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Abstract—We consider a multiuser multiple-input multiple- In this paper, we consider &-user MIMO Gaussian BC in
output (MIMO) Gaussian broadcast channel (BC), where the which receiverj hasr; > 1 receive antennas and the transmitter
}\r/lal‘,r\‘/lsg”'g(e:r.and recelvlers ha\ée mléltngI%Can_ttennas. f'”ce.the hast > 1 transmit antennas. The achievable region for a general

is in general a nondegrade , its capacity region = . . . 9"
remains an unsolved problem. In this paper, we establish a duality MlM_O BC requires an e>_<tenS|0n _Of the Calre—Shamal region to
between what is termed the “dirty paper" achievable region (the multlple users and mu|tlp|e receive antennas, Wh|Ch was done
Caire—Shamai achievable region) for the MIMO BC and the by Yu and Cioffi in [8]. We refer to this extension as the dirty
capacity region of the MIMO multiple-access channel (MAC), paper region. We establish a duality between the dirty paper
which is easy to compute. Using this duality, we greatly reduce region of the MIMO BC and the capacity region of the MIMO

the computational complexity required for obtaining the dirty - Lo
paper achievable region for the MIMO BC. We also show that the MAC. In other words, we show that the dirty paper region is

dirty paper achievable region achieves the sum-rate capacity of €xactly equal to the capacity region of the dual MIMO MAC,
the MIMO BC by establishing that the maximum sum rate of this ~ with the K transmitters having the sarsempower constraint
region equals an upper bound on the sum rate of the MIMO BC.  as the MIMO BC. We establish this duality by showing that all
Index Terms—Broadcast channel (BC), channel Capacity, d|rty rates aChieVabIe in the dual MIMO MAC W|th pOWer Constraints
paper coding, duality, multiple-input multiple-output (MIMO)  whose sum equals the BC power constraint are also achievable
systems. in the MIMO BC, andvice versaThis duality is the multiple-
antenna extension of the previously established duality between
the scalar Gaussian BC and MAC [9]. Though we consider only
the constant channel case, this duality can easily be shown to
ULTIPLE-input  multiple-output  (MIMO)  systems poq for fading multiple-antenna Gaussian BCs and MACs, as
1 have received a great deal of attention as a methodif@oes in the scalar channel case. This duality has two important
achieve very high data rates over wireless links. The Capa%plications: it permits us to compute with ease the dirty paper
of single-user MIMO Gaussian channels was first studied %gion of the MIMO BC, which is very difficult to compute
Foschini [1] and Telatar [2]. This work has also been extendggtectly, and it allows us to show that the dirty paper achievable
to the MIMO multiple-access channel (MAC) [2]-[4]. Theregion achieves the sum rate capacity of the MIMO BC.
capacity of MIMO broadcast channels (BC), however, is an ginging the full capacity region of the MIMO BC is very dif-
open problem due to the lack of a general theory on nondgs|t due to its nondegraded nature, but we are able to show
graded BCs. In pioneering work by Caire and Shamai [S],fat the dirty paper region achieves the sum rate capacity of
set of achievable rates (the achievable region) for the MIM@e MIMO BC through the use of the Sato upper bound on
BC was obtained by applying the “dirty paper” result [6] ahe sum-rate capacity of BCs [10]. The Sato upper bound was
the transmitter (or alternatively, coding for noncausally knowgst applied to the MIMO BC by Caire and Shamai [5] to find
interference). It was also shown in [5], [7], that the sum rat@e sum rate capacity of te¢ > 1,7, = r, = 1) channel.
MIMO BC capacity equals the maximum sum rate of thigjsing Sato’s technique, we bound the sum rate capacity of the
achievable region for the two-user BC with an arbitrary numbgimo BC by considering the capacity when tifé receivers
of transmit antenna§ > 1) and one receive antenna at e"f‘CBerforijoint signal detection (i.e., we consider a single-user
receiver(ry = rp = 1). However, computing this region is; » (y° —_, rj) antenna channel) with the worst case colored
extremely complex and the approach used in [5], to prove thgjse, when the noise at every antenna is correlated with the
optimality of dirty paper coding for sum rate does not appear fp,ise at every other antenna except for those at the same re-
work for the more general class of channels (i.e., an arbitraf¥ijver, and we analytically show, employing a proof which gen-
number of users and receive antennas) which we consider. grg|ly constructs the worst case noise covariance matrix, that
this upper bound coincides exactly with the maximum achiev-
able sum rate in the dirty paper region.
Manuscript received August 29, 2002; revised June 27, 2003. The material inThere has been parallel work on the optimality of the dirty
this paper was presented at the IEEE International Conference on Communica- . .
tions, New York, NY, April 2002. paper region for sum capacity of the BC. In [11], the authors
The authors are with the Department of Electrical Engineering, Stanford Ufilandle those channels for which the worst case correlation of
versity, Stanford, CA 94305 (e-mail: sriram@systems.stanford.edu; njindaf®e noise in the Sato upper bound is nonsingular, and in [12],
systems.stanford edu; andrea@systems.stanford.edu). the authors handle channels with multiple transmit antennas but
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the most general case, with no restrictions on the number of

A

antennas or on the worst case noise. H1 @—»yl u1-> HT

Although the optimality of the dirty paper region has only
been shown for sum rate (and trivially for the corner points of
the region), the fact that the dirty paper region is equal to the m @"Y2 uz—>-
dual MIMO MAC capacity region together with the fact that the
scalar Gaussian BC capacity region is equal to the dual MAC ca-
pacity region leads us to believe that the dirty paper region may /
actually be the capacity region of the MIMO BC. Significant -
progress toward proving this conjecture has recently been made HK @"YK “K"

[13], [14], but this hypothesis remains unproven.

