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Outage Capacities and Optimal Power Allocation for
Fading Multiple-Access Channels

Lifang Li, Nihar Jindal, Member, IEEE, and Andrea Goldsmith, Fellow, IEEE

Abstract—We derive the outage capacity region of an -user
fading multiple-access channel (MAC) under the assumption
that both the transmitters and the receiver have perfect channel
side information (CSI). The outage capacity region is implicitly
obtained by deriving the outage probability region for a given rate
vector. Given a required rate and average power constraint for
each user, we find a successive decoding strategy and a power al-
location policy that achieves points on the boundary of the outage
probability region. We discuss the scenario where an outage must
be declared simultaneously for all users (common outage) and
when outages can be declared individually (individual outage) for
each user.

Index Terms—Capacity region, fading channels, multiple-access
channels (MACs), optimal power allocation, outage probability.

I. INTRODUCTION

WIRELESS communication channels vary over time
due to user mobility. By applying optimal dynamic

power and rate allocation strategies, the Shannon capacities
with channel side information (CSI) at both the transmitter
and the receiver of a single-user fading channel, a fading mul-
tiple-access channel (MAC), and a fading broadcast channel are
obtained in [1], [2], and [3], respectively.1 These results have
also been extended to the fading multiple-antenna multiple-ac-
cess and broadcast channels in [4], [5]. The Shannon capacity
implies no complexity or delay constraints, and is obtained by
varying the transmit power and possibly the rate relative to the
channel fading conditions such that the average rate is maxi-
mized. For delay-constrained applications, Shannon capacity is
not a good performance measure, since the transmission delay
depends on the channel variation. Thus, a better performance
measure for such systems is the zero-outage capacity, defined as
the maximum instantaneous mutual information rate that can be
maintained under all fading conditions through optimal power
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1The Shannon capacity of a fading channel is called “throughput capacity” in
[2], and “ergodic capacity” in [3].

control. Under the assumption that CSI is available at both the
transmitter and the receiver, the zero-outage capacity regions
and the corresponding optimal power allocation schemes are
derived for the fading MAC and the fading broadcast channel
in [6] and [7], respectively.2

Zero-outage capacity is somewhat pessimistic, however,
since a constant rate must be maintained under any fading
condition. By allowing some transmission outage during se-
vere fading conditions, the maximum mutual information rate
that can be kept constant during nonoutage increases. This
motivates the investigation of outage channel capacity, defined
as the maximum instantaneous information rate that can be
maintained under any fading condition during nonoutage such
that the allowed average transmission outage probability is
satisfied.

Outage capacity is most relevant in a slow-fading environ-
ment, where the channel can be assumed to be constant over
the duration of a codeword. If only the receiver has CSI in a
point-to-point channel, then the transmitter always transmits at
a constant rate and cannot use any form of power control. In this
scenario, an outage occurs whenever the channel cannot support
transmission at the designated constant rate, i.e., whenever the
instantaneous mutual information is less than the rate of trans-
mission. Thus, the outage probability is equal to the probability
that the channel cannot support the given rate, which is roughly
equal to the probability of a decoding error when a channel code
designed for a given rate is used on a channel with instantaneous
mutual information below this given rate [8]. Alternatively, the
outage probability can be viewed as the fraction of time that an
incorrect codeword is received.

If both the receiver and the transmitter have CSI, the trans-
mitter can use power control to conserve power by not trans-
mitting at all during designated outage periods and by varying
the amount of transmit power during nonoutages such that the
instantaneous mutual information is exactly equal to (instead of
exceeding) the rate of transmission. Here, the outage probability
is described as the probability of not transmitting/receiving a
codeword at all, instead of as the probability of decoding error,
as is necessarily the case without transmitter CSI. We can also
view the outage probability as the fraction of time that no code-
word is received, which is relevant to many practical scenarios
(e.g., in cellular systems, mobile units outside the service range
of a base station are said to be in outage).

For a MAC, the same interpretations for outage probability
and capacity hold. With or without transmitter CSI, the outage
probability of User is approximately equal to the fraction of
time that an incorrect or no codeword is received from User .

2The zero-outage capacity is called “delay-limited capacity” in [6].
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A motivating example is an uplink channel in which each trans-
mitter wishes to send constant-rate video to the base station. Se-
vere fading may preclude sufficiently high-rate communication
from occurring at all times, but high-rate communication may
be possible 95% of the time.

In [8], the minimum outage probability problem is solved for
the single-user fading channel. For an -user fading broadcast
channel, under different assumptions about whether the trans-
mission to all users is turned off simultaneously or individu-
ally, the optimal power allocation strategy that minimizes the
common outage probability or achieves the boundary of the
outage probability region of the users under a total average
power constraint of all users is derived in [7]. An alternative
notion of capacity combining the ideas of outage and ergodic
capacity, referred to as the service outage capacity and min-
imum-rate outage capacity, has also been recently considered
[9]–[12].

In this paper, we derive the outage capacity region and the
optimal power allocation policies for an -user fading MAC
under similar assumptions about whether the outage declara-
tion from each user is simultaneous or individual. The outage
capacity region is explicitly defined in terms of the achievable
rates corresponding to the set of all power policies meeting the
individual power constraints. Essentially, a user is in outage
whenever his power is equal to zero, and is transmitting at
the nonoutage rate at all other times. This simple definition
of outage capacity gives a unified framework that allows us
to easily treat the cases of common and individual outage.
Though no explicit coding theorem and converse are given in
this paper, operational meaning is given to the definition of
the outage capacity region by relating the outage capacity to
the zero-outage capacity, for which a rigorous coding theorem
and converse exists. Intuitively, the outage capacity is the set
of all rates achievable in all nonoutage fading states. Thus, the
outage capacity can be related to the zero-outage capacity of
the conditional distribution of the fading states, where the con-
ditioning is on a nonoutage event. For the single-user channel,
it is intuitively easy to see that the outage states should be the
fading states with the smallest amplitude [8]. However, for
multiuser channels, no such simple ordering of the joint fading
states is possible, and the difficulty remains in determining
what set of states should be set as outage states.

The zero-outage capacity of the fading MAC is derived in [6].
Specifically, it is shown in [6] that the zero-outage capacity re-
gion is implicitly obtained by determining, for each given rate
vector , the set of average transmit powers
such that each user can support rate under any fading condi-
tion. For the general case where the allowed outage probability
of each user is larger than zero, we will show that the outage
capacity region is implicitly obtained by determining, for each
given rate vector , the set of all common outage probabilities
or individual outage probability vectors such that each user can
support rate under any nonoutage fading condition while sat-
isfying his given average power constraint. Given the allowed
outage probability of each user and a rate vector , we also
solve the dual problem of finding the average power region of
the users required to support for the given outage proba-
bility vector.

For a given rate vector , in order to solve the optimization
problem of minimizing the common outage probability or
bounding the outage probability region for a given average
power constraint on each of the users, we use the Lagrangian
method with multiple constraints. Since there is an indepen-
dent average power constraint for each of the users,
Lagrangian multipliers are needed. For each given Lagrangian
multiplier vector , the optimization problem
is readily solved by applying the techniques developed in [6]
and [7]. Standard convex optimization algorithms can be used
to find the appropriate Lagrangian multiplier vector for the
users such that the average power constraints are satisfied
simultaneously.

The remainder of this paper is organized as follows. In Sec-
tion II, we present the fading MAC model. In Sections III and IV,
we give the definitions and notations that will be used in the rest
of the paper. In Section V, for the case of simultaneous outage
declaration, we derive the minimum common outage probability
for a given rate vector and the corresponding optimal power
allocation strategy. In addition, the average power region for
supporting with a given common outage probability is ob-
tained. As for individual outage declaration, we derive in Sec-
tion VI the outage probability region boundary for a given rate
vector , the corresponding optimal power allocation strategy,
and the required average power region for supporting with the
given outage probability constraint of each user. In Section VII,
we discuss the relationship between outage capacities of the
MAC and the broadcast channel. In Section VIII, we present
the main difference in the solutions to the above problems when
additional peak power constraints are imposed on the users.
Our conclusions are given in Section IX.

II. THE FADING MULTIPLE-ACCESS CHANNEL (MAC)

We consider a discrete-time -user fading MAC model as
discussed in [6]

(1)

where and are the transmitted signal and the fading
process of the th user, respectively, and is Gaussian noise
with variance . Let denote the
joint fading process, and let be the average power constraint
of User . We assume that the joint fading process of the
users is stationary and ergodic, and the stationary distribution
has continuous density.3 For a slowly time-varying MAC, let

be the joint fading state at a particular time
, i.e., , and let denote the set of all possible

joint fading states. We assume that the transmitters and the
receiver know the current joint fading state . Therefore, each
transmitter can vary its transmit power and codewords relative
to the joint fading condition of the channels, and the receiver
can vary its decoding order of the users.

