.

Finally, we must specify the bandwidth of each of the transmitter cooperation channel,

the receiver cooperation channel, and the direct communication channel. We denote the

bandwidths of these three channel as B1, B2, and B3, respectively. We deal with two dif-

ferent models, referred to as bandwidth assumption 1 and 2. Under bandwidth assumption

1, we assume that orthogonal channels have been previously set aside for the three links,

and we assume each of the three channels has a bandwidth of 1 Hz (B1 = B2 = B3 = 1).

Furthermore, the upper bounds are calculated with respect to the 1 Hz direct communica-

tion band, i.e. ignoring the cooperation bands. Under bandwidth assumption 2, we assume

there is a single 1 Hz channel which must be divided into three different bands. Thus we

have the further degree of freedom of choosing B1, B2, and B3 such that B1 +B2 +B3 = 1.

Furthermore, the upper bounds are calculated with respect to the entire 1 Hz band. For

this reason, we clearly expect to see larger cooperation gains under bandwidth assumption

1.

Though we work with the simplifying assumptions of equal amplitude channel gains,

results generalize to the case of arbitrary channel gains.

6.2 Broadcast and Multiple-Access Channel Background

Throughout this chapter we discuss the broadcast and multiple-access channels implicitly

contained in the two transmitter/two receiver channel. If the receivers are assumed to

cooperate perfectly, the channel becomes a multiple-access channel (MAC) with two single-

antenna transmitters and a two-antenna receiver. The channels of the transmitters are given

by the columns of the matrix H. In terms of Fig. 6.1, this corresponds to communicating

from the left cluster to the right cluster, with perfectly cooperative nodes in the right cluster

(RX cluster). If the transmitters are assumed to cooperate perfectly, the channel becomes

a broadcast channel with two single-antenna receivers and a two-antenna transmitter. The

channels of the two receivers are equal to the rows of the matrix H. In terms of Fig. 6.1,

this corresponds to communicating from the left cluster to the right cluster, with perfectly

cooperative nodes in the left cluster (TX cluster).
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In Chapter 3 we showed that the broadcast channel is closely related to the dual multiple-

access channel, which is the MAC where the two nodes in the receiving cluster are the single-

antenna independent transmitters and the cooperative nodes in the transmitter cluster are

the two-antenna receiver. In terms of Fig. 6.1, this corresponds to communicating from

the right cluster to the left cluster (opposite the normal direction of communication), with

perfectly cooperative nodes in the left cluster. The channels of the two transmitters are

the transposes of the channels of the two receivers in the broadcast channel. Thus, the

transmitter channels correspond to the transpose of the rows of H. It is important to note

that the MAC corresponding to perfect receiver cooperation is different from the dual MAC.

However, in Chapter 6.5 we show that the capacity regions of these multiple-access channels

are the same.

6.3 Non-Cooperative Transmission

Without cooperation on either the transmitter or receiver side, the channel is a Gaussian

interference channel, for which the capacity region is in general not known. However, the

channel we consider is a “strong” interference channel1, for which the capacity region is

known [56]. The strong interference condition implies that each receiver can decode the

transmitted messages of both transmitters. Thus, the capacity region is upper bounded

by each receiver’s multiple-access channel, and this bound is in fact tight. If transmitter

1 uses power P1 and transmitter 2 uses power P2 = P − P1, the multiple-access region is

given by the pentagon described by R1 ≤ log(1 + P1), R2 ≤ log(1 + P2), and R1 + R2 ≤
log(1 + P ). Since there is a sum power constraint on the transmitters instead of individual

power constraints, the non-cooperative capacity region is equal to the set of rates satisfying

R1 +R2 ≤ log(1+P ). It is easy to see that this set of rates is also achievable using TDMA.

We will thus refer to the TDMA rate as a non-cooperative benchmark to compare our

cooperative schemes against.