The remainder of this paper is organized as follows. In Sefdg- 1. System models of the MIMO BC (left) and the MIMO MAC (right)
tion I, we describe the MIMO BC and the dual MIMO MAC. “"a"e!s:
In Section Ill, we summarize some background information,
including the achievable “dirty paper” BC region, the MIMO Letu; € C™ %! be the transmitted signal of transmittel_et
MAC capacity region, and the duality of the scalar MAC and € C**! be the received signal and € C**! the noise vector
BC. We describe the MIMO MAC-BC duality result in Sectiorwherew ~ N(0, I). The received signal is mathematically
IV. In Section V, we show that the dirty paper region achievaepresented as
sum rate capacity of the MIMO BC and we provide a few illus-
trative examples in Section VI. We conclude with Section VIl y = Hyfuy + ... + H}(uK +w

uy
—H' | | +w, whereHT:[HlT...H}(].
Uk

Il. SYSTEM MODEL

We use boldface to denote matrices and veciStisdenotes
the determinant and ™! the inverse of a square mati For
any general matrixM, M' denotes the conjugate transposin the dual MAC, each transmitter is subject to an individual
andTr(M) denotes the tracd.denotes the identity matrix andpower constraint of,, ..., Px, with > P = P (i.e., the
diag();) denotes a diagonal matrix with ti{& ¢) entry equal sum of the MAC power constramts equals the BC power con-
to \;. straint). We also assume perfect knowledge of the channel at the

We consider a MIMO BC with &-antenna transmitter arid  transmitters and the receiver in the dual MAC.
receivers withry, ..., rx receive antennas, respectively. The Finally, we define theooperative systeto be the same as the
transmitter sends independent information to each receiver. TB€, but with all receivers coordinating to perform joint detec-
BC is the system on the left in Fig. 1. tion. If the receivers are allowed to cooperate, the BC reduces to

Letz € C**! be the transmitted vector signal and B¢ € a single-uset x (Z]K:l r;) multiple-antenna system described
C"=** be the channel matrix of receiverwhereHy (i, j) rep- by
resents the channel gain from transmit antehtantenna of
receiverk. The white Gaussian noise at receikes represented y=Hz+z (2
by ng € C"*! wheren, ~ N(0, I). Letyr € C™*! be the
received signal at receivér The rece|ved signal is mathemati-where
cally represented as

n 1
h ™ H, y=| : and z =
=Hz+ | : |, whereH = | : |. (1)

Yk e Hy

Yx Nk

We call the capacity of this system theoperativecapacit
The matrixH represents the channel gains of all receivers. TheWe use pacty y P pacty.

covariance matrix of the input signal Bma,, = [E[zx*]. The
transmitter is subject to an average power const@inivhich Coo(P, H), Criac(Py, ..., P HT). andCenn (P, H)
implies Tr(Xma,) < P.We assume the channel matidk Y U ’ coop

is constant and is known perfectly at the transmitter and at gll 4\ te the capacity regions of the MIMO BC, MIMO MAC,

receivers. and cooperative system, respectively.
Now consider the dual MAC shown in the right half of Fig. 1.

The dual channel is arrived at by converting the receivers in the
BC into transmitters in the MAC and converting thantenna
transmitter into at-antenna receiver. Notice that the channel To obtain our results, we use the achievable region of the
gains of the dual MAC are the same as that of the BC, i.&4IMO BC channel obtained in [5], [8] and results on the MIMO
H,(i, j) corresponds to the gain from transmit antejit@an- MAC capacity region [2]-[4], extensively in this paper. Hence,
tennai of receiverk in the BC and to the gain from antenhaf  we first summarize these results and then state results on the du-
transmitterk to receive antennain the MAC. ality of the scalar Gaussian BC and MAC [9].

I1l. BACKGROUND
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A. Achievable BC Region—The Dirty Paper Region dividual rate constraints (i.e., minimizing the transmit power re-

An achievable region for the MIMO BC was first obtained iffluiréd to achieve a certain set of rates).
[5]. In [8], the region was extended to the more general m%—_ MIMO MAC Capacity Region

tiple-user, multiple-antenna case using the following extension
of dirty paper coding [6] to the vector case. The capacity region of a general MIMO MAC was obtained

in [2]-[4]. We now describe this capacity region for the dual

Lemma 1 (Yu, Cioffi): Consider a channel witly, = \;M0 MAC as defined in Section II. For any set of powers
H,z; + s, + ni, wherey, is the received vecto;, the (P1, ..., Px), the capacity of the MIMO MAC is
transmitted vectos;, the vector Gaussian interference, and

the vector white Gaussian noise sif andn,, are independentCyac (P, ..., Pg; HY)
and noncausal knowledge of is available at the transmitter A
but not at the receiver, then the capacity of the channel is the= U {(Rl, ..., RE): ZRZ
same as ik, were not present. {Tr(P;)<P;Vi} ieS
In the MIMO BC, this result can be applied at the transmitter T
) ' . . <log|I H'P,H,\VSC{1,..., M} ;.
when choosing codewords for different receivers. The trans- = log\I ZGZS ¢ Sae }}

mitter first picks a codeword for receiver 1. The transmitter then (5)
chooses a codeword for receiver 2 with full (noncausal) knowl-

edge of the codeword intended for receiver 1. Therefore, re-For P > 0, we denote by,.io.(P, H') the following set:
ceiver 2 does not see the codeword intended for receiver 1 as

interference. Similarly, the codeword for receiver 3 is chosenCunion (P HT)

su_ch that receiver 3 does not see t_he signals intended for re- 2 U Cyac(Py, ..., P HY
ceivers 1 and 2 as interference. This process continues for all S pep

K receivers. Receiver 1 subsequently sees the signals intended =0 =

for all other users as interference, receiver 2 sees the signals

intended for users 3 throughi as interference, etc. Since the ~ — U {(Rl’ Ri) : ZRl
ordering of the users clearly matters in such a procedure, the {E; Tr(Pq')SP}
following is an achievable rate vector:

i€S

i€S

vsg{1,...7M}}. (6)

