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Capacity and Optimal Power Allocation for Fading
Broadcast Channels With Minimum Rates
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Abstract—We derive the capacity region and optimal power al- The ergodic capacity of a fading broadcast channel deter-
location scheme for a slowly fading broadcast channel in which mines the maximum achievable long-term rates averaged over
minimum rates must be maintained for each user in all fading 5| fa4ing states. The optimal resource allocation scheme for

states, assuming perfect channel state information at the trans- . . . L .
mitter and at all receivers. We show that the minimum-rate ca- rates in the ergodic capacity region is found in [3], [7] and cor-

pacity region can be written in terms of the ergodic capacity re- responds to multilevel water-filling over both time (i.e., fading
gion of a broadcast channel with an effective noise determined by states) and users. As intuition would suggest, users are allocated
the minimum rate requirements. This allows us to characterize the the most power when their channels are strong, and little, if any,
optimal power allocation schemes for minimum-rate capacity in - ,q\yer when their channels are weak. Such an allocation scheme

terms of the optimal power allocations schemes that maximize er- o | ¢ tes. but d di the d
godic capacity of the broadcast channel with effective noise. Nu- maximizes long-term average rates, but depending on the dura-

merical results are provided for different fading broadcast channel ~ tion of channel fades, users with poor channels may not receive

models. data for long periods of time while waiting for their channel to
Index Terms—Broadcast channel, capacity region, fading chan- MProve. This clearly may not be_reasonablg f(_)r delay-sensitive
nels, minimum rates, optimal resource allocation. applications such as video or voice transmission.

In the outage capacity region of a broadcast channel, each
user maintains a constant rate some percentage of the time and
. . . ) no data is transmitted (i.e., an outage is declared) the rest of

HE time-varying nature of the underlying channel is onge time. In essence, no data is transmitted to a user when his

of the most significant challenges in designing wirelesgannelis weak because it takes a great deal of power to transmit
communication systems. Dynamic allocation of power, bangata over a weak channel. Constant rates are maintained in all
width, and rate can result in significant performance improvgner states. The optimal power allocation scheme is essentially
ments over constant resource allocation strategies. Practical $ysy Itiuser extension of channel inversion. This scheme elim-
tems are beginning to incorporate more and more element§pftes all channel variation seen by the receivers by scaling
adaptation in order to effectively utilize the time-varying chanye transmitted signal to invert fading so constant rates can be
nels found in most wireless systems. maintained during nonoutage. Because constant-rate transmis-

In this paper, we focus on the downlink of a single cell whergg, requires more power in a weak channel than in a strong
one base station transmits independent information to mum@ﬁannel, users are allocated the most power when their chan-
receivers and each receiver suffers from time-varying flat-fadings are weak. This is in sharp contrast to the allocation scheme
and additive Gaussian noise. We assume that the transmitter gy to maximize ergodic rates, where users are allocated the
all receivers can track the channel fade perfectly, or in othgjost power when their channels are strongest. It is therefore
words, that the transmitter and all receivers have perfect changgly, that stronger channel states are not truly taken advantage
state information (_CSI). Furthermore, we assume the chann%fsand, as a result, the outage capacity region may be signif-
slowly fadlngrelatlve to cheword length, i.e., the channel igantly smaller than the ergodic capacity region. Zero-outage
constant during transmission of a codeword. capacity is a special case of outage capacity in which no outage

Two notions of Shannon capacity have been developed {gry|iowed and constant rates must be maintained in all fading
multiuser fading channels: ergodic capacity and outage Gaztes.

pacity. Ergodic capacity is concerned with achieving long-term . . .
rates averaged over all fading states [1]-[3], while outa eErgodlc and outage capacity are clearly two very different

. . . . erformance measures, as reflected by their contrasting power
capacity achieves a constant rate in all non-outage fading st

S . . : ’
subject to an outage probability [4], [5]. Zero-outage capaci§/ﬁocatlon strgtegles: “.1 ergodlc capacity, the tran;mtakes
. . S dvantageof time variation in the channel by transmitting more
refers to outage capacity with zero outage probability [6].

data to users with strong channels, while in outage capacity the
transmitterequalizedime variation by transmitting at constant
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outage capacity region severely reduces the set of achievable Vl[i]

rates. Y1[i]
In this work, we propose to combine the notions of ergodic

and zero-outage capacity by maximizing the ergodic capacity

subject to minimum rate requirements for all users in all fading Yali]

states. Thus, some power is used to maintain the minimum rates
in all fading states while the remaining power is used to max-
imize the average rates in excess of the minimum rates. Users X[i]
are never completely cut off due to the minimum rate require-
ments, but time variation of the channel is still taken advantage
of by transmitting to users at rates higher than the minimum — Ykli]
rates when their channels are strong and at exactly the minimum
rates when their channels are poor. Clearly, the minimum rdté- 1. Equivalent broadcast channel.
requirement must be in the zero-outage capacity region for the
rates to be achievable in all states. bandwidthB. The signal sourc& [i] is composed of< inde-

We consider a slowly fading channel that is assumed to pendent information sources, whéenepresents the time index.
constant over the duration of each codeword. Thus, we associblte time-varying channel gain of the path to ugés denoted
an instantaneous rate with each user in every fading state. Tlye,/g;i]. Each receiver has additive Gaussian noise with noise
minimum-rate capacity region is defined as the set of all averagensityv,. The received signal of usgrthen is
rates achievable subject to an average power constraint such that
the instantaneous rates in each fading states do not violate a min- Y;[d] = 1/ 9, X [7] + w;[7] Q)
imum rate constraint. We show that the minimum-rate capacity
region is equal to the sum of the minimum-rate vector plus théherew; ] is white Gaussian noise with poweyB. By incor-
ergodiccapacity region of an effective noise channel, where tf®rating the channel gain into the noise term as in [3], we define
effective noise depends on the minimum rate requirements. TR effective noise density,;[i] = v;/g;[i] and get an equiva-
relationship allows us to easily characterize the boundary of tigait form for the received signal
minimume-rate capacity region and the optimal power allocation ) ) .
policies in terms of known results for ergodic capacity [1], [3], Yjli] = XTi] + 2] )

[7]- wherez; [7] is Gaussian noise with powes [¢] B. The equivalent

We then extend these results to find the minimum-rate cg@rannel model is shown in Fig. 1. For simplicity, we assume
pacity region subject to a peak power constraint instead of an_ throughout this paper '

average power constraint, and also subject to both a peak and ay; e assume that the noise density vector

erage power constraint. Furthermore, the problem of minimum

rates with outage is also addressed. When outage is allowed, er- n[i] = (na[i], nalil,

godic capacity is maximized with the constraint that minimum

rates must be satisfied at least a certain percentage of time. Tifignown to the transmitter and il receivers at time instarit

is a combination of ergodic capacity and outage capacity, as dfhe transmitter can therefore vary the power of the signal trans-

posed to non-outage minimum-rate capacity, which is a combiitted to each useP;[i] as a function of the noise vectafi]

nation of ergodic and zero-outage capacity. A similar notion @fjpject to an average power constraint Since all receivers

minimum-rate outage capacity was independently proposed e knowledge of, each receiver can perform successive de-

Luo et al.in [8], [9] for single-user channels. coding in which the decoding order depends on the ordering of
The remainder of this paper is organized as follows. Seg- e also assume that the fading stateas some joint distri-

tion Il describes the flat-fading broadcast channel model aggiion.