3As in the single-user case [8] and the broadcast communication case [7], our
analysis can be easily extended to discrete distributions.
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Notation: In this paper, we use boldface letters to denote
-dimensional vector quantities. In addition, all opera-

tions and inequalities for vectors are defined element-wise,
i.e., implies for , and

. The only exception to this is the
inner product, which is defined in the standard manner

Finally, all expected values of random variables and probabil-
ities of random events are assumed to be calculated with re-
spect to both the randomization within each joint fading state
and the randomization across all joint fading states, unless oth-
erwise noted.

III. OUTAGE CAPACITY REGIONS

In this section, we define the outage capacity region of an
-user MAC, where each transmitter may suspend transmis-

sion over a subset of fading states under a given average power
constraint and an average outage probability constraint. We con-
sider common outage and individual outage separately. Both
outage capacity regions are defined based on power allocation
policies and the corresponding achievable rates.

We define a power allocation policy over all possible fading
states as a mapping from each fading state to a set of random
transmit powers for the users, . For a fully ran-
domized power allocation policy , the set of transmit
powers varies within each fading state as well as across all
fading states. Specifically, let denote the set of random
transmit power allocation functions for the users, and let

denote their joint probability density function (PDF)4

in the fading state , . Then can be expressed
as follows:

(2)

Note that for each different fading state , the vector of random
transmit powers can have a different sample space,
and the joint PDF can be a different distribution. Con-
siderations of the set of fully randomized power allocation poli-
cies allow for complete generality when defining outage capac-
ities of the fading MAC, and also mirrors the approach taken in
[8] for single-user outage capacity.

In the slowly fading environment that we are concerned with,
if a deterministic power vector is allocated
to the users for a given fading state , then the following rate
vectors are achievable in this given state :

(3)

4When we refer to probability functions in generic terms, we use the term
PDF to mean both discrete and continuous probability functions [13].

Note that is actually the capacity region of the
equivalent Gaussian MAC for the fading state . This capacity
region is an -dimensional polyhedron with corner points.
Maximum-likelihood decoding can be used to achieve any rate
vector in the capacity region, but the more computationally ef-
ficient technique of successive decoding is sufficient to achieve
the corner points. We will later see that we only need to operate
at these corner points in order to achieve the outage capacity.

If a random power allocation vector is employed in
fading state , then each possible value of the power allocation
vector corresponds to a different rate region given by the above
equation. In this case, refers to the corre-
sponding achievable rate region that varies based on the joint
PDF of the random transmit powers in fading state

. For example, if the power policy equiprobably chooses be-
tween two different power vectors in a certain fading state, then
the system could operate at a rate vector in the MAC capacity
region corresponding to the first power vector 50% of the time,
and could operate at a rate vector in the MAC capacity region
corresponding to the second power vector the remaining 50% of
the time.

Using the framework provided by the above definitions of
a random power policy and the corresponding achievable rate
regions, we are able to precisely define common and individual
outage capacity regions.

A. Common Outage Capacity Region

The common outage capacity region is defined as follows.

Definition 3.1: A rate vector is in the common outage
capacity region if and only if there exists a
random power policy that meets the power constraint

and allows for the rate vector to be achieved
with a probability of at least :

(4)

That is,

(5)

Therefore, the common outage capacity region consists of all
rate vectors that can be maintained (with arbitrarily small proba-
bility of error) with a common outage probability no larger than

under the average power constraint . Though this defini-
tion is given only in terms of random power policies, we later
relate the outage capacity to the zero-outage capacity to give an
operational meaning to our definition. Notice that, in this def-
inition, we have allowed for a fully randomized power policy

. However, as we will show later, the random power policy
need only have cardinality of two in each fading state. In

particular, in each given state , let
with probability , and let with probability

, where is a vector of deterministic power allo-
cation functions of , and is a deterministic probability
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function of , . We denote this simple power al-
location policy with cardinality of two in each fading state as
(i.e., without the superscript “ ”)

with prob.
with prob.

(6)
In this power allocation policy , since is the probability
that the users will be transmitting with the allocated power
vector , and is the probability that no power will
be allocated to any user (i.e., an outage will be declared from all
users), we call the probability of transmission function,

. The following proposition shows that it is sufficient
to consider random power policies of cardinality two in each
fading state in the definition of the common outage capacity
region.

Proposition 3.1:

(7)

where is the set of all power policies as defined in (6) that
satisfy the conditions

(8)

(9)

Proof: See Part A of the Appendix.

Since all users must transmit at their specified rates during
nonoutage periods, if we consider only nonoutage fading states,
it appears as if constant rates were being maintained at all
times, which is similar to the zero-outage case. Therefore,
the common outage capacity region can be given in terms of
the zero-outage capacity region of the MAC by conditioning
on the nonoutage fading states. Specifically, let denote
the true PDF of the fading state . For a given power
policy , as defined in Proposition 3.1, let denote
the set of nonoutage fading states (transmission states), i.e.,

. We now define a new PDF for
as follows:

.
(10)

It is easily verified that

Proposition 3.2: The common outage capacity region de-
fined in Definition 3.1 can be written in terms of the zero-outage
capacity region as

(11)
where refers to the zero-outage ca-
pacity region of the equivalent fading MAC for which the set of
all possible fading states is , and the PDF of is

.
Proof: See Part B of the Appendix.

This proposition relates the outage capacity region to the
zero-outage (or delay-limited) capacity region, for which a

rigorous coding theorem and converse exists. For point-to-point
channels, the outage capacity can precisely be related to the
-achievable rate [8, Proposition 2], [14]. Here, the notion of

outage capacity is intended to be the analogous quantity for
MACs.

B. Individual Outage Capacity Region

For a given power policy , as noted earlier, the term
refers to the achievable rate region that

varies based on the joint PDF of the random
transmit powers in fading state . If we assume that one pos-
sible value of is , then the corresponding achievable
rate region is as defined in (3). In practice, for
the given power vector and fading state , only one rate
vector in can be chosen for transmission at any
specific time. In this case, we let denote the vector
of rate allocation functions for the users under the given
power vector . That is, given the power allocation vector

, the rate vector chosen for transmission is , and
. Similarly, for the random power

allocation vector , we let denote the
corresponding vector of rate allocation functions for the
users, and

with probability one. Since varies within each fading
state as well as across all fading states, the rate vector

chosen for transmission from the varying
rate region will vary accordingly. That
is, also varies within each fading state and
across all fading states. Then, obviously, for a given rate vector

and a given rate allocation function vector ,
in each fading state corresponding to the power
policy , the average probability of transmission for User

with a rate no smaller than is

Therefore, the individual outage capacity region can be defined
as follows.

Definition 3.2: A rate vector is in the individual outage
capacity region if and only if there exist a power
policy and a corresponding vector of rate allocation func-
tions for each fading state such
that

(12)

(13)

That is, we have (14) at the top of the following page. In words,
the individual outage capacity region consists of all rate vec-
tors that can be maintained (with arbitrarily small probability of
error) with an outage probability vector (i.e., where transmis-
sion from different users need not simultaneously be turned on
or off) no larger than under the average power constraint .

This definition allows for a fully randomized power policy.
We earlier showed that it is sufficient to consider random
power polices of cardinality two (in each fading state) to define
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(14)

common outage capacity. For individual outage capacity, we
show that it is sufficient to consider random power policies of
cardinality in each fading state. The term is equal to
the number of different subsets of users that can simultane-
ously transmit. We will represent each of these possible
combinations of users as an -dimensional vector

which equals the binary expansion of (the index of the subset
), . For each vector , if

, then User is said to be transmitting (i.e., );
otherwise, User is not (i.e., ).

For a given fading state and a given subset index
, let be a vector of deterministic

power allocation functions for the users, with
if , , i.e., ,
and let be a deterministic probability of transmission
function for the th subset of users satisfying

in each fading state. Obviously, . Now in each
fading state , let with proba-

bility , . Since ,
this simple power allocation policy has cardinality in each
fading state and we denote it as (we use the superscript “ ”
to distinguish it from the power policy with cardinality two
in the common outage case)

(15)

More specifically

with prob.
with prob.

...
with prob.

(16)

Notice that in power policy , the power allocation function
vector and the probability of transmission function

are only deterministic functions of and . The
following proposition shows that it is sufficient to consider
random power policies of cardinality in each fading state
in the definition of the individual outage capacity region.

Proposition 3.3:

(17)

where is the set of all power policies as defined in (16)
that satisfy the conditions

(18)

(19)

Proof: See Part C of the Appendix.