I+ H: > i) er(,,;) . . . L
j>i By the argument provided in [4, Theorem 1], this region is

convex. It can easily be shown that this region is the capacity
I+H.; (E Ew(j)) Hi(,;) region of a MAC when the transmitters have a sum power
J>i constraint instead of individual power constraints but are not
i=1,..., K. (3) allowed to cooperate. Additionally, the MIMO MAC rates can
) . ) . be shown to be a concave function of the covariance matrices.
The dirty paper regiolppc (P, H) is defined as the convex this implies that the boundary points (and the corresponding
hull of the union of all such rates vectors over all positivggyariance matrices) of the sum power MIMO MAC capacity

Rr(iy = log

semidefinite covariance matriceX,, ..., ¥x such that region can be found by a standard convex program (see [4]
Tr(X1 + ... Xk) = Tr(E;) < P and over all permutations for g discussion of this with regards to the individual power
(w(1), ..., 7(K)) constraint MIMO MAC, which is nearly identical in structure).

This fact turns out to be quite important because later we show
that the MIMO MAC sum power constraint region is equal to

A
Copc(P, H) = Co R(r, %) @ the dirty paper achievable region of the dual MIMO BC.

Tr,Ei

L . . ) C. Duality of the Scalar Gaussian MAC and BC
whereR(w, ¥;) is given by (3). The transmitted signalas= . ) )
1+ ...+ zx and the input covariance matrices are of the form Finally, we state the duality result for scalar Gaussian MAC

%, = E[a;z;1]. The dirty paper coding procedure yields statist@nd BC channels [9].
cally independent signals, ...zx, fromwhichitfollowsthat  Theorem 1 (Jindal, Vishwanath, GoldsmithJhe capacity

Yo =% +.. Bk region of a scalar Gaussian BC with poweand channels =
One important feature to notice about the dirty paper ratg, ... 4 )is equalto the union of capacity regions of the dual

equations in (3) is that the rate equations are neither a CONCRY&C with powers(Py, ..., Px) such thathil P,=Pr

nor a convex function of the covariance matrices. This makes

finding the dirty paper region very difficult, because generally Cec(P;h) = U Cyvac(Pi, ..., Pg;h).

the entire space of covariance matrices which meet the power S pep

constraint must be searched over. In this paper, we consider the
dirty paper region subject to a transmit power constraint. Recérite proof of this is obtained by showing that any set of rates
work [15] has characterized the dirty paper region subject to iaehievable in the BC is also achievable in the MAC, aiud



VISHWANATH et al: DUALITY, ACHIEVABLE RATES, AND SUM-RATE CAPACITY OF GAUSSIAN MIMO BROADCAST CHANNELS 2661

versa One key point is that to achieve the same rate vector in theNext, we explain some terminology used in the transforma-
BC and MAC, the decoding order must in general be reversdihns, followed by the actual transformations. It is important
i.e., if user 1 is decoded last in the BC then user 1 is decod@dpoint out that the transformations require a reverses de-
first in the MAC. In the next section, we will derive a similarcoding/encoding order of the users in the dual MAC/BC
result that equates the dirty paper BC achievable region withannel. In other words, if user 1 is decoded first in the MAC
the union of MAC capacity regions for the MIMO channel wdi.e., user 1 suffers interference of all other users’ signals), then
are considering. we must encode user 1's sigrast (i.e., no interference from
other users) in the BC to achieve the same rates using these
transformations. Also, notice that the proof of duality only
requiresexistenceof BC covariance matrices which satisfy

In this section, we show that the capacity region of thgae rates achieved by a set of MAC covariance matrices, and
MIMO MAC with a sum power constraint of” for the K vice versa However, the transformations that follow actually
transmitters is the same as the dirty paper region of the dgabvide equations for the transformed BC covariances as a
MIMO BC with power constraintP. In other words, any function of the MAC covariances, andce versa This can
rate vector that is achievable in the dual MAC with powelse quite useful because it is generally much easier to find the
constraint{ Py, ..., Pg) is in the dirty paper region of the BC optimal BC covariance matrices by finding the optimal MIMO
with power constrainfy_/ | P;. Conversely, any rate vectorMAC covariance matrices and then transforming the matrices
that is in the dirty paper region of the BC is also in the duab BC covariance matrices (due to the convex structure of the
MIMO MAC region with the same total power constraint. MIMO MAC rate equations) than it is to directly search for the
optimum BC covariance matrices.

IV. DUALITY OF THE MAC AND DIRTY PAPERBC REGION

Theorem 2: The dirty paper region of a MIMO BC channel
with power constrainf’ is equal to the capacity region of th

dual MIMO MAC with sum power constrain®
. T First, we explain the termsffective channehand flipped
Corc (P, H) = Cunion(P, HY). channel A single-user MIMO systen® with channel matrix
Proof: We first proveCppc (P, H) 2 Cunion(P, H') by |, additive Gaussian noise with covarian&e and additive
showing that every rate vector achieved by successive decodifgependent Gaussian interference with covarigfiéesaid to
in the MAC is also in the dirty paper region of the dual MIMOnaye an effective channel ¢&X + Z)~/2H. The set of rates
BC. More specifically, we show by the MAC-to-BC transforgchievable by® and a different system with channel matrix
mations below that for every set of MAC covariance matricesyual to the effective channel and with additive white noise
Py, ..., Pg and any decoding order in the MAC, there exisgf unit variance and no interference are the same. Also, the
BC covariance matrig@l, o B usi?(g the same sum powercapacity of a syster®; with effective channel matri¥” and
as the MAC (i.e.) ;2 Tr(P;) = Y,2, Tr(%;)) such that the capacity of syster®, with effective channel matri%’,
the MAC rates are achievable in the BC using the dirty papgfrmed the flipped channel, are the same [2]. In other words,
coding method described in Section llI-A. Each set of MAC cGpy every transmit covariancB in O, there exists & in O,
variance matrices corresponds t&’adimensional polyhedron, with Tr(X) < Tr(E) such that the rate achieved Byin ©, is
as described in (5), with th&'! corner points of the polyhe- equal to the rate achieved Byin © . In Appendix, Section A,
dron corresponding to performing successive decoding at {fg show thalE = FG'EGF' meets this criterion where the
receiver in one of thé('! possible decoding orders. By the CoNnsingular value decomposition (SVD) Bfis Y = FAG" where

vexity of the dirty paper region (due to the convex hull operay js square and diagonalNext, we describe the covariance
tion), it is sufficient to show that the corner points of all polytransformations.