Section Il defines ergodic and zero-outage capacity. In Sec-as the noise density vector incorporates the effects of the

tion IV, we precisely define the minimum-rate capacity regionannel gain, we will alternatively refer toas thefading state
In Section V, we characterize the minimum-rate capacity ryroughout this paper.

gion in terms of the ergodic capacity region and find the op-
_timal power allocgtion sghem_es. In Section VI, we finql the min_— . ERGODIC AND ZERO-OUTAGE CAPACITY REGIONS
imum-rate capacity region with peak power constraints and in . ] )
Section VII, we find the minimum-rate outage capacity region. ' this section, we present results from [3], [4] on the ergodic
Numerical results are presented in Section VI, followed by o@nd zero-outage capacity of the fading broadcast channel.
conclusions.
Notation:We use boldface to denote vectors &ndto denote
expectation over the random variable The ergodic capacity region is defined as the set of all
long-term average rates achievable in a fading channel with
arbitrarily small probability of error. In [3], the ergodic capacity
IIl. THE FADING BROADCAST CHANNEL region and optimal power allocation scheme for the fading

.We consider a Ggusgan broadca.St Chann?' with a single transgqtice that the noise density is the instantaneous power of the noise and is
mitter communicating independent informationKausers over not the instantaneous noise sample.

A. Ergodic Capacity Region
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broadcast channel is found by decomposing the fading chanwéiile meeting the average power constraint. The zero-outage
into a parallel set of constant broadcast channels, one for eaepacity region (also referred to as tihelay-limited capacity
fading staten. In each fading state, the channel can be viewddr the multiple-access channel is derived in [6]. In [4], it
as a degraded Gaussian broadcast channel. Since the transnidttehown that rates in the zero-outage capacity region of the
and all receivers know[i], superposition coding according tobroadcast channel can be achieved using superposition coding
the ordering of the current noise density vector can be useddnyd successive decoding (using the same weakest to strongest
the transmitter. Each receiver can perform successive decodilegoding order used to achieve ergodic capacity).
in which the signals of weaker users (i.e., users with largerFrom [4, eq. (3)], the minimum power to support a rate vector
noise power) are decoded and subtracted off before decod®dn fading staten is
the desired signal. Furthermore, the power transmitted to each .
userP;(n) is a function of the current fading state. min R, ‘
We ]d(ef?ne a power polic over all possibglje fading states ad(B.m) = Z [BZ"HI O (e = 1) mag)
a function that maps from any fading stateo the transmitted R
power P;(n) for each user. LeF denote the set of all power + (e = 1) nrx) (5)
policies satisfying average power constraiht

k=1

wherer(.) is the permutation such that

K
F=({P:En|> Piln)| <P}. Nr(1) < Mr(2) <0 < Nn(K)-

i=1 Therefore, the zero-outage capacity region is the union of all

The capacity of usef assuming a constant fading statander rate vectors that meet the average power constraint

superposition coding and successive decoding is Croro(P) = U (Ry, Ro, ... Ric). ©)

En[P™i" (Rn)|<P

bj(n) 3) The boundary of the capacity region is the set of all rate vectors
R such that the power constraint is met with equality [4]. For
the two-user broadcast channel with time-varying additive white

Gaussian noise (AWGN) with powers andn., the boundary

R;j(P(n)) =log | 1+

K
n; + Z Pk(n)l[nj > nk]
k=1

wherell[.] is the indicator function. assumes the following form:

Furthermore, le€p(P) denote the set of achievable rates
averaged over all fading states (i.e., long-term rates) for power Pr{ni<ns}[E[ni|ni >ns)e®2 (ef — 1) +
policy 7 Elnalni < na](e™ —1)] +

Ri( R _
Coo(P) = (By : By <EnlR;(P())], j=12.. K} Prim 2 "2”[E["ﬂ§[';”|f e ]((eRl ) fﬁ -

where R;(P(n)) is defined in (3). From [3, Theorem 1], the
ergodic capacity region of the broadcast channel with perfé:c?
CSl at the transmitter and receivers and power constraist

r a single-user channel, this reduces to

Congoaie(P) = | Co(P). " Coro(P) = {R R < log <1 + %) } .

PeFx The zero-outage capacity region depends only on the ex-
pected value of the noise in the single-user case. Similarly

Additionally, t_he regionCergodic (L) IS convex. The Opt'mal_for the two-user broadcast channel, the zero-outage region
power allocation scheme that achieves the boundary poi Sdetermined solely bE[ni[n1 < ns], E[nalni < ns]

of the _e.rgodic capacity region is a multilevel extension niln1 > ns], andE[na|n1 > no). This is due to the fact that
water-filling. Because the data rate varies from state to statey, power required to achieve a rate vector is a linear function

different codebook (a codebook is assumed to have COdeW?ﬁ‘#ﬁwe noise levels in each state, as seen in (5). The zero-outage
5

for all K users) is used in every joint fading state, as in the m apacity region depends on the conditional expectations as

= i . s pposed to the unconditional expectations of the noises because
works in e!ther a sIovy-fang or fast-fading environment, b ery different ordering of noises leads to a different expression
the decoding delay is highly dependent on the correlatiqp) /o power required in each state, also seen in (5).

timg of th? channel because of the muItipnging structure. An The zero-outage capacity region i’s more formally defined as
achievability proof and a converse are provided in [3]. the set of rate vectors for which there exist codebooks that can

] ) be decoded with a delagdependenof the channel correlation
B. Zero-Outage Capacity Region structure (i.e., the speed of the fading) for any desired nonzero
For the K-user broadcast channel, a rate vecl®r = probability of error. This is in stark contrast to the ergodic ca-

tiplexing strategy described in [3], [10]. This coding schem

and only if the rate vector can be achieved in all fading stateBannel correlation.
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V. MINIMUM -RATE CAPACITY REGION word. If the transmitter and receivers use a multiplexing strategy
similar to that of [10], then a different rate vector and a different
set of codebooks is associated with every joint fading state. In
We define the minimum-rate capacity region ofi&user this context, minimum-rate capacity is the set of all achievable
broadcast channel as the region of all achievable average rgfgrage rates such that the instantaneous rates in every fading
vectors subject to an average power constr&iand minimum - gtate meet the minimum rate requirements. The associated de-
rate constraint®®* = (R, R3,..., Ry ). The minimum rate coding delay at each user is equal to the codeword length, which
constraint forces the instantaneous rate of each user to be at lgggtpe arbitrarily long due to our slow fading assumption.

as large as its corresponding minimum rate in all fading statesgince our definition of minimum-rate capacity explicitly
i.e., we requirel;(n) > Rj, j = L,..., K, Vn. Since We mentions instantaneous rates (i.e., rates associated with each
are dealing with slowly fading channels that are assumed t0fa@ing state), no converse exists for this formulation. A more
constant over the length of a codeword, the notion of an instathannon-theoretic formulation of minimum-rate capacity
taneous ratéz; (n) in each fading state is reasonable. Moreovefhich would not require the slow fading assumption might
the set of achievable instantaneous rates in each fading stali$sider transmitting delay-sensitive data at the minimum rate
equal to the capacity region of the constant Gaussian broggth a delay independent of the channel variation (similar
cast channel defined by the joint fading state and the amoyyt zero-outage capacity), while simultaneously maximizing
of power allocated to each user. transmission of delay-insensitive data with no delay require-
Using the previously stated notion of a power allocatioment (similar to ergodic capacity). In this setting, it appears
scheme, leCy,in(P) denote the set of achievable long-termyatyral to transmit using two independent codebooks, one for
average rates in excess of the minimum rates for power pBlicythe delay-sensitive data and one for the delay-insensitive data.
X . However, as we discuss below, it appears to be quite difficult to
Conin(P)={R; : Kj <B; <Ea[R;(P(n))] j=1,....K} apply this approach to the broadcai? channel. |
where R;(P(n)) is defined in (3). Notice this definition is " Section V-D, we discuss a coding strategy for the single-
slightly different from the definition of (7) in Section IlI-A. user channel such that the minimum rate data (i.e., the codeword