6.4 Transmitter Cooperation

In this section, we describe a transmitter cooperation scheme. If the transmitters were

allowed to jointly encode their messages, the channel would be a multiple-antenna broadcast

channel. For such a channel, the sum capacity can be achieved by using dirty paper coding.

Motivated by this, we consider a strategy where the two transmitters first exchange their

intended messages (or codewords, since each transmitter is assumed to know the other

transmitter’s codebook) using some fraction of the total power P , and then jointly encode

1A strong interference channel refers to the situation where the channel gain of the interference is as large
as the channel gain of the desired signal.
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both messages using dirty paper coding (i.e. encode as if they were a joint transmitter)

with the remaining power. Causality is not a problem for any of our cooperative schemes

since we consider orthogonal channels for cooperation and we can offset communication by

one block initially.

Assume power Pt
2 is used by each transmitter to send his intended message to the

other transmitter. Then the intra-transmitter rate is equal to Rt = B1 log(1 + Pt
2 G). The

remaining power P −Pt is used to jointly encode using dirty-paper coding. We require that

Rt is high enough to ensure that each transmitter fully knows the intended codeword of

the other transmitter (i.e. Rt must be as large as the rate of the message of each user).

Since each transmitter knows both messages after this exchange, each user can then perform

standard dirty paper coding as if the two antennas were actually cooperative, but then only

send the information on one of the two antennas. The sum rate achievable using joint dirty

paper coding is equal to the sum-rate capacity of the dual multiple-access channel with

power P −Pt. Since each element of the channel matrix H has amplitude one, this is equal

to:

RDPC = B2 log

∣

∣

∣

∣

I +
P − Pt

2

(

HT
1 H1 + HT

2 H2

)

∣

∣

∣

∣

(6.2)

where Hi = [Hi,1 Hi,2] is the row vector representing the received channel of Receiver i.

For a given Pt, the achievable sum rate is min(2Rt, RDPC). Thus, the optimal transmission

rate while using transmission cooperation is given by:

RTX = max
0≤Pt≤P,B1,B2

min(2Rt, RDPC), (6.3)

where B1 = B2 = 1 under BW assumption 1 and B1 + B2 ≤ 1 under BW assumption

2. Since Rt is an increasing function of Pt and RDPC is a decreasing function of Pt, the

optimum is achieved at the Pt for which Rt = 1
2RDPC .

6.5 Receiver Cooperation

In this section, we describe a method that allows the receivers to cooperate. Since the

channels of each of the signals are equivalent except for the phase differences, the amount

of information decodable at each of the receivers is roughly the same. Thus, there is no

advantage gained if a receiver attempts to first decode the message intended for the other

receiver and then pass it on to the other receiver. With perfect receiver cooperation, receiver

1 would get to see the received signal y2 in addition to its own signal y1. Thus, a logical

method for cooperation is for each receiver to amplify-and-forward their received signal to

the other receiver, which always results in some noise amplification.

Each receiver uses the fraction of power Pr
2 to amplify-and-forward its received signal

to the other receiver. Since the transmitters do not cooperate in this mode, the signals x1
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and x2 are independent and are chosen to be N(0, P−Pr
2 ). The expected received power at

y1 is given by E[y2
1] = E[x2

1] + E[x2
2] + E[n2

1] = P − Pr + 1. Thus, receiver 1 transmits

√

Pr/2

P − Pr + 1
y1 =

√

Pr/2

P − Pr + 1
(H1,1x1 + H2,1x2 + n1)

The corresponding received signal at receiver 2 is given by
√

G Pr/2
P−Pt+1(h1,1x1 + h2,1x2 +

n1) + n, where n ∼ N(0, 1). The aggregate signal at receiver 1 is then given by:

ỹ1 =

[

H1

αH2

]

x +

[

n1

n2

]

(6.4)

= F1x1 + F2x2 +

[

n1

n2

]

(6.5)

where α =

q

G
Pr/2

P−Pr+1

1+
q

G
Pr/2

P−Pr+1

, F1 =

[

ejθ1

αejθ3

]

, and F2 =

[

ejθ2

αejθ4

]