hedrons (i.e., the successive decoding points) corresponding to
all MAC covariance matrices are in the dirty paper region of tH&. MAC-to-BC Transformation
dual MIMO BC. Thus, with the MAC-to-BC transformations

eA. Terminology

In this subsection, we derive a transformation that takes as

. . . . -1-
described below, this impliggpc (P, H) 2 Cunion(P, H')- inputs a set of MAC covariance matrices and a decoding order
We complete the proof by showing and outputs a set of BC covariances with the same sum power
Cppc(P, H) C Cupion(P, H T). as the MAC covariances that achieve rates equal to the rates

We prove this by showing (via the BC-to-MAC transformation&chieved in the MAC using the MAC covariance matrices and
below) that for every set of BC covariance matrices and any efficcessive decoding with the specified decoding order.

coding order there exist MAC covariance matrices that achieveSINCe the numbering of the users is arbitrary , we assume that
the same set of rates using the same sum power. The convei§" 1 1S decoded first, user 2 second, and so on, at the MAC
of the MIMO MAC sum power constraint region thus impliegeiee';’er'

that

j—1
Corc(P, H) C Cunion(P, H'). A; 2 (I+Hj (Z 21) H;)
=1

This completes the proof, provided we have the transformations ,
. bel that map the MAC covariances to the BC covari- Note that the standard SVD command in MATLAB does not always return a
given below p équare and diagonal matrix of singular values, so modification may be necessary

ances andice versa [J to generate the flipped matrix correctly.
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and only on¥;, ...X,_;, and hence, th&; can be computed se-
K guentially in increasing order. By doing this for &l users, we
B; 21+ Z HITPIH, . find covariance matrices for the BC that achieve the same rate
I=j+1 as in the MAC. If we substitute in the expression generating the
The rate achieved by usgiin the MAC for some arbitrary set flipped channel, the expression for the BC covariance matrix of
of positive semidefinite covariance matricg®, ..., Px)is thejth user (9) can be expanded as
given by ;= B;'°F,GIAY°P,A?GFIBTY? (11)

where the effective channﬂj_l/QI:I}A;l/2 is decomposed

using the SVD aB; '/*HIA;'/* = F;A;G, where; is a
square and diagonal matrix.

K
I+ (H[PH))

=]

R?I = log
K
I+ Y (H!P;H;)

i=j+1

C. BC-to-MAC Transformation

K -t In this subsection, we derive a transformation which, given
= log |I + (I+ > (HIP,-H,-)) H'PH; a set of BC covariance matrices and an encoding order, out-
i=j+1 puts a set of MAC covariances with the same sum power as the
1t BC covariances that achieve MAC rates (using successive de-
= log ‘I +B; H;P;H;| . coding) equal to the rates achieved in the BC using the BC co-
Notice thatB; represents the interference experienced by us@iance matrices. These tra_lnsformations are almost identigal to
j in the MAC. To simplify, we take the square rootBljl and the MAC-to-BC transformations. For the dirty paper encoding

use the propertyl + AB| = |I + BA|. We also introduce &t the BC, we assume that udéris encoded first, usel{ — 1
—1/2 41/2 g : second, and so on, in decreasing order. Along the same lines as
A; '"A/" = I'into the expression to get

the MAC-BC transformation, we treat, /> H;B;"/* as the
R}=log P + Bj_1/2H}A;1/2A}/2PjA;/2Aj_1/2Hj3;1/2 . effective channel anB;/ZEjB;/2 as the covariance matrix. By
_ _ ) " ; 1/2 1/2
TreatingB; I/QH}AJ 1/2 as the effective channel of the systemfliPPINg the effective channel, we obta#;’"3;B;"~ and ob-
tain the transformation

Pi =APSc AL (12)

we flip the channel and finW such that
WSTT(A}/QPJ'A;/Z) .

M_ oo -1/2 —1/2 41/2p Al/2p—1/2 gt 4—1/2 S
R} =log ‘I-}—Aj H;B; /"A/"P;A;/"B; ""HA; '"|. P, =4 1/23;/22jB;/2Aj 1/2 13)

Now consider the rate of usgrin the BC assuming that the :
opposite encoding order is used (i.e., user 1 is encoded last, user ) —ma o
2 second to last, etc.) P, =B,"¥,B;"". (14)

As before, if we use the opposite decoding order in the MAC
(i.e., user 1 decoded first, etc.), this transformation ensures that
the rates of all users in the BC and MAC are equivalent along
with the total power used in the BC and MAC. Also note that
we can sequentially compute ti’s in decreasing numerical
= log ’I + A;IHJ»EJHH order. If we substitute in the expression generating the flipped
channel, the expression for the MAC covariance matrix of the
jth user in (13) can be expanded as

J
I+ (H]-ZZH})
=1

B
R} =log i1
I+ Y (H;%H)
=1

= log |1+ A7 H, %, H A7)