The seC,nin(P) does not include the rates below the minimunffom the minimum rate codebook) can be decoded before the

rates because if the average rates are less than the mininft %eword from the excess rate cpdebook. This "’?HO_WS the min-
rates, then the minimum rates must be violated in some fadifigH™ rate data to be decoded with a delay that is independent
states of'the rate of channel variation, but the decoding delay associ-

To ensure that the minimum rates are satisfied. we musthggd with the excess rate (i.e., above the minimum rate) data can
strict the set of feasible power policies more tightly than in th infinite. This coding strategy works in both slow-fading and

case of ergodic capacity. L&Y denote the set of all power poli- fa_st-fadlng enwrpnments. However, this scheme does not gener-
cies that satisfy the minimum rate constraints in every fadirﬁd'ze to the multiuser broadcast channel because the successive

state and the average power constraint ecoding structure (which is capacity achieving for the broad-
cast channel) essentially precludes the possibility of all users

A. Definition of Capacity Region

K having finite delays associated with their minimum rate data
F'={P: E, Z Pij(n)| <P, R;(P(n)) >R} Vjnp. and infinite delays associated with their excess rate data. Since
j=1 successive decoding is needed in the broadcast channel, strong

users are required to decode and cancel out the codewords in-

The additional constraint ensures that the minimum rates cantggded for weaker users before being able to decode their own
maintained for allK” users in every fading state for any poweggdewords. This must include a cancellation of the minimum

H H /A
policy in F'. rate data and the excess rate data of other users. Thus, the de-

Definition 1: The minimum-rate capacity region of a fading-0ding delay of the strongest user is at least as large as the max-
broadcast channel with perfect CSI at the transmitter and fBum of the decoding delay of all other users. If users have a

ceivers, average power constraiit and minimum rate con- POssibly infinite delay associated with decoding the excess rate
straintR* = (R}, R} R%.) € Cero(P) is data, then the decoding delay associated with the minimum rate

T codebook of the strongest user can also be infinite. One possi-
bility is for all users to treat all excess rate codewords (including
) (7)  their own) as noise while decoding their minimum rate code-
words, but this appears to be quite suboptimal. In this paper, we
where Co (-) denotes the convex hull operation. The achieroncentrate solely.on the slovy-fading channel in which codipg
ability of this region follows from the achievability proof for €& be performed in each fading state and we leave the subject

ergodic capacity given in [3] and standard time sharing arggf_minimum—rate capacity for fast-fading channels as a topic for
ments. future research.

Cmin(ﬁv R*) = Co ( U Cmin(P)

PeF'

C. Relationship With Ergodic and Zero-Outage Capacity
B. Remarks on Coding Regions

In the slowly fading channel model which we consider, the The minimum-rate capacity region is closely related to
channel is assumed to be constant over the duration of a cotle zero-outage and ergodic capacity regions because min-
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Zero-Outage Capacity Boundary

R ) . R
Ergodic Capacity Boundary
| Minimum Rate Capacity Region Minimum Rate Capacity Region
™~
R*

R,

R,

Fig. 2. Ergodic, zero-outage, and minimum-rate capacity regions for small (left) and large (right) minimum rates.

imum-rate capacity is essentially a combination of these twere is little power left over to exceed the minimum rates
capacities. Some fraction of the available power is used and, as a result, the boundary of the minimum-rate capacity
achieve the minimum rates in all fading states, while thegion does not extend much further out than the boundary of
remaining power is used to maximize the long-term ratélle zero-outage capacity region. Notice that in all cases the
achievable in excess of the minimum rates. For the minimuminimum-rate capacity region does not extend to the axes due
rate problem to be feasible, the minimum rate vector must the minimum rate constraints.
be in the zero-outage capacity region of the channel in orderSince the minimum rate boundary lies between the ergodic
for the rates to be achievable in all fading states. For aayd zero-outage boundaries, the difference between the er-
R* € C,..o(P), the boundary of the minimum-rate capacitygodic and zero-outage capacity regions is a good indicator
region lies between the boundaries of the zero-outage capaotythe degradation in capacity (i.e., the difference between
region and the ergodic capacity region Cergodic(ﬁ) and Cin (P, R*)) due to minimum rates. If the
zero-outage capacity region is much smaller than the ergodic
capacity region, the minimum-rate capacity region is generally
Coero(P) € Boundary{Cunin(P, R*)} C Corgodic(P). (8) much smaller than the grgodi(_: ca_pacity region. Alternatively,
if the zero-outage capacity region is not much smaller than the
This follows from the definition of zero-outage capacity as thg'90diC capacity region, the minimum-rate capacity region is
set of rates achievable in all fading states and from the defigenerally quite close to the ergodic capacity region.
tion of ergodic capacity as the set of all achievable average rates,
without any minimum rate constraints. If the minimum rates of
all users are zero, the minimum-rate capacity region is the same
as the ergodic capacity region. If the minimum rate ve&bis
on the boundary of the zero-outage capacity region, achievindn this section, we explicitly characterize the boundary of the
the minimum rate vector in all states consumes all availabiginimum-rate capacity region of A-user broadcast channel
power and rates in excess of the minimum rates are not pasd find the corresponding optimal power-allocation scheme.
sible. In this situation, the minimum-rate capacity region coiirectly characterizing the minimum-rate capacity region ap-
sists of only one pointR*. WhenR* is nonzero and not on the pears to yield a rather nonintuitive solution, but we show that
boundary of the zero-outage capacity region, the boundarythé minimum-rate capacity region can be written in terms of
the minimum-rate capacity region lies strictly betwéen,(P) theergodiccapacity region of a related broadcast channel. This
andCergodic(P). characterization is intuitively easy to understand and allows the
To illustrate the relationship between the different capacityinimum-rate capacity region to be calculated using only the
regions, Fig. 2 shows the ergodic, zero-outage, and migrgodic capacity techniques of [3].
imum-rate capacity regions for two different minimum rate
constraints. The corner point of the minimum-rate capacily perivation of Minimum-Rate Capacity Region
region corresponds tB*. In the graph on the left, the minimum ] o ) )
rate vector is well within the zero-outage capacity region DU€ to the convexity of the minimum-rate capacity region,
and, as a result, the minimum-rate capacity region exted@§ @Y B € C.exo(P) and power constrain?, the boundary
significantly past the zero-outage capacity region. In the secoff€ region can be traced out by the following maximization:
graph, the minimum rate vector is close to the boundary of the
zero-outage capacity region and, therefore, a large fraction of ) —
the power is used to simply achieve the minimum rates. Thus, max g - R subjectto R € Cuin(P, R") )

V. EXPLICIT CHARACTERIZATION OF MINIMUM -RATE
CAPACITY REGION
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over all priority vectorge = (411
1. By the definition ofCy;, (P
alent maximization:

..., x) such thatz M=
, R*), the following is an equiv-

(10)

max E,,
P(n)

K
Z wiR;(P(n
oy

<P

subject to: E,
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whereP’ 2 P —E, [Zfi 1 Pi*(n)} is the total excess power.
Notice that the maximization is over the excess power allo-
cation P(n) only. The minimum rate constraints make this
problem more difficult than maximizing ergodic capacity.
However, with some algebraic manipulation we will see that
the minimum-rate capacity maximization is equivalent to a
related ergodic capacity maximization.
Using the rate-splitting identity (i.e¢'(“t2) = C(%) +