. Notice that ỹ1 differs

from the pair (y1, y2) only due to the α factor, which is caused by noise amplification. By

symmetry, the sum rate decodable at each receiver (using aggregate signals ỹ1 and ỹ2) are

the same. The sum rate decodable at receiver 1 is given by:

Rcoop = B2 log

∣

∣

∣

∣

I +
P − Pr

2

(

F1F
T
1 + F2F

T
2

)

∣

∣

∣

∣

(6.6)

Since α is a function of Pr, this expression must be maximized over Pr to find the largest

achievable rate. Thus the maximum data rate while using receiver cooperation is given by:

RRX = max
0≤Pr≤P

B2 log

∣

∣

∣

∣

I +
P − Pr

2

(

F1F
T
1 + F2F

T
2

)

∣

∣

∣

∣

. (6.7)

It is important to note that the amplify-and-forward technique requires the same amount

of bandwidth on the receiver cooperation link as on the direct communication link. Thus,

we must have B2 = B3 = 1
2 under BW assumption 2, while B2 = B3 = 1 as always under

BW assumption 1. Furthermore, notice that F1 and F2 are functions of Pr through the

parameter α. When the power gain G is very large (i.e. when the receivers are very close

to each other), we get α ≈ 1 and we expect to come close to the MAC (fully cooperative

receivers) upper bound.

6.6 Transmitter Cooperation & Receiver Cooperation

In this section we describe a scheme in which the two transmitters cooperate by exchanging

their intended messages and then cooperatively signal using dirty paper coding, and the
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two receivers cooperate by amplifying-and-forwarding. We let Pt denote the power used to

exchange messages between the transmitter. The corresponding rate is Rt = B1 log(1+ Pt
2 ).

We again require that each transmitter completely knows the intended message of the other

transmitter. Once the transmitters exchange messages, we encode using dirty paper coding,

similar to the transmitter cooperation scheme. However, in this case, each user has two

receive antennas, where the second antenna is the signal received via the amplify-and-

forward channel from the other receiver. Power Pr is used to perform amplify-and-forward

between the two receivers. This leaves power P − Pt − Pr to jointly transmit data using

dirty paper coding.

Because cooperative dirty paper encoding is performed at the two transmitters, x1 and

x2 are correlated with covariance matrix Σx. The expected received power at y1 is then equal

to 1 + H2ΣxH
T
2 . As in the case with only amplify-and-forward, the resultant composite

signal at receiver 1 is given by

ỹ1 =

[

H1

βH2

]

x +

[

n1

n2

]

(6.8)

where β =

r

G
Pr/2

H2ΣxHT
2 +1

1+

r

G
Pr/2

H2ΣxHT
2

+1

, For fixed β and Pr and Pt, the sum rate achievable from the

cooperative transmitters to the receivers (with composite channels ỹ1 and ỹ2) is equal to

the sum capacity of the dual multiple-access channel. In the dual multiple-access channel,

the composite receivers are the two-antenna transmitters and the cooperative transmitters

become the two-antenna receiver. Since each transmitter has two antennas, we are not able

to invoke symmetry to find the sum capacity of the dual multiple-access channel as before.

Thus, the sum capacity must be characterized in terms of a maximization:

Rcoop = max
Tr(Q1+Q2)≤P

B2 log
∣

∣

∣I + H̃1
T
Q1H̃1 + H̃2

T
Q2H̃2

∣

∣

∣

where the maximization is over covariance matrices Q1 and Q2, with H̃1 ,

[

H1

βH2

]

, and

H̃2 ,

[

βH1

H2

]

. The maximizing covariances can be found using the algorithm in Chapter

4.3. Given Q1 and Q2, the sum rate achieving covariance matrix for the downlink (i.e. Σx)

can be found2 [69].