HereA, represents the interference experienced by jisethe P; = A;1/2FjG}B}/22]-B}/2Gij.A]71/2 (15)
BC. If we chose the BC covariances as , —1/2 “1)2
o where the effective channel; '“H B is decomposed
¥, =B7Y*P,B7/? @ . S 2gr i)z .
1=5 115 using the SVD asA; "/°H;B;"/* = F;A;G, whereA; is a
: square and diagonal matrix.
—1/2 41/2p A1/2pp—1/2
Y, ZB]' / Aj/ PjAj/ Bj / (9) D. MIMO MAC with Individual Power Constraints
: We can also obtain the capacity region of a MIMO MAC with
S :m (10) individual power constraints on each user from the dirty paper

region of a dual MIMO BC. By [9, Theorem 3], we can char-

clearly we seeR]JV[ = R?. Additionally, it is easy to show that acterize the individual power constraint MIMO MAC capacity

the resulting covariance matrices are all symmetric and positiegion as an intersection of sum power constraint MIMO MAC
semidefinite. In Appendix, Section B, we show that the transapacity regions. By duality, we know that the sum power con-
formations given by (8)—(10) satisfy the sum trace constrairgtraint MIMO MAC capacity region is equal to the dirty paper

orthaty" X, Tr(;) < =X, Tr(P;). Note thatZ; depends achievable region of the dual MIMO BC.
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Corollary 1: The capacity region of a MIMO MAC is the From [2], the cooperative capacity is defined as
intersection of the scaled dirty paper regions of the MIMO B% (P Z,l/gH)
coop )

Mathematically, this is stated as Lo Lo
=  max log|l+Z '*HSH'Z7'?|.

Cyviac(P, ..., Pr, HY) D20 h(®<P
K p . . Using this definition, we write the Sato upper bound as
_ i, T
= ﬂ Cppc (z_; ai,[\/olel VarHyg] ) . (1) Coneo(P, H)
. 2 ~ “2gsHTZV?. (18

Proof: This result can be obtained by a straightforward — 2 =50 (s <P log|T+2 - (18)
application of [9, Theorem 3] to the MIMO MAC capacity re- hus. the region aiven b
gion and the duality developed in Theorem 2. The scaled MIMB us glon g y

BC here refers to the channel where the matrix of each receiver K
H; is scaled by/c;. O (Ri, ..., Ri): ZRi < Csato( P, H)}
=1

is an upper bound o6z (P, H). Next, we show that the sum

rate capacity of the MIMO BC actually equals the Sato upper
In the previous sections we showed that the dirty paper nggund.

gion of the BC and the union of the dual MAC capacity regions )

are equivalent. Now we show that the dirty paper broadcasting’ "€orem 3: The sum rate capacity of the MIMO BC equals
strategy is the capacity-achieving strategy for the sum rate &3¢ Sato upper bound. Furthermore, the dirty paper coding
pacity of the MIMO BC. To do this, we make use of the dualitptrategy achieves the sum rate capacity of the MIMO BC

of the dirty paper region and the dual MAC to show that the dirty cugnrate(p H) = CHuga (P, H) = Csato( P, H).  (19)

DPC
paper region achieves an upper bound on the sum rate capacity _ .
of the MIMO BC. Proof. Since the sum rate capacity of the MIMO BC can

In [10], Sato presents an upper bound on the capacity reg £ N0 larger than the Sato upper bound, iF is suffi(_:ient to show
of general BCs. This bound utilizes the capacity of toep- that the Sato upper bound is actually achievable in the MIMO

erative systenas defined in Section II. Since the cooperativBC Using dirty paper coding. Note that, by duality, we know that

system is the same as the BC, but with receiver coordination, i§ Maximum sum rate of the MIMO MAC equals the maximum
capacity of the cooperative systei@..,(P, H)) is an upper sum rate of thg dirty paper achievable region. We, therefore,
bound on the BC sum rate capacigi® (P, H)). This Mustshow the inequality

V. SuM RATE CAPACITY OF BC CHANNELS

bound is not tight in general, but by introducing noise correla- Coperate(p, H) =csumrate(p H)
tion at the different receivers, we can get a much stronger bound. _ max
Since the capacity region of a general BC depends only on {szo,Zf:l Tr(Pi)Sp}
the marginal transition probabilities of the channel (péy;|z)) I
and not on the joint distributiop(y1, ..., yx|z) [16, Theorem log |I + ZHIPJL‘ (20)

14.6.1], correlation between the noise vectorglifferent re- e
ceiversof the BC does not _affect the BC capa_city region. It d_oes_, > Csato( P, H). (21)
however, affect the capacity of the cooperative system, which is ) _ )

still an upper bound on the sum rate of the BC. Therefore, weVVe prove (21) by using Lagrangian duality to express both
retain[E(n,L-n,T) = 1,1 < i < K as before (i.e., noise Compo_the Sato upper bound and the MIMO MAC sum rate capacity in
nents at the multiple receive antennas within a single receififferent forms. Specifically, as shown in Appendix, Section C,
are uncorrelated) and 1&(n;n;) A x. . < I since intro- Wecan alternatively write the Sato upper bound defined in (18)

Ol ] — 1,] ’

ducing noise correlation within a receiver affects the broadcdtt (see (58))
capacity region. LeZ denote the noise covariance matrixinthe  Cgao(P, H) = inf min — log |A| + Tr(A) + AP — ¢
cooperative system (i = E[zz7] wherez = [n; - - - nx]7) to Ze5 4,2

define the sef to be allnonsingular(or strictly positive defini- such that

tive) noise covariance matrices satisfying the Sato upper bound A>0,A>0

conditions \Z > HAH' (22)

I e X}(, 1 and the MIMO MAC sum rate capacity (20) as
$=%2:2>0,Z=| : : - @7 cum rate(pH) — min —log |A| + Tr(4) + AP — ¢

Xca oo T such that

Then, for any Z € S, the cooperative capacity A>0. A>0.