C(-t-)), we can simplify the rate equation in (11). We have

Ri(P(n)) = R}, Vi,n omitted the dependence on the fading stafer brevity
whereR;(P(n)) is defined in (3). Ry iy(P(n))
For each fading state, let 7 (.) be the permutation such that 3
B PRyt Pri
Nr(1) S Nr2) <00 < Np(K)- =¢ nriy+ 2 Pr(j)

Since successive decoding is performed at each receiver in j<l+
which the weakest user (i.e., the user with the largest noise P;(,i)+(eR"(’>— ) > P‘n’(])
power), or Userr(K)) is decoded first,R;(P(n)) can be =C g<é
defined as “w(i)‘n% Prj

| = log Prgiy () Py~ (570 1) 3 Py

Ryi)(P(n)) =log | 1+ o T 3 Poy (@) i (i) = @) A
I<t M)+ Z P,,r(j) +P:(7‘,) + (eR?r(i) — 1) Z Pr(j)
P () e
N Nr(i) + ; Pr(j)(n) (1) . P +(eTo —U%Pﬂ@)
1< = =
whereC(-) is defined as”(z) = log(1 + x). i)+ Z P;(j) + E Prj
In order for each user to achieve their respective minimum

rates in each state, a minimum amount of power must be allo- Priy— (%0 —1) Y Prj
cated to each user in each fading state. We B5@) to de- +C EAS
note the minimum power that Usemust be allocated in fading Nr(i)+ Z P;(j) +elt=o Z Prj
staten in order to exactly achiev®. We define the minimum gsi I<t
powers such that if all users are allocated their minimum powers ﬁm.) _(eRim - Pﬂ(j)
in a fading state, then all users will exactly achieve their respec- _ px 1C i<i
tive minimum rates. From the definition @f; (P(n)) in (11) it (0 (i) + Z ") He e 3 P
follows that the minimum power of each user is given by J<i

where we have used the definition Bf (n) to obtain the final

A

iy + Y Pry(n (eRim - 1) .
1<t

We defineP;(n) as the power allocated to Usein excess of
the minimum power. The total power allocated to each user in
fading staten is thusP;(n) =
rate constraints clearly imply;(n) > P;(n), which implies
Pi(n) > 0.

Since the rates are direct functions of the power allocation,
can replace the rate constraints in (10) with a power constra\?ﬁl
to result in the following equivalent maximization:

(i) (™) (12)

step. From this simplification it should be clear that power

P*()+(e i —1 ZP,K(J)

J<i

Pr(n) + P( ). The minimum maintains the minimum rate of each user, while power

P7r(7',) — (e~ 1) ZPW(]')

j<i

which is nonnegative by the power constraint in (13)) increases

e rate above the minimum rate. Let us introduce the following
effective noise and power terms (for each joint fading state),
denoted byPf(n) andn$:

7‘(7
max En i (13)
P(n) Z N (i) + Z Pﬂ(j) (n) . ) Z .
K = ) = nw(i)-I-ZPﬂ(j)(n) eles>i ) (14)
5 J<i
subjectto: En | Pi(n)| < P’
T (o 2 Pio(n) 2 | P B —1)S P,
Priiy(n) > (e = 1) Y Prijy(n) Vi,n (i) (™) (i) (n) = (e ; () (R
J<i
Pﬂ'(i) (n) Z 0 V’L/n X ezj>i R"'(j). (15)
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[} [
R2 R2
Translate by R*
D ——
R*
R R
Ergodic Capacity Region of Effective Channel Minimum Rate Capacity Region

Fig. 3. Ergodic capacity region of effective channel and minimum-rate capacity region.

Substituting these terms into our previous expression, we geln Appendix B, we show that the ordering of the effective noises
is the same as the ordering of the actual noises,rig,, <

Reiy(P(n)) e < njr(K). Thus, the preceding maximization is identical to
. the problem of maximizing - R in the ergodic capacity region
s Pﬁ(i)(n) of the channel with noises defined as in (14) and poiteiWe
=Reiy +C

R, S P (n) ' refer to the channel with noise$ and power”’ as theeffective
=m0 channel The joint distribution ofn¢ can be derived from the
mapping in (14).
Without the constant tery'* | 1 R?, (17) is identical to
e D DI o o the ergodic capacity maximization expression of the effective
Z Pﬂ(j)(n) =T Z Pr(iy(m)- broadcast channel [3], [7]. Therefore, the average rates achiev-

noy T 02>

In Appendix A we show that

It I ablein exces®f the minimum rates are equal to the rates achiev-

Thus, we can finally rewrite the rate expression as able in the effective channel, or to the ergodic capacity region
of the effective channel. The minimum-rate capacity region is

P;(i)(n) therefore equal to the ergodic capacity region of the effective

(i) (P(n)) 0) “fr(i) n E Pf;(].)(n) (16)  channel plus the minimum rates
J<i

Cmin<ﬁ7 R*> = R* + Cergodic(Pl; ni' s /n;()

which is identical to the rate equations for ergodic capacity for a ' (18)
channel with noisesy, . . ., n% . Since the rate of each user can
be written explicitly in terms of effective power and effectivevhereCegodic (515, . . ., n% ) refers to the ergodic capacity of

noise, we can, in fact, maximize the weighted sum rate aghe effective channel. In Fig. 3, the ergodic capacity region of
function of only the effective noises and effective powers. Ithe effective channel and the minimum-rate capacity region are
Appendix C, we show that every set of excess powers satisfyipgtted as an example of this relationship.

the minimum rate constraints in (13) maps uniquely to a set of

nonnegative effective powers, amite versaln Appendix D, B. Optimal Power Allocation Policies

we show that the the mapping from noise state to effective noiserhe optimal power allocation scheme to achieve the boundary
state is one-to-one for a fixed minimum rate vector and stricthf the minimum-rate capacity region can be found by finding

unequal noise powers (which is true with probabilltfor a the optimal power allocation to achieve the boundary of the er-
continuous fading distribution). Thus, we can write the effectivigodic capacity region of the effective channel. The allocation

power allocation as a function of the joint effective noise statf minimum power is predetermined by the minimum rate re-

instead of the joint noise state. Furthermore quirements and the noise powers, while the optimal allocation
k K of excess power is related to the optimal power allocation to
ZP;"(n) = Zpi(n) achieve the ergodic capacity region of the effective channel.

-1 =1 More specifically, to find the optimal power allocation policy

that maximizesu - R in Cpin (P, R*) for some fixed priority

by Appendix A. Therefore, the maximization in (13) is equ'\/a\'/ector,u, we define the optimal allocation of effective power

lent to (i.e., Pf(n®)) to be the optimal power allocation policy that

K K P (n) mgximizesu - R in Cergoaic(P';ng,. .., n%) for the same pri-

Z 1R + max E, Z 1;C (i) ority vectoru. We can then transform the effective power allo-

— Pi(n) | noy T ; Py (n) cationP¢ (n°) to the excess power allocatidt(n) by the rela-
1<

tionships given in (14) and (15). The minimum power allocation

<P, P‘(n)>0 Vin. (17) 2The sum here refers to the set found by addRg to every element in

Cergodic(P'; 0§, ..., n%).

subjectto: E,

K
Z Pf(n)

i=1




2902 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 11, NOVEMBER 2003

Pr(n) is defined in (12), and the total power allocated to each
user in every fading state &8 (n) = P¥(n) + P;(n).