Similar to the common outage case, we will now relate the
individual outage capacity region to the zero-outage capacity
region. For a given power policy as defined in Propo-
sition 3.3, let denote the set of nonoutage fading states
(transmission states) for the th subset of users, i.e.,

and define a new PDF for as follows:

(20)

where is the true PDF of the fading state . It is
easily verified that

Proposition 3.4: The individual outage capacity region de-
fined in Definition 3.2 can be written in terms of the zero-outage
capacity region as

(21)

(22)

where

and refers to the zero-outage ca-
pacity region (with power constraint ) of the equivalent
fading MAC for which the set of all possible fading states is

,5 and the PDF of is . In addition,

5Note that if H (k) = , we define

C (AAA(k);H (k)) � fRRR : R � 0;8 i = 1; . . . ;Mg :
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refers to the augmented rate region of
, i.e.,

Proof: See Part D of the Appendix.

C. Boundary Characterization

We now define the notion of the “boundary” of these capacity
regions.

Definition 3.3: The boundary surface of (or
) is the set of those rate vectors for which we

cannot increase one component and remain in (or
) without decreasing another component.

With these definitions, we wish to find: a) the optimal power
allocation strategy that achieves the boundary of the common
outage capacity region ; b) the optimal power
allocation strategy that achieves the boundary of the individual
outage capacity region . The regions
and are easily determined given these optimal
power allocation strategies.

In the next section (Section IV), we will show that finding
the optimal power allocation policy that achieves the boundary
of is equivalent to deriving the power allocation
policy that minimizes the common outage probability for a given
rate vector and power constraint vector . In the individual
outage case, there is a similar equivalence between the power
allocation policy that achieves the boundary of and
the one that achieves the boundary of the outage probability
region, which will be discussed in detail in Section IV.

D. Operational Meaning of Outage Capacity

As stated in the Introduction, outage capacity is most rele-
vant in a slowly fading environment where the channel can be
assumed to be constant for the duration of a codeword. In this
situation, if allowing optimal power control, the outage proba-
bility of a user is the probability that no codeword is transmitted
by that user. Furthermore, in the slow-fading environment, the
decoding delay only depends on the code length employed and
not on the time variation of the channel.

If, on the other hand, the channel is fast fading and cannot
be assumed to be constant for the duration of a codeword, then
outage capacity largely loses its operational meaning, though
the mathematics may still go through. In the fast-fading sce-
nario, decoding delay will depend on the time variation of the
channel because outage periods may begin in the middle of

the transmission of a codeword. In this case, the power control
policy would force the transmitter to wait until the outage pe-
riod is complete before finishing transmission of the codeword.
In such an environment, it is probably more appropriate to con-
sider the ergodic capacity, i.e., using very long codewords that
utilize the ergodicity of the channel, or the zero-outage capacity,
which has operational meaning in either fast- or slow-fading en-
vironments.

IV. OUTAGE PROBABILITY REGION

In this section, we consider the outage probability region,
or the set of achievable outage probability scalars (common
outage) or vectors (individual outage) for a given rate vector
and power constraint vector. The outage capacity region is the
set of all rates that are achievable while meeting an outage con-
straint and an average power constraint. The outage probability
region, on the other hand, is the set of all outage probabilities
that are achievable for a specified rate vector and power con-
straint vector.

The common outage probability set and the
complementary common transmission (usage) probability set

are naturally defined in terms of the outage capacity
regionas follows.

Definition 4.1: The outage probability is in the common
outage probability set if and only if the rate vector

.

Definition 4.2: The usage probability is in the common
usage probability set if and only if the rate vector

.

Definition 4.3: The minimum common outage probability
is the smallest probability in the set .

Proposition 4.1: The common usage probability set is equiv-
alently given by (23) at the bottom of the page.

Proof: The usage probability is in the common
usage probability set if and only if the rate vector

, which by Proposition 3.1 is true if and
only if there exists a deterministic power allocation function

and a probability of transmission function such that
, , ,

and . Therefore, we have (24), also at the
bottom of the page. However, notice that if there exists a power
allocation function and a probability of transmission
function with , the function can be
reduced such that for any . Thus,
the interval is not needed in the left-hand side of
(24), and we have the result.

(23)

(24)
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For common outage, it is clear that the outage probability
set is simply an interval of . Given , the
outage capacity region is implicitly obtained once
the minimum common outage probability for a
given rate vector is calculated under the optimal power allo-
cation. That is, for any rate vector , if and
only if .

The individual outage probability set and the
complementary individual transmission (usage) probability set

are naturally defined in terms of the outage capacity
region as follows.

Definition 4.4: The outage probability vector is in the
individual outage probability set if and only if the
rate vector .

Definition 4.5: The usage probability vector is in the
individual usage probability set if and only if the rate
vector .

Proposition 4.2: The independent usage probability set is
equivalently given by

(25)

where

for

and the union is subject to the conditions

for any satisfying and

Proof: The usage probability vector is in the indi-
vidual usage probability set if and only if the rate vector

, which is true if and only there exists a vector
of deterministic power allocation functions and a prob-
ability of transmission function such that

and

Using the idea from the proof of Proposition 4.1, we get the
result.

The individual outage probability region is a set
in that contains the point and the individual

Fig. 1. Outage capacity region and usage probability region.

usage probability region is a set in that con-
tains the point . We later show that the set is
in fact convex. With the above definitions,6 it is easy to see the
connection between the outage capacity and outage probability
regions.

Given a probability vector , the outage capacity region
is implicitly obtained once the boundary of the

outage (or usage) probability region (or )
for a given rate vector is derived through the optimal power
allocation since, for any rate vector , if and
only if .7

An example of a two-user individual outage capacity region
is plotted in Fig. 1. The corresponding usage probability region
for a rate vector on the boundary of the outage capacity region
is shown.

Having established that the outage capacity region can be
found implicitly from the outage/usage probability region, we
proceed by deriving the outage/usage probability region and the
optimal power allocation policies. In Section V, we consider
common outage and we derive the minimum common outage
probability and the corresponding power allocation policy. In
Section VI, we derive the usage probability region for individual
outage, and also find the optimal power allocation policies.

V. COMMON OUTAGE CAPACITY

In this section, we consider common outage, where outages
are declared simultaneously for all users. We derive the min-
imum common outage probability in Section V-A
and give the corresponding optimal power allocation strategy in
Section V-B. This optimal strategy is given in terms of the op-
timal Lagrangian multipliers, and an algorithm to find these op-
timal multipliers is given in Section V-C. In Section V-D, we
solve the dual problem of finding the average power region of
the users required to support with a given common outage
probability , and finally we discuss the related notion of ex-
treme points in Section V-E.

A. Minimum Common Outage Probability

For a given average power constraint vector and rate vector
, from Definitions 4.1–4.3, it is obvious that deriving the min-

6Note that the definitions of C (PPP ; P r), C (PPP ;PrPrPr), Pr (PPP ;RRR),
O (PPP ;RRR), andO (PPP;RRR) are similar to those for the broadcast channel in [7],
where the power constraint is a total average power P instead of a vector PPP for
the M users.

7SinceO (PPP;RRR) is an M -dimensional region, it is not necessarily straight-
forward to determine if the region includes an arbitrary vector 1�PrPrPr. However,
since the regionO (PPP ;RRR) is convex (see Lemma 6.1), standard techniques can
be used to answer this question efficiently.
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imum common outage probability is equivalent
to deriving the maximum common usage probability in the set

.
That is, we need to solve the maximization problem

subject to: (26)

For a given rate vector , define the set as

(27)

Thus, we can rewrite the maximization in (26) as

subject to: (28)

We will require the following lemma to find the solution to (28).

Lemma 5.1: The set is convex.
Proof: Convexity of the set is proven using a time-sharing

argument. See Part E of the Appendix for details.

Due to the convexity of the set , the pair
solves (28) if and only if there exists a Lagrangian multiplier
vector such that is a solution to the max-
imization

(29)

with . In convex optimization terms, this is akin to
saying that the optimal solution must maximize the Lagrangian
given the optimal Lagrange multipliers. Notice that there is no
constraint on the power consumption in the maximization in
(29).

By Proposition 4.1, a probability vector is in
if and only if there exists a pair of functions
such that , , and

for all such that . Therefore,
we can equivalently perform the following maximization over
the functions and :

(30)

We will proceed to solve this maximization in two steps: we
will first find a power allocation function that is optimal
for any choice of , and then given such a power allocation
function, we will maximize over the function .