Ceoop(P,Z~/?H) is an upper bound tagim rate(p, H), )\I_> H A}-ITIV' 23)

Z i Ve

since receiver coordination can only increase capacity. Hence,

an upper bound 063" ***(P, H) can be obtained as Notice that the objective functions of (22) and (23) are the same,

cum rate _ —1/2 but the variables and constraints are different. We will show
Cpe"™e(P, H) < Z”ég Ceoop(P, 27 /"H). thatCsum rate( P H) > Csaio( P, H) by constructing a feasible

union
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solution to the Sato upper bound dual problem from an optim ' - ‘

solution to the MIMO MAC sum rate dual problem. I Sato Upper Bound

Let A = \g, A = Ay be an optimizing solution to (23), i.e., Dirty Paper Region

comnrate(p H) = —log |Ao| + Tr(Ag) + AP — t. —

Since (23) is a minimization of a convex function over a close
set, we know that the minimum is achieved, so a minimizin
pair (Ao, Ag) exists. We prove (21) by explicitly constructing
a feasible set of variablés\, A, Z) for the Sato upper bound
(22) such that the objective functions in (23) and (22) are equi

Single-User Bounds

Let us first consider the choice of values(of A, Z) as \
A=A (24) osf \ |
A=A (25)
I H,AoH] H A H', ‘ . .
) Ao T Ao % 05 1 R 15 2 25
z = | Tty I 1

Fig. 2. Dirty paper broadcast regioRk’ = 2,t = 2,7, = ry =1, H; =

HxAH, HyAH, I [1 4], Hy = [4 1], P = 10.

)\0 )\0
As long as this choice d is posmve_ defm!te, I can be verified thqe Sato upper bound is equal to the infimum (over the feasible
by the method used below that this set is feasible for (22) an L :

L ) L set) of the objective function, we have
that the objective functions of both minimizations are the same:
Thus, we have constructed the worst case néiger the Sato Csato(P, H) < —log |A| + Tr(A) + AP — 1
upper bound and have shown (21), but only for the case when = —log|Ao| + Tr(Ag) + NP —t+ 6P
Z > 0. However, in many practical cases, this choiceZois —csumrate(p ) 4 §P, (32)
singular, and hence, not a feasible choic&dbr (22). _ _ men ’
To circumvent this singularity, we construct, instead, a famifynCc€ this holds for any > 0, we get

of feasible points (i.e.Z > 0) by introducing an arbitrary pa- Csato(P, H) < CIvmrate(p H)

union

rameterd > 0. This family of values of A, A, Z) is givenby | hich completes the proof of the theorem. 0
A=Xo+6 (27) A nice property of the proof of the sum rate capacity is that it
A=A (28) s constructivein the sense that the proof generates worst case

I H, AoH] H AH| noise covariances for the Sato upper bound, assuming that the
HyaoH! Ao+? H:g:} optimizing solution to the MIMO MAC sum rate problem is
Z = oW 1 e wis |- (29)  known. Specifically, in (29), we explicitly construct a noise co-
HoaHm  Heam variance for which the cooperative capacity is larger than the
Nots el I MIMO MAC sum rate capacity by an arbitrarily small amount

We need to ensure that this set is feasible for (22). Sin¢&- Though we show that the constructed magix> 0 when
(Mo, Ao) are an optimizing solution of (23)\o, Ag) must 6 > 0, as noted earlier whef > 0 we still are guaranteed
satisfy the constraints in (23). Therefore, we have th# = V. If the constructed matri with 6 = 0 is strictly non-
A=) +6>0andA = A, > 0. Since the matrixZ is Singular (i.e.Z > 0), then the cooperative capacity with noise

block diagonal and symmetric by construction, we see thatGpvarianceZ is equalto the MIMO MAC sum rate capacity.
Z > 0thenZ € S. We, thus, need to verify th& > 0 and Therefore, in these casdg,is in fact a worst case noise covari-

that\Z > HAH'. ance for the Sato upper bound. Numerically, we also #ntb
Note that\y + 6 > 0 and be a worst case noise covariance for cases whésnsingular
whené = 0, as shown later in Example 2.
(Mo +8)Z — HAH' =diag[(\o + &)1 — H;AgH!] The dirty paper BC region and the capacity regions of the dual

=diag[\oI — HiAoHiT] + 651 (30) MAC, along with the Sato upper bound and single-user bounds,
) o ) are illustrated for a symmetric two user channel in Fig. 2. The
Since(Ao, 4y) are an optimizing solution of (23), we havegirty paper region is the union of the pentagons in the figure
Aol — I'{iAOHI > 0 for all i. This implies thatdiag[Aol —  pecause the dirty paper region is formed as a union of the indi-
H;AoH{] > 0. Sinces > 0, we have vidual power constraint MAC regions. Since each receiver has
\Z — HAH' = diag[\ol — H'iAOH;r] +51>0. (31 oply a single antenna, the_dual .MIMO MAC region with in—.
dividual power constraints is a simple pentagon. The capacity
This implies thathZ > HA\H' = HAH' . It, thus, remains to upper bound is obtained by taking the intersection of the regions
show thatZ > 0. SinceA > 0, we also have thaf AH" > 0. formed by the two single-user optimum corner points (which are
This implies that\Z > 0. SinceX > 0, we then geZ > 0. parallel to the axes) and the Sato upper bound, which is tight at
Hence,(\, A, Z) form a feasible set of values for (22). Sincghe sum rate capacity. Note that the region formed by all three
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25

which is nonsingular. Therefore, we find that

CC00p<P7 Zfl/QH) _ CSato(P7 H) — (sum ra.te(‘P7 H)

union

The corresponding upper bound to the capacity region is shown

Sato Upper Bound in Fig. 3.

pper Boun . . . .