The optimal power allocation scheme for ergodic capacity ,,
maximization is described in [3, Sec. Il1]. We briefly discuss the

= ) ot —— e o
A

power allocation here, but we defer the reader to [3] for a more

complete description. The optimal power allocation is a more ne

complicated version of the single-user water-filling algorithm ng | 2 2 . ni | n3

derived in [10]. In each fading state, power can be allocated to ng ™M | pg

any of theK users, or none at all. The total amount of power state 1 state 2 state 3 state 4

allocated to each fading state can be described in the following

compact form: Fig. 4. Water-filling diagram for two-user channel with min rates.
K + . L
Z Pf(n) = [ max (_i _ ne)} (19) only if all other users are allocated exactly their minimum power
P ’ i=1,..,K ’ levels. The minimum power does not take into account excess

power allocated to users who are seen as interference. Every in-
where[z]* £ max(w,0) and; is the water-filling level chosen crement of powes P allocated to User (i) forces Userr(i +
such that the power constraift is met with equality. Thisis 1) to allocatesP - (¢f'=t+1 — 1) to maintain his minimum
akin to water-filling to the “best” user in each fading state, whek@te. Userr(i + 2) must then compensate for pow&P and
the notion of best user depends not only on the noise power B%,er(gp . (eR:“H) —1). This forces Use (i + 2) to allocate
also on the user-by-user priorities. Notice, however, that thig . x4 (eFri+2) — 1) to maintain his minimum rate. This
is only the allocation ofotal power to each fading state. They ocess continues up to the weakest user. In total, every incre-

actual distribution of power between users in each fading styg.nt of powers P allocated to Uset (i) corresponds to a total
is rather involved and we defer the reader to [3] for more detailsl]ocation of powes P ez =R 1o Usersr (i) (K)
. i>i J 1)y, T .

A greedy algorithm to find the optimal power allocation polic .
9 y &g P P b hus, allocation of excess power must capture two elements.

(over fading states and users) can also be found in [1], [3] First. excess power allocated {0 STONAer users J2
If the maximum sum rate of the minimum-rate capacity ren_ms'E be comp ensated for. The Ieﬁo?/er exces§|s:§<(ﬁiwgr(j())2‘ User
gion is being found (i.e1 = --- = ), then from results P ' P

on ergodic capacity we know that it is optimal to only allogr(z’) after compensating for the excess power of stronger users

cate effective power to the user with the smallest noise powgws IS

s L st oneuser e g slte scy exesets e T P - (0 -1 Py,

not true. Note that we are discussing only the allocation of effec-

tive power, which relates directly to the excess power. Of courséowever, this leftover excess power must be multiplied by the

each user must be allocated the minimum power in every fadigor eZM R (5 to account for the fact that weaker users

state, so ali users are active in every fading state. must compensate for any leftover excess power allocated to User
Fig. 4 illustrates the optimal amount of effective power in 2(4). Therefore, the effective power of Usiis

two-user system that is allocated to each fading state for a dis-

crete, four-state fading distribution whegig > 1. Note that _

the breakdown of power between the two users, which requires | Pr;)(n) — (=) — 1) Y~ Pr(j)(n) o2 Fa

the iterative algorithm of [3], is not indicated in this figure. j<i

Water-level &5t is used for channels that are allocated excess ) )

power om§ and“2 is used for channels allocated excess poWgrseems that_the effective noise of each user should be equal to

onng. Water-filling is done on the effective noise level that cortn® actual noise plus the minimum power allocated to stronger

responds to the largest power allocation in that state. In the fit§ters- However, the actual effective noise is multiplied by the

state, water-filling is done on§ because although; > n¢, the factore~>: f=() to compensate for the fact that the effective

higher water-level of:5 compensates for this difference. Bepower of User: is multiplied by the same factor.

causeus > g in the figure, water-filling is done ong only

whenn§ < ns, as in state 2. In states 3 and 4, water-filling i®. Single-User Channel

done onns. A single-user channel can be viewed as the broadcast channel

described in Section Il witll = 1. Thus, the characterization

of minimum-rate capacity derived in Section V-A can be ap-
The effective channel encapsulates how power allocatedpited to the single-user channel as well. Clearly, the minimum

one user manifests itself into additional required power for othpower for each state is defined & (n) £ n(eff” — 1). As

users due to the minimum rate requirements. Consider the powefore, the minimum-rate capacity can be found by solving the

allocated to each user as consisting of two components: a pagodic capacity of the effective channel. From the expressions

that achieves the minimum rate, and the part that leads to @x{14) and (15), we see that = n+ P*(n) and P¢(n) =

cess rate above the minimum rate. The minimum paljgm) P(n). The power constraint of the effective channelAs =

allocated to each user leads to the minimum rates of each uBerE,,[P*(n)]. Since water-filling over time achieves ergodic

j<i

C. Interpretation of Effective Channel
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No Minimum Rates With Minimum Rates
% it i e P*(1)
P(1) L I
P A P2) |
3
Power P(2) (3) P(3)
P*(2)

n(1) n(1) P*(3)

"2 [Ta) "2 | ne3)

State 1 State2 State 3 State 1  State 2  State 3

Fig. 5. Water-filling diagram for a single-user with zero and nonzero minimum rates.

capacity of a single-user fading channel [10], the optimal all@rgodic rate codebook and the idea of rate splitting [11]. Notice
cation of effective power is found by water-filling over the efthat the rate in each fading state can be expanded as

fective noisen® K
R(n) =C <P*(n) -l-P(n))

1 * * 1
5y ] x—(n+P*(n), n+P*(n)< s n
P(n)_{07 7L+P*(TL)>% ) ) X )
_c P(n)e ® e P*(n) + P(n)(1 —e &)
where 1 is the water-filling level satisfying the excess power n n+ P(n)e—F*

constraintP’. —R(n) + R*(n)
This simple power allocation scheme yields a closed-form
expression for the capacity of a single-user channel with powghere the excess rate is
constraint” and minimum rateR*

. IA’(n)e_R* f’(n)
= Rn)y=C|—— | =C| ————.
Cmin(P7R ) (n) < n n + P*(n)
1 Fe ™ 1
— p* —-R" - . .o
=R Pr [” 2 ¢ } +/0 log <m> p(n)dn. A minimum rate codebook of siz#=i»E" with block length
nmin CaN be used to transmit data at the minimum rate, while
In this expression we use the fact that. P*(n) = ne’t . a codebook of size"El=(™] with block lengthn which is an
. . o (ipteger multiple ofn.min can be used to transmit data at the ex-
Fig. 5 illustrates the water-filing procedure for zero aN@ess rate. Codewords from both codebooks are simultaneous!
- . . y
nonzero minimum rates for a single-user three-state channgl, - ) .
: séent. The minimum rate codeword is scaled by the quantity
State 1 is the weakest of the three channels. The graph p(n> N ]5(1 — ¢~'), while the ergodic codeword is scaled
the left shows the power allocation scheme without minimu%}G p(n)e= R’ Treating:’] the ergodic codeword as interference
rates. We see tha@ all three channels are alloc_ated POWET, A easy to show that the received signal-to-interference-noise
the rate achieved in states 1 and 2 may be quite small. When . X
minimum rates are applied, the minimum powet becomes fatio (SINR) of the minimum rate codeword is exaatfy’ —1,
an additional source g?nois,e Becaugy( )Fi)s an increasin as required to transmit at raf& . Thus, the minimum rate code-
function of n. the effective ﬁoise termnof state 1 becor%evsvord can be successfully decoded while treating the ergodic
" -~ codeword as interference. After decoding and subtracting out
much larger than the oth_er tWo terms. \_/\(hen water-fll_lmg 'ﬁ1e minimum rate codewords, the ergodic codeword can be de-
done on the effective noise terms, addmonal_ power 1S On(%)(fled at the end of the ergodic block length, since only the ac-
allocated to states 2 and 3 because the effective noise terrr%duoI noise remains in the channel
sf[ate Lis K.)O large ar?d.because mgch of the power was use ﬁ‘Phis two-codebook strategy cannot be used for the broadcast
simply achieve the minimum rates in all three states. In state&;fa

transmission will be done at exacth¥, whereas the minimum nnel because the strongest user must decode both the ergodic

rate will be exceeded in the other two states due to the eXCand minimum rate codeword of every other weaker user before