2The sum rate was maximized assuming a fixed value of β, but interestingly, the choice of Σx in fact
determines the value of β. Thus, we initially assume that Σx is a scaled version of the identity when
determining β. We then maximize the sum capacity of the broadcast channel assuming this β. After finding
the corresponding Σx, we re-calculate the value of β. This procedure can be repeated, but we empirically
find this to yield a negligible increase in rate.
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The maximum rate of transmission using both transmitter and receiver cooperation is

thus given by:

RTX−RX = max
Pr+Pt≤P,B1,B2,B3

min(2Rt, Rcoop) (6.9)

Here Rt is an increasing function of Pt and Rcoop is an increasing function of Pr. Under BW

assumption 1 we have B1 = B2 = B3 = 1, as always. Under BW assumption 2, notice that

the amplify-and-forward technique again requires B2 = B3. Thus, the bandwidths must

satisfy B1+2B2 ≤ 1. For fixed Pt and Pr, the achievable sum rate is min(2Rt, Rcoop). By the

same reasoning used for transmitter-only cooperation, for a fixed Pr, the optimal choice of Pt

yields 2Rt = Rcoop. However, it is necessary to directly maximize the achievable rates over

all choices of Pr. When Pr = 0 this strategy is identical to the transmitter-only cooperation

scheme, and thus this scheme performs at least as well as the transmitter cooperation

scheme. Since transmitter cooperation yields higher rates than receiver cooperation, there

is a full ordering on the achievable rates of the three different schemes for any channel.

Finally notice that as G becomes very large, the scaling term β can be made close to

one. Thus in the limit (i.e. β → 1), the composite channels of both receivers become equal

to [y1 y2]
T . Since both received channels are the same, the broadcast channel capacity

region is equal to the point-to-point capacity from the cooperative transmitter to either of

the receivers, i.e. the point-to-point MIMO capacity of the original channel.

6.7 Upper Bounds

There are three information theoretic upper bounds that bound the rates achievable with

transmitter cooperation only, receiver cooperation only, and transmitter and receiver coop-

eration. Note that for all three bounds, we use a bandwidth of 1 Hz.

First, consider the scenario where only the transmitters attempt to cooperate. The

capacity of the channel where the transmitters are allowed to perfectly cooperate (without

use of any power), but the receivers are not allowed to cooperate is an upper bound to the

rates achievable using only transmitter cooperation. This is not a general upper bound on

our system, but is a bound when only transmitter side cooperation is allowed. Since the

receivers must decode their messages independently, the channel becomes a two transmit

antenna, two receiver (single receive antenna each) broadcast channel with transmit power

constraint P . Due to the symmetry of the channel, the sum capacity of the broadcast

channel is equal to the sum capacity of the dual multiple-access channel when equal power

is allocated to each transmitter:

RBC = log

∣

∣

∣

∣

I +
P

2

(

HT
1 H1 + HT

2 H2

)

∣

∣

∣

∣

. (6.10)
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Next consider the scenario where only the receivers attempt to cooperate. In this sce-

nario, an upper bound is reached by allowing the receivers to perfectly cooperate. The

channel then becomes a two transmitter (single antenna each), two receive antenna multiple-

access channel, for which the capacity region is known. Due to the symmetry of the channels,

the sum capacity of the multiple-access channel is given by:

RMAC = log

∣

∣

∣

∣

I +
P − Pr

2

(

F1F
T
1 + F2F

T
2

)

∣

∣

∣

∣

(6.11)

where F1 =

[

ejθ1

ejθ3

]

and F2 =

[

ejθ2

ejθ4

]

. Though the broadcast channel arising from

perfect transmitter cooperation and the multiple-access channel arising from perfect receiver

cooperation are not duals of each other in the sense of Chapter 3, it can be shown by direct

computation that equations (6.10) and (6.11) are equal. Furthermore, the dirty paper

achievable region corresponding to transmitter-only cooperation is equal to the multiple-

access capacity region which bounds receiver-only cooperation.