In order to find the optimal power allocation function ,
notice that if we fix , must satisfy the optimization
in (30) over the variable . That is, the optimal choice
(for a given ) must be the solution to

(31)

which implies that must be optimal in every fading state
for which . Therefore, a power allocation function

is optimal if and only if it is the solution to

subject to: (32)

for every fading state such that . This is identical to
the problem posed when finding the zero-outage capacity in [6,
eq. 4]. In [6], this problem is solved by exploiting the polyma-
troid structure of the MAC capacity region and by Lemma 3.3
of [2]. As the details of the solution are contained in [6], we
will only state the results. The optimal power allocation func-
tion for all states such that is as shown in
(33) at the bottom of the page, where the permutation sat-
isfies

(34)

The optimal solution is to allocate power to the users in each
fading state for which so that the rate vector can be
achieved by performing successive decoding in the order speci-
fied by the permutation . That is, the signal from User
is decoded first, treating all other users as noise. The codeword
of User is then subtracted off, and then User is
decoded, treating Users through as noise. The
signal from User is decoded last, with the signals from all
other users being known and thus being subtracted from the total
received signal. Note that the Lagrangian multiplier vector can
be viewed as the power price vector of the users, which we
will use to refer to hereafter. From (34), we see that the de-
coding order in each fading state depends on both (users with
larger power prices are decoded later) and the fading state
(users with smaller channel gains are decoded later). If no more
than one component of is zero, the optimal decoding order in
(34) is uniquely defined in each fading state. However, if two
or more components of are equal to zero, then the decoding
order is no longer uniquely defined for these users. We will dis-
cuss this case in the next subsection (Section V-B). Since the
outage capacity can be stated in terms of the zero-outage ca-
pacity (Proposition 3.2), it should be intuitively clear why the
optimal power allocation for the nonoutage fading states is iden-
tical to the optimal power allocation used to achieve zero-outage
capacity.

Clearly, the power allocation function for fading states for
which is unimportant because these states do not
affect the usage probability or the power constraint. Therefore,
if we define by (33) for all fading states and not just
fading states for which , then the power allocation
function will be optimal for any choice of . Thus, if
is defined by (33) for all fading states, is only a function
of the Lagrangian multiplier vector (and not of ) and is,
therefore, optimal for any choice of .

(33)
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Having derived the optimal power allocation function
for any , we can now perform the maximization of the
usage probability (30) over only the function

We can clearly simplify this as

(35)

Since defines the probability of transmitting in each fading
state, we must have for all fading states. In
addition, since there are no other constraints on , it is clear
that the optimal choice of is

.
(36)

Thus, and (which are implicit functions of ) max-
imize (30).

B. Common Outage Transmission Policy

When the optimal Lagrangian multiplier vector is known
(a simple algorithm to find is given in Section V-C), then the
optimal transmission policy is known. For each fading state

, the optimal transmission policy that minimizes the outage
probability (given in terms of the vector of optimal Lagrangian
multipliers ) is as follows.

1. In fading states that satisfy , an outage is
declared and no users transmit, i.e., .

2. In fading states that satisfy , all users
transmit at their specified rates with probability one in
that fading state, i.e., . Furthermore, successive
decoding can be used with the decoding order described
in (34).

There are a number of key properties to notice about the
optimal transmission policy. First note that even though we
allowed randomized power policies in each state, the optimal
power policy is in fact deterministic, i.e., is equal to
either one or zero in each fading state.8 This property is not
so surprising if one notices that the optimization in (35) is a
simple linear program for which we would expect the solution
to lie on an extreme point of the space for the probability of
transmission function : , .

Furthermore, the transmission policy can be viewed as a
simple threshold policy, since simultaneous transmission by the

users is allowed if and only if the required minimum total
weighted power (where the weights are equal to the
Lagrangian multipliers, or the power prices) for the users to
transmit their information at rate vector in state is less than

. This is similar to the optimum transmission policies that min-
imize the outage probability for the single-user channel [8] and
the common outage probability for the broadcast channel [7].

8It should be noted that the purely deterministic nature of the optimum power
policy is only guaranteed for continuous fading distributions. For discrete fading
distributions, a random power policy may be needed for states that satisfy ��� �

PPP (hhh) = 1. For continuous distributions, the set of such states has measure
zero and thus need not be considered for our purposes.

Under this transmission policy, the resulting common outage
probability is

(37)

The average power used by each user is given by

(38)

The optimal Lagrangian multiplier vector guarantees that the
power constraint of each user is satisfied. In fact, complemen-
tary slackness [15] guarantees that the power constraint is met
with equality for every user satisfying .

However, if for two or more users, as noted earlier,
the decoding order and subsequent power allocation policy in
(34) and (33) is not uniquely defined. In this scenario, there
can be multiple solutions to (30) given the optimal , since
there is no cost associated with allocating power to users with

. Therefore, additional power can be allocated to users
with without affecting (30), which means that there
are many different power allocation policies that achieve the
maximum. However, by convex theory [15], we are guaranteed
that at least one of them is a solution that satisfies the power
constraints of all users (and not just those users with ),
though it is not easy to find which solution that is.

When , this indicates that User is not a limiting
factor in achieving the minimum common outage probability.
In other words, the power constraint of User is large enough
such that User can achieve rate in all the nonoutage states
even if he is decoded first (i.e., sees all other received power as
interference). If multiple users have , then a whole class
of users is such that even if they are decoded before all other
users (with some unknown decoding order within the class)
in all fading states, they can still achieve their respective rates
without exceeding their power constraints. The challenge then
is to determine a decoding order for this set of users such that
the corresponding power policy satisfies the power constraints.
A simple way to find a decoding order that works in the case
where two or more users have a zero Lagrangian multiplier is to
lower the power constraint of one or more of these users until
the Lagrangian multipliers are either strictly positive or zero for
only one user.

C. Optimal Lagrangian Multipliers

In the previous subsections, we characterized the minimum
common outage probability and the optimal transmission policy
assuming knowledge of the optimum Lagrangian multiplier
(power price) vector . Therefore, given the power constraint
vector and a target rate vector , an important question is
how to obtain the optimal power price vector that corre-
sponds to the minimum common outage probability. In this
subsection, we will describe a standard convex optimization
algorithm that provably converges to the optimum Lagrangian
multipliers. This algorithm can also be used to find the optimal
Lagrangian multipliers for individual outage (Section VI-C).
We will use a convex optimization algorithm on the Lagrangian
dual function. For a primer on dual functions and convex
optimization, see [15].
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The original problem of maximizing the common usage prob-
ability is (28)

subject to:

(39)
The Lagrangian of this maximization is

(40)

The dual function is found by taking the supremum over all
for each Lagrangian multiplier vector :

(41)

The dual function is a supremum of affine functions of , and
is therefore a convex function [15]. Due to the definition of

, we can equivalently write the dual function as

(42)

subject to the constraint

(43)

where is defined as

(44)
For any fixed , the optimum that achieves the
supremum in (42) corresponds to the solution described in Sec-
tion V-B (i.e., successive decoding with decoding order deter-
mined by the fading states and and a threshold policy based
on the weighted-sum power required in each fading state).

For convex maximizations, the minimum of the dual function
over all nonnegative Lagrangian multipliers is equal to the

maximum of the original objective function. That is,

(45)

where is the optimum Lagrangian multiplier vector. Further-
more, the optimal achieves the supremum in
(42) for . Our goal is to find the Lagrangian multiplier vector
(namely, ) that minimizes the dual function . Since
is a convex function, we can use standard convex optimization
techniques to find the minimum value of the dual function and
the optimal Lagrangian multiplier vector. Since it is not clear if
the function is differentiable (though it is continuous), we
use the ellipsoid algorithm, which can be slightly modified to
work for nondifferentiable convex functions.

Now we briefly describe the ellipsoid algorithm as applied to
our problem, and defer the details to Part F of the Appendix.
The ellipsoid algorithm belongs to the family of cutting-plane
methods [15, Ch. 12], the simplest of which is the one-dimen-
sional bisection method. Of course, in our case the problem is

-dimensional, corresponding to the Lagrangian multiplier of
each of the users. In each iteration, a cutting-plane method

Fig. 2. Power region.

eliminates a half-space from the feasible set (i.e., the set where
the optimal solution can lie) by evaluating a gradient or a sub-
gradient of the function to be minimized. This allows the fea-
sible set to continually decrease in size, until it is small enough
to satisfy convergence criteria. In the ellipsoid method, a min-
imum volume ellipsoid is formed around the feasible set and the
function is then evaluated at the middle of this ellipsoid in order
to generate a new cutting plane. This process is repeated indef-
initely until the desired accuracy is reached.

This method is applied to the problem at hand by first finding
an ellipsoid in which must lie. The function is evalu-
ated at some initial in this ellipsoid. Given that the functions

and maximize , it can
be shown that for all satisfying

This fact allows us to eliminate a halfspace of the space in the
domain. A minimum volume ellipsoid covering the new feasible
set (i.e., the original ellipsoid minus the eliminated halfspace) is
then formed, and the process is repeated at the center of the new
ellipsoid. It can be shown that the volume of the feasible ellip-
soid converges to zero, and that the algorithm actually converges
to the optimal . More details on this convergence can be
found in Part F of the Appendix.