%%"lsng able to decode his own minimum rate codeword. This

power allocated to those states. C o . -
. . . . eliminates the possibility of decoding the minimum rate code-
As briefly mentioned earlier, in a single-user channel data CAldrds before the ergodic codewords

be transmitted at the minimum rate with a decoding delay that
is independent of the rate of channel variation while simultane-
ously transmitting delay-insensitive data which takes advantaggl'
of the ergodic nature of the channel. This can be accomplishedVe have derived the minimum-rate capacity region of a
through the use of a separate minimum rate codebook andmoadcast channel subject to an average power constraint. The

ALTERNATIVE CONSTRAINTS ONTRANSMITTED POWER
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optimal transmitted power is a function of the joint fadind3. Peak and Averagedwer Constraint

state and can be quite large in some fading states. In practical, s subsection, we find the minimum-rate capacity subject

broadcast situations, there is generally a peak power ConStr"{'BEverage power constraifitand peak power Constraiff cax.

and there may or may not be an average power constraijfe assumeP,... > P. If this condition is not satisfied, the
In this section, we characterize the minimum-rate capacify,erage power constraint is meaningless. The capacity region
region of ak-user broadcast channel subject to two different,, pe defined as it was for the average power constraint case in

constraint sets: a peak power constraint only, and both a peglttion v, We letF”” denote the set of feasible power policies
and an average power constraint.

K

> Pj(n)

i=1

A. Peak Power Constraint F'" = {P =

We now consider the problem of maximizing minimum-rate
capacity subject to only a peak power constrdift,x in each
fading state. The capacity region can then be defined as the set
of all achievable average rates subject to minimum rate, peak,
and power constraints as it was for the average power constrdiR capacity region subject to peak power constrBjaf, can
case in Section IV. We leE” denote the set of feasible powetthen be characterized as

K
< ?7 ZPJ(n) < Ppoak an
=1

R;(P(n)) > R} Vj,n}.

policies satisfying the peak power constraint and the minimum B

rate constraint in all fading states cggf}*“g(P, Ppeax, R*) = Co < U Cmin(P)> . (21)
K Pefl/l

F'=(P: ZPj(n) < Ppears Rj(P(n)) > R} Vj,n .  Tofindthe boundary of th& -user capacity region, we perform
j=1 a maximization similar to (10) with the addition of a state-by-

The capacity region subject to peak power consti&jat. then
is

Cgl?rilk(Ppeak7R*) = Co ( U Cnlin(P)
PeF

state peak power constraint. We can therefore allocate minimum

power to both users and reduce the problem to an ergodic ca-
pacity maximization problem. As stated before, the minimum
power required in each state to meet the minimum rate require-

: (20) ments must not violate the peak power constraint. However, we

must maximize the ergodic capacity of the effective channel

To find the boundary of the capacity region, we perform a magubject to an average power constraint

imization similar to (10), except with a peak power constraint x

replgcmg the average power constraint. _ _ _ PAP_E, Z P (n)

Since the weighted sum of the rates is an increasing function P

of the total power allocated to each fading state, each fading

state should be allocated the peak power. Clearly, the minimamnd peak power constraifcax — Zfi 1 P (n) in each fading

rates must be achievable in each state under the peak power staie. The optimal power allocation with both average and peak

straint Ppe.i. Which implies Ppear > Y1, P7(n), Vn. Given power constraints is simply a truncated version of the optimal

that each fading state is allocated the peak power, the remainjiayver allocation policy with only an average power constraint.

task is to optimally allocaté,.... between theé( users in each This is easiest to see by considering the greedy algorithm [1,

fading state. We may first allocate the minimum power requiresic. 3.2], [3, Sec. IlI-A] to allocate power with only an average

to achieve the minimum rates in each state, leaving excess pop@wer constraint. In the greedy algorithm, each user is repre-

Ppearc — 1<, P¥(n) in each fading state. The excess powesented via a utility function which is a function of the amount

must then be optimally distributed between fiaisers to max- of power allocated in each fading state. The peak power con-

imize the weighted sum of their rates in excess of the minimusiraint effectively truncates the utility functions of all users at

rates. The set of achievable excess rates is equal to the capacity Ppeak — Efil Pr(n) in each fading state. Then it is easy

region of the effective broadcast channel, which takes the fotmshow that the total effective power allocated to each fading

of a constant broadcast channel in each fading state. Howewate is given by

maximizing weighted sum rate for a constant channel turns oyt K "

to be nearly as difficult as maximizing weighted sum rate for € lm) — i _ *(n). (ﬂ _ e):| )

fading channel. First, a different water-filling Ievgg;) must be gp" (m)=min (Ppcak ;P’L (n), L:I?aXK K )

chosen foreachfading state to satisfy

.....

The only difference between this scheme and the optimal
K . i . excess power allocation scheme without the peak power con-
Ppeak = Z Pi(n) = max <_ - ) straint is that the excess power allocated to a state is truncated
=t ) at Ppeax — Y., P¥(n), which in turn affects the optimal
The effective poweJ‘Jpeak—Zf‘:1 P;(n)isthen allocated to the water-filling level . The distribution of excess power to the
K users in each fading state according to the procedure detailsgérs within each fading state follows the procedure detailed
in [3, Sec. lll]. As before, the actual excess power allocatidn [3, Sec. Ill], with the simple caveat that the total effective
policy can be inferred from the allocation of effective power bpower allocated to each fading state cannot be larger than

the relationship in (14) and (15). Ppeak — Zfil Pr(n).

= a
i=1,.. K
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VII. M INIMUM -RATE OUTAGE CAPACITY Though the minimum rates were assumed to be constant in
e original minimum-rate capacity formulation, time-varying

In this section, we discuss minimum-rate capacity witw : . . )
imum rates can be handled using almost the identical solu-

outage subject to an average power constraint. In minimum-r T hi the mini i ity with ti .
capacity, minimum rates must be maintained in all fading statd@": TO achieve the minimum-rate capacity with time-varying

With outage, however, this constraint is loosened slightly angnimum ratesR* (n, w(n)), we simply need to replac&*

* I i i -
the minimum rate of every user must only be met subject Y&'th *(n, w(n)) in the optimal power allocation scheme de

outage probabilitie®ut = (Peut, ... Pty In other words, rived in Section V. The fact that the fading broadcast channel

ergodic capacity is maximized subject to the constraint that th&s decomposed mtol a parallel set of constant. broadcast chan-
minimum rate of uset: must be met with at least probabilityHE|s’ one for each fading state, allows us to optimally deal with

(1— Po") for k = 1 K. Minimum rate outage allows time-varying minimum rates using this simple substitution.
k —_ PICECICIEY .

minimum rate transmission to be suspended to users wh I\N'th this in mind, we defineC.;n(P, R*(n, w(n))) to be

their channels are very poor. Transmission is allowed durifge minimum-rate capacity of the broadcast channel with time-

outages, but minimum rates are not required to be met durihdY'"9 T_wlnlmunt]hratedz (n’w(n))t' Eor eachﬁog%?ge function
these times. In more practical terms, delay-sensitive data m ) satisfying the outage constraintyin (P, R*(n, w(n))

be transmitted at the minimum rates a certain percentage of ines an achievable rate region that sa.tisfies both the average
time, whereas delay-insensitive data has no such constraffff/ver constraint and the outage constraints.