= 15l | The sum rate maximizing covariance matrices in the MAC
g are

g MIMO BC Sum Rate p. _ 0.0720 0.1827 _ 0 0.0026

o1 . 17101827 0.4634 | 27 10.0026 0.4646 |

Notice that the sum rate is not maximized at a single point on
the boundary of the capacity region, but it is actually maximized
along a line segment. The corner points of this line segment are
circled in Fig. 3. In the MAC, the lower corner point of this line
segment can be achieved using the above covariance matrices

0.5

Sum Power MIMO MAC Capacity Region
= Dirty Paper BC Achievable Region

0 0.5 1 15 2 25 Py, P, and by decoding user 1 last. The upper corner point
R, (nats/use) of the line segment can be achieved usingthamecovariance
matrices, but th@ppositedecoding order (i.e., decode user 2
Fig. 3. Achievable region and Sato upper bound for Example 1 last). Any other point on the line segment can be achieved by

time-sharing between these two decoding orders.
upper bounds is, in fact, quite close to the dirty paper achievabléNe can use the MAC-BC transformations in (8) to find the
region. Also note that the boundary of the dirty paper achiegerresponding sum rate capacity-achieving BC covariance ma-
able region has a straight-line segment at the sum rate potntes. Note, however, that the transformations depend on the
This characteristic of possessing a straight-line segment (igecoding order in the MAC. If we assume that user 1 is decoded
a time-division portion) at sum rate is also true for the MIMQast in the MAC, the transformed BC covariances are
MAC capacity region when the transmitters have more than one [0.0746 0'1932] 5, { 04104  —0.0776

antenna [4]. X1= 101932 0.5004 —0.0776  0.0147 |

VI. NUMERICAL EXAMPLES The lower corner point of the sum rate line segment is then
. . . ) achievable in the BC using these covariance matrices and by

. In this section, we proy|de two r_1umer|ca| examples to bett%coding user 2 last (i.e using dirty paper coding for user 2 to
illustrate the concepts discussed in the paper. cancel out the signal of user 1). To achieve the upper corner point
Example 1: Consider a two-user BC witR = 1 and channel of the sum rate line segment, we must perform the MAC-BC
matrices transformations using the opposite order in the MAC. We then

get
H, - [olr 0.8}7 H,— {0.2 1 } (33)

S5 2 2 0.5 0.0001  —0.0069 0.4849 0.1225
N S :

The dirty paper achievable region is very difficult to compute —0.0069  0.4841 0.12250.0309
without employing duality, as discussed in Section lll-A. ThusClearly, these BC covariance matrices are different than those
we find the dual MAC region using convex optimization techused to achieve the other corner point of the sum rate line seg-
nigues to obtain the achievable region in Fig. 3. ment. Therefore, we see that in the MAC the corner points of
To compute the Sato upper bound for the problem, we soltlee sum rate boundary can be achieved by using the same set of
the dual problem to the MIMO MAC. Note that this problenctovariance matrices and different decoding orders. In the BC,
is a convex problem with linear matrix inequality constrainthiowever, a different decoding order and different covariance
There are many technigues in convex optimization literatuneatrices are needed to achieve the corner points of the sum rate
to solve such problems. We use an easily available softwdeundary.
called SDPSOL, developed by Boyd and Wu [17], to get that
Csumrate(p - H) = 2.2615 nats/s and obtaiy, Ao to be

union

Example 2: Consider a three-user BC, with two antennas
at the transmittef¢ = 2) and one antenna each per receiver

A 3.231 1.43 (ri1 = ro = rg = 1). The channel matrices are given by
07 1143 3.603 H, =0 1],H, = [-V3/2-1/2], H3 = [V3/2 - 1/2],
Ao = 1.2879. and the total power constraint i3 = 1. Note that the channels

] ) ) are unit vectors in Euclidean space, and are spaced di2ar,
From these, we obtain the worst case noise (using (29) Wil shown in Fig. 4. Also note that the channel makfix
6 =0)

0 1
1 0 0.1332  0.4446 H=|-V3/2 -1)2 (34)
g 0 1 0.4478 0.0613 V32 —1/2
~ 101332 04478 1 0

0.4446 0.0613 0 1 has rank two, and thdil; = —(H, + H3).
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Fig. 4. Channel parameters for Example 2.
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To evaluate the expression above, we use the standard water-
filling technique [2] and find the optimizind to be

The corresponding cooperative capacity is thus equal to
0.8109 nats/channel use. Since the cooperative capacity with
noise covariancel.,q equals the MIMO MAC sum rate
capacity,@..,,.q4 IS a worst case noise for this problem. Now, let
us use the method for obtaining the worst case noise introduced
in the proof of Theorem 3. Using SDPSOL we get

1.5 0
AO = |: 0 15:| and Ao = 2/3

From (26) we can construct the worst case noise covariance to

First, let us consider the dual MAC problem. By the symb"'J

metric structure of these channels, itis clear that allocating equal
power to each user maximizes the sum rate of this system. Thus
sum rate capacity is achieved with = P, = P; = 1/3 and

any MAC decoding order.

Using the MAC-to-BC transformations in (8), we find covari- -
ances in the broadcast (corresponding to encoding user 1 last,
user 2 second, and user 3 first) that achieve the same sum rate

point on the capacity region to be

0 0.2857
5, — [ 0.2812 —0.1624}

2, - [0 0 } 5, — [0.2187 0.1623

—-0.1624  0.0937

and the sum rate capacity equals

1
log [T + g(Iﬂﬂ1 +HH, + HH;)

Now, let us find the worst case noise for the Sato upper bound
Note that, ifny = —(na + n3), theny; = —(y2 + y3). This
implies that the received signal at one of the antennas is a lin
combination of the signal at the other two antennas. Therefo
one receive antenna can be eliminated from the system Withg
any loss in the cooperative capacity. Sific@?) = E(n3) =
E(n}) = 1, we require thaE(n;n;) = —.5Vi # j. Thus, a

noise covariance matrix given by

0.1623 0.1205

(7 H,A\H! H,A.H]
Xo Xo
— | HAoH! H>AoH!
Q= | Tl HAH, (40)
0 0
H;AcH! H3;A.H! I
- )\0 )\0
1 -05 -05
= |[-05 1 =05 (41)
-0.5 —-0.5 1

We immediately notice tha®..,s = Q,. Thus, for this case,

} (35) the singular noise covariance constructed from (26) actually is a

worst case noise covariance, even though we are not guaranteed

(36) this when the noise is singular. It may, in fact, be that the noise

covariance constructed using (26)isvaysa worst case noise
covariance (and not just when it is nonsingular), but we have not
been able to prove this.