D. Average Power Region

In Sections V-A and V-B, given the power constraint
vector and rate vector of the users, we derived the
minimum common outage probability and
the corresponding optimal power allocation policy. In this
subsection, we find for a given rate vector and common
outage probability , the required average power region

, defined as the set of all possible power con-
straint vectors that can support rate vector with a common
outage probability no larger than . That is,

(46)

The set is convex due to the convexity of the
set , which is defined in (27). An example of a power re-
gion is shown in Fig. 2. Notice that the power region lies above
(i.e., up and to the right of) the boundary. The points and
are referred to as extreme points [6], while all points between
these two extremes are referred to as regular points. In this sub-
section, we discuss only the characterization of regular points.
Extreme points are discussed in Section V-E.



1336 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005

Due to the convexity of the average power region, the
boundary of can be traced out by solving

subject to: (47)

for all power price vectors such that .
For a given power price vector , this minimization is
equivalent to

subject to: (48)

An average power vector solves (48) if and only if there exists
a Lagrangian multiplier such that is a solution
to the problem

(49)

By the definition of the set , the following is an equiva-
lent minimization:

(50)

Notice that this optimization problem is very similar to the one
in (30) in Section V-A. By the same arguments used to solve
(30), the optimum choice of is as described by (33)
and (34). Clearly, the optimum choice of is

(51)

The Lagrangian multiplier should be chosen such that
. Since is a scalar, this can easily

be done by the bisection method. The optimum transmis-
sion policy is identical to the policy derived to minimize the
common outage probability, with the only exception being
that the threshold level is not necessarily as it was in
Section V-A. Again, notice the deterministic nature of the
optimum transmission policy.

Given the derived and for every state ,
the complete power allocation policy is known and the cor-
responding average power vector is ,
where both and implicitly depend on . By
varying the power price vector , we can obtain dif-
ferent average power vectors that lie on the boundary surface
of .

E. Extreme Points

As discussed in [6, Sec. III] for the zero-outage capacity case,
there are other average power vectors on the boundary surface of

that cannot be parameterized by any .
We refer to these points as extreme points. In Fig. 2, the points

and are extreme points. At the point , the power used by
User 1 is the minimum power that User 1 requires to maintain
the given with outage probability equal to in the absence
of User 2. In other words, corresponds to the single-user (i.e.,

in the absence of User 2) power region boundary of User 1. In
order for User 1 to achieve his single-user bound, clearly User 1
must be decoded last in every fading state so that he experiences
no interference from User 2. Thus, the point corresponds
to giving User 1 absolute priority in the sense that User 1 is
decoded last in every fading state. Similarly, corresponds to
decoding User 2 last in every fading state.

For the two-user case, the extreme point can actually be
characterized using the method described in Section V-D with

and , which ensures that User 1 is decoded last
in every fading state according to the optimal decoding order
described in (34). However, when there are more than two users,
the required decoding order can no longer be characterized by
a power price vector. Therefore, it is necessary to use a more
general method [6] in which we give absolute decoding order
priority to subsets of users. Users are partitioned into subsets
and, in all fading states, users in the th subset are decoded
first, followed by users in the th subset, and so on. Within
each subset, the decoding order is determined by the power price
vector and the fading state according to (34). Technical details
of the characterization of extreme points are given in Part G of
the Appendix.

VI. INDIVIDUAL OUTAGE CAPACITY

In this section, we consider individual outage, where outages
can be declared separately from each user. We characterize the
boundary of the usage probability region in Section VI-A, and
give the corresponding optimal power allocation strategy in Sec-
tion VI-B. In Section VI-C, we describe an algorithm that finds
the optimal Lagrangian multipliers. We discuss extreme points
of the usage probability region in Section VI-D. Finally, we
characterize the average power region in Section VI-E.

A. Outage Probability Region

In this subsection, we explicitly characterize the boundary
of the individual outage probability region. A word on nota-
tion: For any given vector and any set

, let denote the total number of users in the
set , and let denote the subvector of consisting of com-
ponents corresponding to the users in the set .

From Definitions 4.4 and 4.5, it is clear that, for a given av-
erage power constraint vector and rate vector , deriving the
boundary of the outage probability region is equiv-
alent to deriving the boundary of the usage probability region

. Define

(52)

We will require the following lemma to derive the boundary
of and the corresponding optimal power allocation
policy that achieves this boundary.

Lemma 6.1: Both the usage probability region and
the set are convex.

Proof: Convexity is proven using a time-sharing argu-
ment. See Part H of the Appendix for details.
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Due to the convexity of , an average usage prob-
ability vector will be on the boundary surface of if
and only if it is a solution to

(53)

for some nonnegative vector . Here can be viewed as
the channel usage reward if the information from User is trans-
mitted,9 . In this subsection, we focus on strictly
positive vectors for a parameterization of the regular points
on the boundary surface of . The extreme points cor-
respond to the case where some components of the vector
are equal to zero.10 Although one can get arbitrarily close to
an extreme point by letting some components of go to zero,
we show in Section VI-D how to explicitly obtain the extreme
points based on the regular point method described here.

Since the set is convex, for a given channel usage
reward vector , vector

solves (53) if and only if there exists a Lagrangian multiplier
vector such that is a solution to the
problem

(54)

with .
Equivalently, this maximization can be written as (55) at the

bottom of the page.
Similar to the procedure used to maximize the common usage

probability in (30) of Section V-A, we will proceed to solve
this maximization problem in two steps: we first find a power
allocation function that is optimal for any choice of

, and then given such a power allocation function, we
maximize with respect to .

In order to find the optimal power allocation function
, notice that if we fix , must satisfy

the optimization in (55) over the variable . That is,

9Note that � can also be viewed as the channel outage penalty if an outage
is declared from User i.

10In the average power region, extreme points correspond to the case where
some components of ��� are equal to zero. For both the usage probability region
and the average power region, more general decoding orders are used to achieve
the extreme points.

the optimal choice (for a given ) must be the
solution to

(56)

Therefore, a power allocation function is optimal if and only if
it is the solution to

subject to:

(57)
for every such that . This is clearly identical
to the minimization of weighted-sum power in (32). Thus,

, the optimal power allocation function
for all states such that is shown in (58) at the
bottom of the page, where the permutation for the
users in the subset satisfies

(59)

Similar to the common outage case, the solution in (59) indi-
cates that determines the decoding order of the users in
the subset in each fading state, and we refer to as the power
price vector.

Clearly, the vector of power allocation functions for fading
states for which is unimportant, since these states
do not affect the usage probability or the power constraint.
Therefore, , if we define by
(58) for every fading state , then the power allocation
function will be optimal for any choice of .

Having derived the optimal power allocation function
for any , we can now perform the maxi-

mization of the usage probability (55) over only the function
. If we define the total reward for all users in the set

to transmit information as

(60)

then we can rewrite the optimization in (55) as

(55)

if
(58)



1338 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005

which can be simplified to

(61)

Since defines the probability of transmission for the

subset in each fading state, we must have
in each fading state and , . Since both

constraints apply to each fading state separately, is op-
timal if and only if it is the solution to

(62)

in each fading state. It is then straightforward to show that
the optimal is defined in each fading state for

by

if and
otherwise

(63)
where

That is, the subset with the largest reward in
each fading state is chosen for transmission. If no subset has a
strictly positive reward in a fading state, then a full outage (i.e.,
subset is active) is declared in that fading state. This is very
similar to the optimum common outage transmission policy, ex-
cept that, with individual outage, there is a different channel
usage (transmission) reward associated with each subset
of users . It is possible that two different values of max-
imize the function in some fading states,
but this occurs with probability zero since we are concerned
only with continuous fading distributions. For discrete fading
distributions, there is the possibility that more than one subset
would be selected for some fading states. See [3, Sec. IV.B] for
a discussion of the same problem with regard to the broadcast
channel.

B. Individual Outage Transmission Policy

For each fading state , the optimal transmission
policy that minimizes the outage probability (given in terms of
the optimal Lagrangian multiplier vector ) is as follows.

1. If , then an outage is declared from all users
and no power is assigned to any user.

2. If for some , then all users in the
subset transmit at their respective rates using power

as defined in (58). Furthermore, successive de-
coding can be used with the decoding order described
in (59).

Notice that the optimal transmission policy is again determin-
istic, i.e., either no user transmits in a fading state or all users in
some subset transmit. The intuition behind this is the same
as for the optimal common outage transmission policy, i.e., that

the linear program in (62) is extremized at the boundary of the
constraint set.

Unlike the optimal common outage transmission policy, this
policy is not exactly a threshold policy, though it is in fact quite
similar. In the case of individual outage, there are re-
wards (corresponding to the possible transmission sub-
sets) to calculate in each fading state, i.e., .
For common outage, there is only one possible set of transmit-
ting users, i.e., all users, and the reward function is given by

. For common outage, if this single reward func-
tion is strictly positive, then it is worthwhile to transmit in that
fading state. For individual outage, only the best subset, i.e., the
subset with the largest reward, is considered. If the best subset
has a positive reward, then that subset should transmit in that
state.