This is different than the definition of outage capacity [4], [5] Definition 2: The minimum-rate outage capacity of a fading

in which no data is transmitted during outages and the orlyoadcast channel with perfect CSI at the transmitter and re-
concern is the constant channel achievable during nonoutagesivers, average power constraiitminimum rate constraint

. .In certain severe fqdmg distributions (i.e., Rayle|gh' fadlng), R = (R',R},..., RS € Cou (P, PY)
it is not possible to maintain a constant data rate at all times with . . . o
an average power constraint. In other words, channels with c8fd outage probabilitieB*"" = (PP, ..., Pgt) is

tain severe fading distributions have no zero-outage capacity re-

gion. These channels therefore have no minimum-rate capaciéf’;.**°(P, R*, P°"*) = Co U Conin(P, R*(n,w(n)))
region. However, all fading channels can support a constant w(n)

rate with outage. Therefore, all fading channels do have a migpere the union is over alb(n) satisfying

imum-rate outage capacity region.

In this section, we analyze the scenario where outage is de-
clared og a_user-Ey—rt]Jser basis_as opppsgd to declar:@ng acomMQlyiice that the minimum-rate vectd®* must be in the inde-
outage during which no user is required to meet his minimu : . I - pout
rate [4]. We will see that the case of common outage is a spe I&Jndent outage capacity region [4], 1.8, € Cou (P, P,

: . the minimum rates to be achievable with the given outage
case of the more general independent outage formulation. probability;

En[wr(n)] > (1 - PP")VEk=1,...,K.

A. Characterization of Minimum-Rate Outage Capacity B. Characterization of Minimum-Rate Outage Capacity

Region With Independent Outage Region With Common Outage
To find the minimum rate outage capacity, we first define The minimum-rate outage capacity with common outage can
the outage functionw(n) = (wi(n),...,wx(n)) over all be characterized using the expression for minimum-rate outage

fading states wherey,(n) = 1 for fading states in which the capacity with independent outage. With common outage, the
minimum rate of Usek must be satisfied and otherwise?  outage functionw(n) must satisfy the additional constraint
Due to the outage constraints, the outage function must satigfy(n) = ws(n) = --- = wg(n) ¥a. In addition, the vector
En[wi(n)] > (1 — PR") for each user. The outage functioroutage constraint becomes a scalar outage probalslity.

is an indicator function which determines which states amhe capacity region then is

required to maintain the minimum rates of the different users.

Maximizing ergodic capacity given outage functian(n) is coutage (B R Pouty = Co U Conin(P, R* (n,w(n)))

very similar to finding non-outage minimum-rate capacity, ™™ T e ’

except with time-varying minimum ratesR"*(n,w(n)). We
define R* (n, wi(n)) as

w(n)

where the union is over alb(n) satisfying

En[wi(n)] > (1 — P°").
Ri(n,wi(n)) = { OR* wkEng i (1) (22) Notice that the_ minimum rate_ vect®* must be in the common
ke Wk = outage capacity region [4], i.eR* € Cou (P, P°"), for the
. . - mfinimum rates to be achievable with common outage and with
is assumed to be the actual desired minimum rate

where R}, fhle given outage probability.

Userk. We then write the time-varying minimum rates as
i} i} § C. Characterization of Minimum-Rate Outage Capacity for
R*(n,w(n)) = (Ri(n,wi(n)),..., Rx(n, wk(n))). a Single-User Channel
3We need not consider < w;(n) < 1 since we are only concerned with The deﬁniﬁon of minimum—rate outage capacity givenin The-
continuous fading distributions. orem 2 applies to single-user channels as well, but the expres-



2906 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 11, NOVEMBER 2003

sion can be simplified significantly in the single-user case. F ' ' ' — Ergodic Capacity
a single-user channel, the outage functiefm) is only a func- ~ 12%0] .- Min Rate - 200 ';gg:
tion of the fading state because there is only one user and -~ Min Rate = 340 kbps
capacity region is one-dimensional. Finding the largest achie 1000 —— Zero-Outage Capacity 4

able rate subject to the power and outage constraint therefor
equivalent to finding the outage function that correspondstot gggl

et maay, N
~,

largest achievable rate. In [8], the concept of minimum-rate cg \ \
pacity with outage was independently proposed and the optm - P ~~e v\ |

outage functionv*(n) was found to be i Y I

[

! L

N 1, n < s* 400} ! LI

w(n) = {0. n > s* (23) : : '

’ - ]

P=10mwW
where the thresholg* is chosen to satisfy 200F S, to-a mw) wp:,z

(n "2) (1e-4 mW, 1mW) wp 1/2

E.[w*(n)] = Pr{n < s*} =1 - P°".

0 200 400 600 800 1000 1200
The optimal scheme is therefore seen to be a threshc _. R1 (kbps)

policy: minimum rates must be maintained in all states bettlgr
(i.e., smaller noise values) than the threshold, while minimunt”
rates need not be maintained in states worse than the threshold
This is very similar to the solution to the minimum outage prot
ability problem under a long-term average power constrai 1000
for a single-user channel solved in [12]. When maximizin
outage capacity, all power available goes toward maintainii
a constant rate in non-outage states. In minimum-rate outz
capacity, however, some fraction of the power maintains tl 700
minimum rate in non-outage states. The excess power, howe'g
is water-filled over the fading states with respect to the effecti2
channel to maximize rates achieved in excess of the minim(&
rates. 400F
Unfortunately, the multiuser broadcast channel does not ¢

pear to have such a simple solution for either common outage P=10mW
independent outage because the relationship between the r 2% (ung =1, 001 e v 12
imum power allocation, effective noise terms, and the effectiv. 100+ : ’
ness of each fading state and user is much more complica

6. Capacity of symmetric channel with 40-dB difference in SNR.

— Ergodic Capacity

= = Min Rate = 300 kbps
== Min Rate = 500 kbps
- - Min Rate =580 kbps H
—— Zero-Outage Capacity
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i - 0 200 400 600 800 1000
than the single-user case. R1 (bps)
VIIl. NUMERICAL RESULTS Fig. 7. Capacity of symmetric channel with 20-dB difference in SNR.