A true upper bound to our system is reached by allowing perfect cooperation at the

transmitters and at the receivers. The channel then becomes a 2×2 MIMO channel, whose

capacity is given by water-filling the eigenvalues of the channel matrix H [61]. Interestingly,

Theorem 3 of [5] shows that the difference between the MIMO point-to-point capacity and

the sum capacity of the BC goes to zero as the SNR P goes to infinity. Thus, at high SNR

we expect cooperation at either the TX or at the RX cluster to be sufficient to come close

to the MIMO upper bound.

6.8 Numerical Results

In this section we provide numerical results for both bandwidth assumptions.

6.8.1 Bandwidth Assumption 1

In Fig. 6.2, the upper bounds and achievable rates are plotted for a random channel chosen

with an SNR of 0 dB and for G = 10 dB. If we assume a path-loss exponent of 2, this

corresponds to a physical scenario where the distance between the nodes in the clusters is√
10 times less than the distance between the two clusters. The rates achievable with TX

cooperation and with TX & RX cooperation are identical, and both come extremely close to

the broadcast channel upper bound. There is, however, a sizable gap between the BC/MAC

upper bound and the MIMO upper bound. The TX & RX cooperation scheme will approach

the MIMO upper bound, but only for very large values of G. The rates achievable with

RX cooperation do exceed the non-cooperative rates achievable with TDMA, but they are

considerably smaller than the TX cooperation rates.
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Figure 6.2: Upper bounds and achievable rates for SNR = 0 dB, G = 10
dB
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Figure 6.3: Upper bounds and achievable rates for SNR = 0 dB, G = 20
dB

In Fig. 6.3, the bounds and rates are plotted for the same channel with G = 20 dB.

As expected, the achievable rates with cooperation increase. However, the rates achievable

with RX cooperation are still quite small, while the rates achievable with TX cooperation

are quite large and are very close to the BC/MAC upper bound. Furthermore, the rates

achievable with TX & RX cooperation actually exceed those achievable with TX cooperation

alone.

In Fig. 6.4, the average achievable sum rates using the different cooperation schemes

are plotted versus G for an average SNR of 10 dB. To compute these results, a large sample

of channels were instantiated (i.e. different random phases) and the achievable rates were

calculated for different values of G, and then an average was taken over the instantiations.

Notice that the three upper bounds are independent of G because they assume perfect

cooperation. Since the SNR is 10 dB, there is not a very significant gap between the MIMO

upper bound and the MAC/BC upper bound. As G increases (i.e. as the nodes within

each cluster move closer to each other), the achievable rates approach the upper bounds.
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Figure 6.4: Plot of rate vs. gain for SNR = 10 dB

As discussed before, TX & RX cooperation always performs better than TX cooperation,

which generally outperforms RX cooperation. However, it is most interesting to note that

TX & RX cooperation and TX cooperation are virtually identical for G ≤ 20 dB. Upon

closer examination, one finds that the optimum TX & RX scheme for such values of G is

achieved by only using transmitter cooperation, i.e. not having the receivers use any power

for amplify-and-forward. For G > 20 dB, a gap does open up between the TX & RX scheme

and the TX scheme. Interestingly, this gap appears at the point where the TX cooperation

scheme achieves the BC upper bound. Thus, up to the BC upper bound it seems that is

not worthwhile to do both TX & RX cooperation, but beyond this point (i.e. for larger

values of G) it becomes worthwhile to cooperate in both clusters.

In Figure 6.4, there is a significant gap between the rates achievable using TDMA and

the rates achievable using TX cooperation, even at relatively small values of G (i.e. 10 dB).

Thus, there is in fact a significant advantage to performing cooperation in either or both

of the clusters. Another general trend seen in all plots is the poor performance of the RX

cooperation scheme relative to the TX cooperation scheme. For all but very small values

of G, the RX cooperation scheme performs much poorer than the TX cooperation scheme.

Transmitter cooperation allows for joint encoding (similar to coherent combining) of the

two messages, while receiver cooperation only provides an additional scaled antenna output,

where the scaling is proportional to G. For large enough G, however, the simple amplify-

and-forward operation performed at the receivers is sufficient to achieve the MAC/BC upper

bound.