Under this transmission policy, the resulting outage proba-
bility of each user is

(64)

The average power used by each user is given
by

(65)

The vector of optimal Lagrangian multipliers guarantees that
the power constraint of each user is satisfied.

As discussed in Section V-B for the common outage case, if
for two or more users, the decoding order and subse-

quent power allocation policy in (59) and (58) is not uniquely
defined. In this scenario, there are multiple solutions to the dual
problem given the optimal . However, we are guaranteed that
at least one of them is a solution that meets the power constraints
of all users (not just those users with ). A simple way to
circumvent this potential difficulty is to lower the power con-
straint of one or more of these users until the vector of optimum
Lagrangian multipliers is either strictly positive or zero for only
one user.

C. Optimal Lagrangian Multipliers

In the previous subsections, we characterized the
outage/usage probability region and the optimal transmis-
sion policy assuming knowledge of the optimum Lagrangian
multiplier (power price) vector . Therefore, given a power
constraint vector , a target rate vector , and a transmis-
sion reward vector , an important question is how to obtain
the optimal power price vector that corresponds to the
boundary of the usage probability region. It is easy to see that
the ellipsoid algorithm used to find the optimal power price
vector in the common outage case (described in Section V-C
and Part F of the Appendix) can also be used in the individual
outage case. For the case of individual outage, the subgradient

at is again given by the difference between the average
power constraint vector and the average transmit power vector
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Fig. 3. Three-user usage probability region.

resulting from the optimal power policy corresponding to the
price vector . That is,

(66)

where and are defined in (58) and
(63), respectively.11 With this choice of subgradient, the ellip-
soid algorithm in Part F of the Appendix, including the proce-
dure to find an initial polyhedron that must lie in, can be used
without any modification.

D. Extreme Points

By varying the channel usage reward vector and keeping
strictly positive, we can obtain all regular points on the boundary
surface of the outage probability region . However,
there are points on the boundary surface of that
cannot be explicitly characterized using this method. This corre-
sponds to the case when is not strictly positive. Alternatively,
the extreme points correspond to boundary points that are also
on the boundary surface of the usage probability region of some
subset of users (i.e., on the boundary surface of the usage prob-
ability region of only Users 1 and 2 of a three-user system). The
exact nature of these extreme points is best illustrated through
an example.

In Fig. 3, the usage probability region for a three-user system
is shown. The surface connecting points a,b,c,d,e, and f, is the
boundary surface of the usage probability region. The regular
points correspond to the interior of this surface, while the
boundary of this surface composes the extreme points. If we
only consider the fading distribution of the channel for User 1
(in the absence of Users 2 and 3), there is a certain maximum
usage probability achievable with the given power constraint
and given rate. This clearly is an upper bound to . Face A
in the figure is the area where this upper bound coincides with
the usage probability region of the three-user system. In order
for User 1 to achieve its single-user usage capacity, clearly
User 1 must be decoded last in every fading state so that User
1 experiences no interference. Thus, User 1’s outage states
are chosen independent of the fading states of the other users.

11Note that, for simplicity, we did not include��� as a parameter in the functions
PPP (hhh; k) and w (hhh; k) given by (58) and (63), respectively, though both of
them depend on the value of ���.

Given that User 1 is decoded last, Users 2 and 3 both treat User
1 as an additional source of background noise. Thus, face A is
the usage probability region for Users 2 and 3 given that User
1 (which is treated as interference) is using his optimal strategy
to maximize his usage probability. Notice that face A looks
like a two-user usage probability region because, although
User 1 is decoded last in every fading state, there is still a
tradeoff between Users 2 and 3. At point a, in every fading
state User 2 is decoded first, followed by User 3, followed by
User 1. Similarly, at point b, User 3 is decoded first, followed
by User 2, followed by User 1. At the points between a and b,
the decoding order between Users 2 and 3 is determined by a
power price vector and the fading state (i.e., according to (34)),
or in other words, those points are similar to regular points
for the two-user usage probability region. Similarly, face B
corresponds to decoding User 2 last in every fading state and
face C corresponds to decoding User 3 last in every fading state.

Face D corresponds to the area where Users 1 and 2 are al-
ways decoded after User 3. Thus, the rates achieved by Users 1
and 2 between points b and c correspond to the two-user usage
probability region of Users 1 and 2, in the absence of User 3.
Since User 3 is decoded first, he must treat Users 1 and 2 as
noise. Similarly, face E corresponds to decoding User 1 first in
every fading state and decoding Users 2 and 3 last. Finally, face
F corresponds to decoding User 2 first in every fading state.

Thus, to characterize these extreme points, we must give ab-
solute decoding order priority to groups of users, as we did to
characterize extreme points of the average power region with
common outage in Section V-E. Again, we let represent a
partition of into subsets and we suc-
cessively decode users in the set first, followed by the users
in , and so on. In Fig. 3, point a corresponds to ,

, and , and points on the line between a and
b correspond to and . Given a partition,
we can essentially treat each subset of users separately, with the
caveat that some users see users in other subsets as interference.
The technical details of this process are described in Part I of
the Appendix.

E. Average Power Region

In Sections VI-A and VI-B, given the power constraint vector
and rate vector of the users, we derived the outage

probability region and the corresponding optimal
power allocation policy. Now, for a given rate vector and av-
erage outage probability vector , we consider the average
power region , defined as the set of all pos-
sible average power vectors that can support rate vector with
the average outage probability of each user no larger than ,

. That is,

(67)

The average power region provides an alternative (i.e., an al-
ternative to the individual outage/usage probability region) im-
plicit characterization of the individual outage capacity region
because a rate vector is in if and only if is in

.
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By convexity of the set defined in (52), it is clear from
(54) that an average power vector will be on the boundary sur-
face of if and only if it is a solution to the
minimization problem

subject to: (68)

for some vector . Therefore, for each given power price
vector , an average power vector solves (68) if and
only if there exists a Lagrangian multiplier vector such that

is a solution to the problem

(69)

and . This optimization problem is similar to
the one in (54). However, in (54), the average transmit power
vector and the channel usage reward vector are given, but
the appropriate power price vector must be found such that
the average power constraint of each user
is satisfied. The resulting average outage probability vector will
lie on the boundary surface of for the given . In
(69), we have the opposite scenario: the power price vector
and the average outage probability vector are given, but
the usage reward vector must be found such that the average
outage probability constraint of each user
is satisfied. Then, the resulting average power vector will lie on
the boundary surface of for the given .

Given the optimal Lagrangian multiplier vector , by the
equivalence of (54) and (69), the optimal choice of and

are given by (58) and (63), respectively. The optimal
Lagrangian multiplier vector guarantees that the outage
probability constraints are met.

The optimal Lagrangian multiplier vector can also be found
using the ellipsoid method described in Section V-C and Part F
of the Appendix. In this case, the subgradient is given by

Again, the vector of optimal Lagrangian multipliers is such that
the outage constraints are met with equality (or possibly in-
equality if the Lagrangian multiplier of some user is zero).

As in the case with a given common outage probability,
there are also extreme points on the boundary surface of

that cannot be parameterized by any .
These extreme points are explicitly characterized for the av-
erage power region in Part J of the Appendix.

VII. MULTIPLE-ACCESS AND BROADCAST CHANNEL DUALITY

The recently established duality between the Gaussian MAC
and broadcast channel [16] applies very cleanly to outage ca-
pacity. The duality of these channels implies that the capacity
region of the constant broadcast channel with channel gains

, noise power of variance one at each receiver, and
average power constraint , is exactly equal to the capacity
region of the dual MAC, which has the same channel gains

, noise power of variance one, and a sum power con-
straint of across all transmitters. In [16, Sec. V], this du-
ality is extended to the outage capacity of the fading MAC and
the broadcast channel. If we let denote the
common outage capacity of the MAC with fading distribution

, and let denote the common outage capacity
of the broadcast channel (defined in [7]) with fading distribution

, then the following relationships hold:

(70)

(71)

These expressions are stated here for the common outage ca-
pacity only, but they hold for individual outage capacity (re-
ferred to as the independent outage capacity in [7]) as well.
Duality shows that the outage capacity region of the broadcast
channel is equal to the union of outage capacity regions of the
MAC, and the outage capacity region of the MAC is equal to the
intersection of outage capacity regions of the scaled broadcast
channel. Additionally, the capacity-achieving power policies for
the broadcast channel can be directly mapped via a simple trans-
formation to the optimal power policies for the MAC, and vice
versa. This mapping preserves the rates achieved in each fading
state, as well as the sum power. See [16] for more details.