= 0.8109 nats/use

VIl. CONCLUSION

n this paper, we established a duality relationship between
two seemingly unrelated regions: the achievable region of the
MO BC obtained using the dirty paper coding and the ca-

%icity region of the MIMO MAC. This duality allows us to
ﬁtsily find the dirty paper achievable region and the dirty paper
covariance matrices which achieve the boundary of this region.
Though the capacity region of the MIMO BC is unknown due to
its nondegraded nature, we were able to show that the dirty paper

1 =05 -0.5 achievable region achieves the sum rate capacity of the MIMO
Qeona = | —0.5 1 -0.5 (37) BC through the use of the MAC-BC duality and the Sato upper
—-0.5 —=0.5 1 bound. These results open up the possibility that the dirty paper
. . region is the actual capacity region of the MIMO BC and also
corresponds ta; = —(n2 + n3), which allows us to eliminate

one receive antenna. This noise covariance is a candidate

the possibility that other instances of duality exist in Gaussian
Ititerminal networks.

the worst case noise covariance for the Sato upper bound. Note

that this noise covariance is singular. If we eliminate the third

APPENDIX

antenna output, we are left with the following two-input—two-

output channel:

= |_J52 _1pa)

The cooperative capacity with this noise covariance then is

-0.5

1
I+ [—0.5 1

max lo
9 g

—1
} e)ell

A. A Covariance Matrix for Flipped Channel

Given a covariance matri for some channell, we wish to
find a covariance matri¥X such thaflr(¥) < Tr(X) and

log|I + HEH'| = log|I + H'SH|. (42)

If the SVD of H is H :_FAGT, whereA is square and di-
agonal, then we propos® = FG'EGF'. Using the identity
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\I+ AB| = |I+ BA| and the factthaF'F = T andG'G = I, Using this expression for = K — 1 we get
we can write the capacity of the unflipped channel as

log|I + HEH'| = log |I + FAG'SGAF'| > Te(®: Z Te(P1)
=1 I=K-1
= log|I + AG'EGA|. (43) Ko X
We can similarly write the capacity of the flipped channel with + Z Tr ( <I + Z H, PIH1>> .
our candidate covariance matixas =1 I=K-1
_ + " By induction, further show that
log|I + H'SH| = log |I + GAF'FG'SGF' FAG!| y induction, we can furiner snow tha
—oe t t K s
= log|I + GAG'EGAG"| ZTI"(EL') < ZTT(PI)
= log|I + AG'SGA|. (44) iz 1=
Therefore, the rate achieved Byin the flipped channel is the i1 K +
same as the rate achieved by the original covariance matrix + ZTY I+ ZHI P.H,
¥ in the unflipped channel. It thus only remains to show =1 I=j
that Tr(¥) < Tr(X). To do so, we make use of the identityfor anyj. Forj = 1, we get
Tr(AB) = Tr(BA). Clearly, we can write x I
() = T(FG'EGF') = Tr(GTEG) = Tr(EGGY). (45) DO Tr(Ei) <Y Tr(Py).
=1 =1

We then use Gram-Schmidt to expa@dhto a full unitary ma- e same proof method can be used to show that the BC-MAC
trix transformations in (12)—(14) also satisfy the trace constraints.

G = [GG] (46) C. Finding the Lagrangian Dual Problem

suchthada' = @'a = 1. Using this unitary matrix, we can  We first find the dual problem of the maximum sumrate of

write the MIMO MAC?
2yt
Tr(¥) =Tr(E2GG) max log [T + ZHTP H; (48)

~ Tr(SGG') + Tr(SGG') i=1

> Tr(EGGT). (47) over the convex set

- K
To get (47), we used the fact that the mal@x=G is positive {P P; >0 Vi, ZTr P}
semidefinite, which implie§t(SGG') = Tr(G £G) > 0. =1

The problem given by (48) is a convex optimization problem,
B. Proof of Trace Constraint for Transformations i.e., it has a concave objective function and a convex constraint
In this section, we show that the MAC—BC transformationget- Hence, a convex Lagrangian dual minimization problem can
obtained in (8)—(10) satisfy the sum trace requirement. First, W& obtained that achieves the same optimum value at (48). For

compute this, we rewrite (48) as
Tr(X¥k) <Tr(AxPgk) ;}11[1’1 —log | X|
K-1 K
=Te(Px)+ > To(S;H PxHg). suchthat X =1+ H!PH,
=1 =1
By addlngz Tr(X;) to both sides we get Z TP < P. P, >0,
I‘

K-1

ZTr ) < Te(Pk)+ Y Tr(Si(I+ Hi P Hy)).

Note that matrix inequalities are associated with dual variables
=1

that are matrices, while scalar inequalities are associated with
By the definition of%;, we get scalar dual variables. The Lagrangian for this problem is

K L(X,P;, A S;, )\
T | % (I+ > HIPH; | |=Tr(S;B;) K ]

i=j+1 =—log|X|+Tr |[AX —1-> HPH,
< Tr(A;P;) ; =
— I‘(P ) 29 29
paly +A (; Tr(P;) — P) + ; Tr(S;P;).  (49)

+Y Te(SHIP;H;).

P 2This derivation is based on the dual problem found in [4]

Il
-
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The dual function is found by minimizing with respect to thé&ince this is equivalent to the inner maximization of the Sato

primal variablesX, P; upper bound for evergZ € S, we can rewrite the Sato upper
g(A, 8i, \) = inf L(X, P;, A, 8;, ).  (50) Poundas
X.P; Csato(P, H) = inf min —log |[A]| + Tr(A) + AP — ¢
We obtain the optimality conditions by differentiating the La- ZeS A
grangian (49) with respect to the primal variables to get such that
M= HAH! + 8, Vi A20,420
X124 \Z > HAH'. (58)
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