6.8.2 Bandwidth Assumption 2

In Fig. 6.5 - 6.7, similar figures are plotted for BW assumption 2. Notice that receiver

cooperation performs extremely poorly in general, as does receiver and transmitter co-

operation. This is because both RX cooperation and TX & RX cooperation employ the
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Figure 6.5: Upper bounds and achievable rates for SNR = 0 dB, G = 10
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Figure 6.6: Upper bounds and achievable rates for SNR = 0 dB, G = 20
dB

amplify-and-forward technique, which forces a great deal of bandwidth to be used for the

receiver communication link. When using only TX cooperation, some bandwidth must be

allocated, but there is no equal bandwidth requirement as with the amplify-and-forward

scheme. Thus, TX cooperation does not do as well under BW assumption 2, but it still

provides sizable gains over non-cooperation.

6.9 Summary

In this chapter we quantified the benefits of transmitter and/or receiver cooperation in

sensor/ad-hoc network-type settings. This communication setup contained both a multiple-

antenna broadcast channel and a multiple antenna multiple-access channel within it, and we

were able to make use of some of the earlier results of this thesis. We found that transmitter

cooperation or transmitter and receiver cooperation can lead to significant performance

improvements in terms of increased data rates. On the other hand, receiver cooperation
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Figure 6.7: Plot of rate vs. gain for SNR = 0 dB, BW assumption 2

without transmitter cooperation does not appear to be very beneficial. Though the model

we have worked with in this paper is quite simple, this appears to only be the beginning of

a promising line of research examining the benefits of node cooperation.
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Chapter 7

Conclusions and Future Work

This thesis has investigated the capacity of multi-user wireless communication channels.

In particular, we established a fundamental connection between the two most common

multi-user channels, the broadcast channel and the multiple-access channel. This duality

relationship is important in and of itself for the insight it gives, but additionally duality

leads to a number of interesting results in this thesis. Multiple antenna broadcast channels

were also studied, and the duality result played an important role in finding the sum rate

capacity of this channel. We also studied the benefit of cooperative communication in an

ad-hoc network, and found that transmitter cooperation appears to be an effective way of

significantly increasing data rates in such networks.

A large portion of this work concentrated on establishing a relationship between the

multiple-access channel and the broadcast channel. This duality relationship was first es-

tablished for Gaussian versions of the channel, for constant, fading, and multiple antenna

channels, and then extended to a class of deterministic, discrete memoryless channels. Dual-

ity is of particular importance because it concretely affirms the intuitive similarities between

the multiple-access and broadcast channel models. There are a number of interesting and

fundamental duality connections in information theory, such as the duality between channel

coding and rate distortion [10], source and channel coding [52], and the MAC and Slepian-

Wolf region [13, Section 14.5]). It is as of yet unclear if the multiple-access/broadcast

channel duality is an equivalently fundamental dual. Given the strong duality between

channel coding and rate distortion (i.e lossy source coding) theory, it is also quite possible

that there is a more natural duality between the broadcast channel and a distributed source

coding problem, or between the multiple-access channel and a multiple description problem.

In addition to the insight gained by establishment of duality, we also saw that duality led

to a number of important new results for the multiple antenna broadcast channel, and also

leads to an expression for the minimum rate capacity region of the fading multiple-access

channel.
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We also extensively studied multiple user multiple antenna channels, which are of partic-

ular importance to increase data rates in next generation wireless systems. Using duality,

we were able to establish the optimality of dirty paper coding for the multiple antenna

downlink and identify asymptotic regimes in which dirty paper coding provides a particu-

larly large data rate increase over the sub-optimal, albeit more practical, technique of time

division multiple access. One surprising conclusion to be drawn from this thesis and related

work is that a linear increase in capacity on both the uplink and downlink channels can

be achieved by adding multiple base station antennas without adding multiple antennas

at mobile devices. This is in stark contrast to point-to-point MIMO channels, in which

multiple antennas must be added on both sides to achieve a linear increase in capacity.