VIII. AUXILIARY CONSTRAINTS ON TRANSMIT POWER

In Sections V and VI, we considered only average transmit
power constraints for the users. In practice, sometimes we
have to consider the peak transmit power constraint of each user
as well. That is, in addition to the average transmit power con-
straint vector of the users, for each fading state , the
transmit power vector of the users must be no larger than

. Under these auxiliary constraints, given
a rate vector , the problem of deriving the minimum average
common outage probability of all users or deriving the average
outage probability region of the users can be similarly solved
as shown in Sections V and VI, except that now we have to
solve the minimization problems (32) and (57) subject to the
additional peak power constraint vector , i.e., the additional
constraint for problem (32) is

and the additional constraint for problem (57) is

(72)

Note that since for any user , the peak
power constraint in (72) is equivalent to ,

. The solution to problems (32) and (57) under the additional
peak power constraint vector is given in [6, Sec. V]. That
is, for a given power price vector , assuming that

, the transmit power or
of each user is now obtained through a greedy algorithm.

Specifically, by denoting as the value of in the th
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step of the following algorithm, the solution for each user
is obtained after steps.

• Initialization: Set for all . If
then stop. Otherwise, set .

• Step : Let be a permutation on

(note that does not exist) such that

Then set

if
if

where is defined as

for any and

with nonexistent. Go to Step .

• Stop after steps.

Similarly, can be obtained by applying
the above algorithm to the users in the set instead of
to the users. Note that the solution in
(33) and the solution in (58) that can be
achieved by successive decoding are obtained through an algo-
rithm that is actually a special case of the above greedy algo-
rithm [6]. However, when peak power constraints are imposed
on the users, the solution or obtained through
this greedy algorithm cannot always be achieved by successive
decoding in general.

IX. CONCLUSION

We have obtained the outage capacity region of fading
MACs under the assumption that perfect CSI is available both
at the transmitters and at the receiver. The capacity region is
obtained implicitly by deriving the minimum common outage
probability and the individual outage probability region for a
given rate vector. Given the average power constraint of each
user, we have derived the power allocation policy that mini-
mizes the common outage probability for a given rate vector
when transmission to all users is turned off simultaneously.

When an outage can be declared for each user individually, we
have derived a power allocation strategy to achieve the outage
probability region boundary for the given rate vector.

In both cases, the optimal power allocation policies have been
shown to be purely deterministic functions of the fading state,
and standard convex optimization algorithms have been used
for obtaining the optimal power control parameters. These op-
timal power allocation policies show that, similar to the zero-
outage scenario, successive decoding is optimal and in each
fading state, the decoding order is determined by the power
prices of the users and their fading gains. By applying these op-
timal power allocation strategies, we have also obtained the av-
erage power regions that can support a rate vector with a given
common outage probability or a given outage probability vector
for the users. When there are additional peak power con-
straints, the optimal power allocation for the users in each
fading state can be obtained through a greedy algorithm, though
in general it cannot be achieved by successive decoding.

APPENDIX

A. Proof of Proposition 3.1

We prove (7) by showing that for every fully random power
policy satisfying the power constraint vector , there ex-
ists an equivalent power policy with cardinality two in each
fading state that achieves the same rate vector using the same
or less power. Given an arbitrary random power policy ,
let denote the vector of random power allocation func-
tions in each fading state . We construct a new power
policy of the form in (6) by defining a deterministic power al-
location function and a deterministic probability of trans-
mission function in each fading state as follows:

(73)

(74)

where the probability and expectation are computed over only
the randomization in each fading state (i.e., over ), and
not over the set of all fading states . Notice that in each
fading state

where, again, the probabilities and expectations are computed
over only the randomization in each fading state (i.e., over

) and not over the set . Therefore,

Next, notice that if and are arbitrary power vectors sat-
isfying and , then due to
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the concavity of the log function in the definition of
in (3), we have

for any . Since is defined as the conditional ex-
pected value of on the set of power vectors for which

is admissible, the same argument yields
for any fading state with . In addition, it is clear that

Therefore, the power policy , which is of cardinality two in
each fading state, uses no more power than the power policy

and achieves with the same probability.

B. Proof of Proposition 3.2

1. We first prove that, for any given rate vector , if

and , then .
By the definition of zero-outage capacity in [6, The-

orem 2.3], a rate vector is in if and
only if there exists a deterministic power allocation func-
tion that meets the power constraint

and satisfies , . We
can easily map from any such power allocation policy
to one of the form defined in (6) by letting

and using the same . Since
for any and ,

given the true PDF of the fading state
and the new PDF as defined in (10), we have

(75)

which implies that the power constraint of (8) in Proposi-
tion 3.1 is satisfied. In addition, for
all . Therefore, according to Proposition 3.1, it
is obvious that .

2. Next, we prove that, for any given rate vector , if
then there exists a power policy such that

and

From Proposition 3.1, it is clear that if , then
there exists a power policy such that and

If , we let , , and
it can be similarly shown as above that

Therefore, since , ,
we have

In the case where , we construct a new
power policy by keeping the power allocation function
unchanged while scaling down in each fading state

with a positive factor such that
. Under this new power policy, obviously

remains the same, and the power constraint is still
satisfied and, in addition, it still holds that

Therefore, given this new power policy, it can be similarly
shown as above that

Note that now the new PDF of is
.

Combining the proofs in the above two items, we conclude
that Proposition 3.2 is true.

C. Proof of Proposition 3.3

We prove (17) by showing that for every fully random power
policy satisfying the power constraint vector and the
outage probability constraint vector , there exists an equiva-
lent power policy with cardinality in each fading state
that achieves the same rate vector using the same or less
power. Given such a random power policy , let
denote the vector of random power allocation functions in each
fading state , and let denote the corre-
sponding rate allocation function vector that satisfies the outage
probability constraints of the users. In addition, let de-
note the corresponding event that only users in the th subset

are transmitting at their designated
rates (or higher rates) in fading state , and no other users are.
That is,

and

such that

We construct a new power policy of the form in (16) by
defining a deterministic power allocation function and
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a deterministic probability of transmission function for
the th subset of users in each fading state as follows:

(76)

(77)

where the expectation and probability are computed over only
the randomization in each fading state, and not over the set of
all fading states . It is obvious that ,

for any , and since .
Notice that in each fading state

where, again, the probabilities and expectations are computed
over only the randomization in each fading state and not over
the set . Therefore,

Furthermore, by the same argument used as in the proof of
Proposition 3.1, it is straightforward to show that

for any fading state with ,
. Since , we

have , such that
. Therefore, for any fading state with ,

, there exists a corresponding rate allocation
function vector satisfying

and

such that . The resulting average probability
of transmission for each user with a rate no smaller than is

In conclusion, the power policy , which is of cardinality
in each fading state, uses no more power than the power policy

and achieves with the same set of probabilities.

D. Proof of Proposition 3.4

For a given power policy
satisfying as defined in Proposition 3.3, in order to
prove (21), we first show that, for any given rate vector , if

then , .

By the definition of zero-outage capacity in [6, Theorem 2.3],
a rate vector is in if and only if
there exists a deterministic power allocation function

that meets the power constraint

and satisfies

It is obvious that, by simply letting ,
, these conditions are all satisfied.

Next we show that, for any given rate vector , if

then there exists another power policy with the same set of prob-
ability functions and a different set of determin-
istic power allocation functions that meets the
power constraint and satisfies

(78)

Specifically, since

there exists a deterministic power allocation function
that satisfies

and , . By letting
, it is clear that (78) is satisfied.

In addition

Therefore,

According to Proposition 3.3, we have and
(21) holds.

Finally, we show that (22) is the equivalent expression of (21).
Since

we have

Therefore, (21) and (22) are equivalent expressions.
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E. Proof of Lemma 5.1

In the following, we prove that the set defined in
(27) is convex. For a given rate vector , consider two points

and in . By Proposi-
tion 3.1, there must exist power allocation functions
and and probability of transmission functions
and such that

(79)

and

(80)

with for all satisfying
and for all satisfying .

We must show that

for any . In order to do so, we define a random power
allocation function as shown in (81) at
the bottom of the page. Then obviously the resulting average
common usage probability is

and the average transmit power is given by

Therefore, we have

which implies that the set is convex.

F. Description of Ellipsoid Algorithm

For differential functions, the ellipsoid algorithm works by
taking the gradient of the function and thereby eliminating
portions of the domain that cannot contain the optimal solution.

By the definition of convexity, any differential convex function
satisfies

(82)

where and represent vectors here. Therefore, for any sat-
isfying we have . Given
some point in the domain of , by evaluating we
can eliminate a halfspace in our search for the minimizing .
The ellipsoid algorithm is based on the idea of continually elim-
inating a halfspace of the domain. If is nondifferentiable,
however, we cannot evaluate the gradient of the function. We
can, however, eliminate a halfspace by finding a subgradient of
the function . The vector is a subgradient of at if

(83)

Fortunately, continuous convex functions are subdifferentiable
at all points in the domain of . As long as we are able to find a
subgradient at any point in the domain of our function, we are
able to use the ellipsoid algorithm for nondifferentiable func-
tions.

Since is the supremum of the Lagrangian
, which is an affine function of , we are

easily able to find a subgradient for . For any given
, let us denote the corresponding optimum probability of

transmission function and the power allocation function by
and , respectively. Here we write them as

explicit functions of because they depend on the Lagrangian
multipliers. Consider the derivative of with
respect to

(84)

Due to the affine nature of , this implies that for all satisfying

we have

Since is defined as the supremum of the Lagrangian, this
implies . Thus,

is a subgradient of at , which allows us to then eliminate
a halfspace of the domain of , further narrowing our search for
the optimal Lagrangian multipliers. Notice that the subgradient
is equal to the difference between the average power constraint
vector and the average transmit power vector corresponding to
the optimal power policy with the given power price vector.

with prob.
with prob.
with prob. .

(81)
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There are, in fact, a number of different algorithms to
minimize nondifferentiable convex functions [15], [17]. Here
we propose the ellipsoid algorithm to find the vector of op-
timal Lagrangian multipliers. The ellipsoid algorithm is not
necessarily the fastest algorithm, but it is simple to use and
describe. Readers interested in finding algorithms with better
convergence properties can see [15], [17].

In the ellipsoid algorithm, we first find an ellipsoid in which
the optimal Lagrangian multiplier vector must lie. We then
take the subgradient at the center of this feasible ellipsoid to
rule out a halfspace. We then consider the minimum volume el-
lipsoid covering the previous feasible ellipsoid intersected with
the feasible halfspace (determined by the subgradient), and find
a subgradient at the center of the new ellipsoid. If the center of
the feasible ellipsoid is not nonnegative (i.e., some component
of is negative), then it is easy to show that the vector with

for all such that and for all other
components is a subgradient.

Before describing the ellipsoid algorithm in detail, we first
find a polyhedron in which must lie by individually bounding

for each user . We do this by finding a subgradient for
(i.e., and , ) where

is some positive constant. Consider the optimal and
for this . Due to the structure of and the optimum

decoding order described in (34), User is decoded last in all
fading states. Therefore User experiences no interference and

In addition, only in states for which
. Therefore, if we let , we see that will be zero

in almost all fading states, and for sufficiently large we have
. This implies that

is a subgradient of . Thus, can only increase if is
increased beyond , which implies . By repeating this
procedure for all users, we will find that , where

is a positive vector.
Next we briefly describe the ellipsoid algorithm [15]. We de-

fine an ellipsoid by

for an positive-definite matrix and an -dimensional
vector (which is the center of the ellipse). Given the minimum
volume ellipsoid covering the initial polyhedron and
defining as the center of this ellipsoid, the algorithm is as
follows:

1. Find a subgradient at :

where and are given by (33) and
(36), respectively.

2. Find the minimum volume ellipsoid covering
:

where

3. Increase by and return to Step 1.

This method can be repeated indefinitely until the desired ac-
curacy is reached. At each step, the volume of the feasible ellip-
soid is reduced by at least the factor , which implies
that the volume of the feasible ellipsoid goes to zero. Together
with a Lipschitz condition on the objective function (which is
implied by the convexity of [18]), convergence to the op-
timal can be shown. Details of the algorithm and convergence
proofs are available in [15, Lecture 14].

G. Extreme Points of Average Power Region for Common
Outage

In this section, we describe how to find the extreme points
of . As mentioned in Section V-E, we
consider more general decoding orders by giving absolute
decoding order priority (i.e., priority in all fading states) to
certain groups of users. Specifically, let denote a partition
of into subsets , which
implies and for . In
every fading state , users in the subset are decoded first,
followed by the users in , up to the final subset . The
successive decoding order within each subset is determined
by as before (according to (34)). With this method,
the users in set experience no interference from users in the
other groups. However, the users in set are decoded before
the users in and, thus, the users in provide interference
to them. Similarly, the users in set see the users in
and as interference. Interestingly, if powers are allocated
according to (33), the total interference created by the users in
any set is independent of the decoding order used within

that subset (i.e., from (33)).
Therefore, is used to determine the decoding order of
users in . If , then all the users are of the same
priority and their decoding order is then determined by the
power price vector completely. Therefore, a decoding order
determined by with is different from any of the
orders determined by with , and can be
viewed as the power allocation parameter pair that describes
all possible decoding orders. For every possible partition ,
a different surface is parameterized by the power price vector

. Thus, by considering every power price vector (with sum
equal to one) for every partition, we can fully characterize the
extreme points of .

We now show how to find the extreme point corresponding to
a given partition and a given power price vector . Note that
the whole set of extreme points resulting from the partition
correspond to points which are on the boundary of the average
power region (for the given common outage probability) of the
users in subset in the absence of all other users. Given the
partition and the , the problem is thus to minimize ,
i.e., to minimize the weighted-sum power used by the users in

. This ensures that the average power used by the users in
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will be on the boundary of the average power region of the
users in . Given that this has been accomplished, the sec-
ondary goal is to minimize , followed by ,
and so on. Since we are first concerned with the users in set
and since the users of experience no interference from users
of other subsets, we determine the outage states by only consid-
ering the users in . If we did otherwise, the users in would
not necessarily be able to achieve a point on the average power
region of the users in . Following the earlier arguments in
this section, the transmit power is allocated to users in ac-
cording to (85) at the bottom of the page, where denotes
the number of users in set and the permutation of the

users satisfies

(86)

As before, the optimum choice of is

(87)

where the Lagrangian multiplier is chosen such that
. Since the outage states have been

determined, all that is left to do is to allocate power to
users in the lower priority groups. Since the users in group

will see users in groups as
interference, the optimum power allocation function for each
user in is as shown in (88) at the bottom of the page, where

denotes the number of users in set and the permutation
of the users satisfies

The corresponding average power vector is

(89)

where is defined in (85) and (88) and is defined in
(87).

H. Proof of Lemma 6.1

In the following, we prove that the set defined in
(27) is convex. This is a straightforward generalization of the
proof in Part E of the Appendix. For a given rate vector , con-

sider two points and in .

By Proposition 3.3, there must exist power allocation functions
and and probability of transmission func-

tions and such that

(90)

(91)

with for all
and for all ,

.
We must show that

for any . In order to do so, we define a random power
allocation function

as shown in (92) at the bottom of the page. Clearly, the resulting
average transmission probability for each user
is

and the average transmit power vector is given by

Therefore, we have

if
(85)

if

(88)

with prob.
with prob.
with prob. .

(92)
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which implies that the set is convex. Furthermore,
this also implies that the individual usage probability region

is convex.

I. Extreme Points of Usage Probability Region for Individual
Outage

In this section, we describe how to characterize the extreme
points of the usage probability region for individual outage. As
discussed in Section VI-D, we consider a partition of

and we successively decode users in set first,
followed by the users in , and so on. Since users in
are given absolute priority over users in for and
users in are given the highest priority, for each given vector

, we can first derive the outage probability subvector
for users in set as if users in all other sets were

nonexistent. This is necessary to ensure that the usage proba-
bilities of the users in set are on the boundary surface of the
usage probability region of the users in . For , once
the optimal power allocation for users in is deter-
mined, the outage probability subvector for users in set

can be derived as if users in were nonexis-
tent and the signals from users in were background
noise. Note that subvector is a regular
point on the boundary surface of the outage probability region

for the users in set (treating signals from
users in as background noise). Since we have al-
ready shown how to obtain a regular point on the boundary
surface of region for an -user system, the reg-

ular point of region for a -user
system can be similarly derived.

Therefore, for each given pair with , we can
obtain the corresponding boundary outage probability vector
of region . Such boundary vectors are the extreme
points on the boundary surface of region , and we
can obtain all extreme points explicitly by varying with

and .

J. Extreme Points of Average Power Region for Individual
Outage

In this section, we characterize the extreme points of the av-
erage power region with individual outage. As before, consider
the case where subsets of users are given absolute priority over
other subsets of users in every fading state. We let represent
a partition of and we consider successively
decoding users in set first, followed by the users in ,
and so on. Since users in are given absolute priority over
users in for and users in are given the highest
priority, for each given power price vector , we can

first derive the average transmit power subvector for
users in set as if users in all other sets were nonexistent.
This ensures that the average power used by the users in
will be on the boundary of the average power region of the
users in . For , once the optimal power allocation for
users in is determined, the average transmit power

subvector for users in set can be derived as if users
in were nonexistent and the signals from users
in were background noise. Note that subvector

is a regular point on the boundary surface
of the average power region for the

users in set (treating signals from users in
as background noise). Since we have already shown how
to obtain a regular point on the boundary surface of region

for an -user system, the regular point

of region for a -user
system can be similarly derived.

Therefore, for each given pair with , we can
obtain the corresponding boundary average power vector. Such
boundary vectors are the extreme points on the boundary sur-
face of , and we can obtain all extreme points
explicitly by varying with and .
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