Clearly, it is much more economical and practical to add additional antennas (and the

corresponding complexity) at wired base stations than at power and space limited mobile

terminals. On the downlink channel, dirty paper coding or a sub-optimal technique such

as zero-forcing beamforming can be employed to obtain this linear increase. On the uplink

channel, multi-user detection is required at the base station. There is, however, the caveat

that perfect and instantaneous channel knowledge at all transmitters and receivers (i.e. at

the base station and all terminals) has been assumed in establishing these results. Obtaining

receiver channel knowledge seems feasible through use of pilot symbols, but transmitter

channel knowledge generally requires feedback from the receivers. For multiple-antenna

systems, this feedback may require substantial bandwidth and may in fact be difficult to

obtain within a fast enough time scale.

If only the receiver has channel knowledge in a downlink channel, then adding multiple

base station antennas leads to only a logarithmic, instead of linear, increase in capacity.

Thus, it is of great interest to study the large gray area between these two extreme cases,

where the receiver has perfect channel knowledge while the transmitter has only partial

or imperfect knowledge of the channel. Answering this and related questions will allow us

to more fully understand the benefit of adding multiple base station antennas in cellular

systems. Interestingly, if each mobile has only a single antenna, then transmitter channel

knowledge is not required on the uplink channel. In this situation, since each transmitter has

only a single antenna, no adaptation to the channel matrices is necessary and transmission

of Gaussian codewords (at the appropriate rate, which may require very limited feedback

from the base station) and multi-user detection at the multiple antenna receiver is sufficient

to achieve capacity.

We also studied time-varying wireless channels and found optimal power and rate al-

location policies for different performance metrics. We first analyzed the minimum rate

capacity of the broadcast channel, which is the set of long-term average rates achievable

subject to a minimum instantaneous rate in each fading state. We then used the broad-

cast channel/multiple-access duality to derive the minimum rate capacity region of the
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multiple-access channel. In addition to studying minimum rate capacity of the broadcast

channel, we also considered the ergodic capacity of the fading broadcast channel in which

the transmitter wishes to send a common, or multicast, message in addition to independent

messages to each user. We found that the optimal power allocation policy differs signif-

icantly from the optimal policy when there is no common message. We also considered

the multiple-antenna broadcast channel with common messages, for which the capacity re-

gion is unknown. We proposed an extension of the dirty paper coding region to allow for

common messages. Given the recent work proving the optimality of dirty paper coding for

the multiple antenna broadcast channel without common messages [78], it is natural to ask

if this achievable region is the actual capacity region when common messages are added.

However, it is easy to see that the proof technique of [78] does not extend to the common

message scenario, and thus the optimality of this region is still unclear.

In the final chapter of this thesis we studied the role of cooperation in ad-hoc/sensor net-

works. We found that relatively simple cooperation schemes, particularly at the transmitter

side, can provide rather significant increases in data rates. However, we assumed perfect

synchronization and perfect channel knowledge in our model. Neither of these assumptions

are very realistic, and thus it is important to study the importance of these assumptions to

our results. Synchronization can be obtained in ad-hoc networks, but at a rather large cost

of resources such as time and power. Thus consider asynchronous or partially synchronous

transmission is an interesting possibility. With regards to channel knowledge, an interesting

extension of our work is to consider cooperation in ad-hoc networks without perfect channel

information at all transmitters and receivers. Most work in ad-hoc and sensor networks has

concentrated on network layer issues such as routing and scheduling, but it is apparent

that physical layer issues are of equal importance. A recent paper [26] has studied the

physical layer of ad-hoc networks and found that the degree of channel knowledge is crucial

in determining optimal transmission strategies, particularly in mobile environments where

channels change very rapidly. In such environments, it may not be feasible to track changes

in channel conditions and network topology. Thus, it is of critical importance to understand

the fundamental limits of ad-hoc networks in such conditions.
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