In this section, we present numerical results on the capacity
of a two-user broadcast channel with minimum-rate constraintsBecause the minimum-rate boundary always lies between the
with an average power constraint and no outage. In all plots, thero-outage capacity region boundary and the ergodic capacity
total transmitted power is 10 mW, the bandwidth is 100 kHz, amdgion boundary, the zero-outage capacity region is generally
the noise distribution is symmetric. Furthermore, the minimuia good approximation for the minimum-rate capacity region.
rates are symmetric in Figs. 6-9. Channels in which the ergodic capacity region is much larger
In Fig. 6, the capacity region of a two-user channel with verthan the zero-outage capacity region will be significantly af-
different noise levels is plotted. In one fading state,is 40 fected by minimum rate requirements, arde versaor chan-
dB less tham (i.e., the signal-to-noise ratio (SNR) of user Tels with zero-outage capacity regions that are not much smaller
would be 40 dB larger than the SNR of user 2 assuming eatttan the ergodic capacity region.
user was allocated the same power), gicd versan the second  The zero-outage capacity region in Fig. 6 is significantly
fading state. Without minimum rates, capacity is achieved lsynaller than the ergodic capacity region. As expected, the
allocating almost all power to the better of the two users iminimum-rate capacity region is significantly smaller than
each channel state. This causes the capacity region to be highly ergodic capacity region. We will see a similar relationship
convex. When minimum-rate constraints are applied, howevbgtween the zero-outage and minimum-rate capacity regions
power must also be allocated to the weaker user in every fadiiog the other channel models.
state to satisfy the minimum rates, leading to a large capacityThe capacity region of a channel whergandn., differ by 20
reduction. Itis clear from Fig. 6 that the minimum-rate capaciyB in each fading state is plotted in Fig. 7. The ergodic capacity
region is significantly smaller than the ergodic capacity regionggion is much less convex than in Fig. 6 because the channels
especially for large minimum rates. of the two users are more similar in each state. This is because
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350 T T T T T 350 T T T T I
— Ergodic Capacity — Ergodic Capacity
== Min Rate = 50 kbps == Min Rate = 100 kbps
300 ‘== Min Rate = 100 kbps | 300 == Min Rate = 150 kbps ||
- - Min Rate = 125 kbps Zero-Outage Capacity
—— Zero-Outage Capacity
250+ b 1 250} 1
%200f . %200 .
Q Q.
2 2
& 150f {1 &1s0} -
100} . 100} .
P=10 mW P=10mwW
B =100 kHz A B =100 kHz
501  E[1/(n,B)} = E[1/(n,B)] = 1.0 1/mW - E 50F  E[1/n,B)] = E[1/(n,B)] = 1.0 V/mW 1
% 50 100 150 200 250 300 350 % 50 100 150 200 250 300 350
R1 (kbps) R1 (kbps)
Fig. 8. Rician fading withil’ = 1, Average SNR=10 dB. Fig. 9. Rician fading withi’ = 5, Average SNR= 10 dB.
350 ; , . e
; : : . : — Ergodic Capacity
the optimal power aIIocz_;ltlon scheme is not so heavily weight: - = Min Rate (100 kbps, 100 kbps)
toward the better user in each state so even the poorer use 300 +=1= Min Rate = (100 kbps, 50 kbps) |
allocated significant power in each state. Minimum-rate co ~~ Min Rate = (100 kbps, 0 kbps)
' —— Zero-Outage Capacity

straints force allocation of additional power to the poorer us g,
in each fading state, but this is not as suboptimal as it is for t

first example. We see in Fig. 7 that the minimum-rate capacimoo_
region is smaller than the ergodic capacity region, but not by &
much as in Fig. 6. This result could have been predicted frcé’mo_
the fact that the zero-outage capacity region of this channel

not much smaller than the ergodic capacity region due to t
similarity of the users’ channels.

In the subsequent two plots, results for more realistic chant B2 100z
models are presented. Independent fading is assumed for k50 FVeEI=EeBl=101mW ’ l
receivers and the channel gain is incorporated into the no
power, as described in Section Il. Rician fading with= 1 % 50 100 150 200 250 300 350
is modeled in Fig. 8. This is not as severe as Rayleigh fadi _ R1 (kbps)

(WhiFh has no zero-ouf[age capacity region), but the.power qf tPS 10. Rician fading with' = 1, Average SNR= 10 dB, asymmetric
multipath component is equal to the power of the line-of-sight=: - m rates. - :
component. The noise levels take on a wide range of values,

as they do in the channel plotted in Fig. 6. As expected b|¥|um rate of user 2 increases the capacity of both users, not just

our earlier results, minimum rates reduce capacity significant| . .
Once again we see that the zero-outage capacity region is mg) @Etﬁé?i(it:se reducifiy frees up power that can be allocated

smaller than the ergodic capacity region. From these results, it is clear that minimum rates decrease the

In Fig. 9, Rician fading withKX' = 5 is modeled. Because capacity regions of fading channels in which the noise levels of

the power of the line-of-sight component is five times as stro - N . .
b : 9 P "He users differ significantly in many channel states, i.e., when
as the multipath component, both users generally have strontc];~I L .
ither of the two users has a significantly larger channel gain

channels and this channel resembles the channel plotted;in .
) L an the other user in many channel states. When the channels

Fig. 7. As expected, minimum rates do not reduce capacity : L o

significantly of the users do not differ significantly, minimum rates do not

Finally, in Fig. 10, the capacity regions of a Rician fadinggeduce the capacity region significantly.

channel withK' = 1 and asymmetric minimum rates are plotted.
Inthe graph the capacity regions for minimum rates of (100 kb/s,
100 kb/s), (100 kb/s, 50 kb/s), and (100 kb/s, 0 kb/s) are shownWe defined the minimum-rate capacity region as the set of all
This relates to a scenario where one user has stricter requaehievable average rates subject to minimum rate requirements
ments than the other or only one of the two users requires a miior each user in every fading state. By decomposing the power
imum rate. We see that the capacity region for the asymmetailocated to each user in every fading state into a portion which
minimume-rate pair is considerably larger than the capacity raehieves the minimum rate and a portion which exceeds the min-
gion for the symmetric-rate pair. Notice that reducing the mirmum rate, we were able to specify the minimum-rate capacity

100+

IX. CONCLUSION
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region in terms of the ergodic capacity region of an effective APPENDIX B
broadcast channel. The effective channel incorporates the effect PROOF OFEFFECTIVE NOISE ORDERING EQUIVALENCE
of the minimum rate requirements into the joint fading state and
into the amount of total power available. ,n% have the same ordering as the original noises

By analyzing several different channel models, we deter- Since < < ... < " by the
mined that for severely fading channels, the minimum- ra&ee A () = Tw(2) > S M) BY

f|n|t|on of = (-), we wish to show that

capacity region is significantly smaller than the ergodic ca-
pacity region. On the other hand, benign fading environments
are able to support large minimum rates with little reduction in
the capacity region. Furthermore, we saw that the difference lag-thatn®
tween the zero-outage capacity region and the ergodic capacity
region approximated the difference between the minimum-rate

In this appendix, we prove that the effective noise terms

(1) S M) S0 S N

=) S Noiy1y- We can expandr ;) as

capacity region and the ergodic capacity region. n:—(i+1) = Z P;‘(j) + Nr(it1) ezmﬂ B
Additionally, it can be shown that a duality exists between j<it1

the minimum-rate capacity region of the Gaussian broadcast and

multiple-access channels [13]. Using this duality, [13] uses the — Z Gy F ey + Pﬁ(t+1) ezj>1+1 Rh

results found in this paper to find the minimum-rate capacity <i
region for the Gaussian multiple-access channel as well.

* R*,. . R’
— Z Pﬂ_<]) + nﬂ(i-{-l) e w(7+1)ezj>1+1 (3)

APPENDIX A <
PROOF OFEXCESS AND EFFECTIVE POWER RELATIONSHIP B
In this appendix, we prove the following result: - Z %y (i) BZM )
71<i
= 2z B P (24) .
D Pry =5z 0y Py . s
j<i i<i =iy T (i) = n(i) GZD? v
fori = 2,..., K + 1.. First, notice that for = 2, we have Sincen(i+1y > nn(;) by our choice ofr(-), we havm:—(i—l—l) >
pe ) = ﬂ(l)ezw by the definition ofPe( ) in (15). As- fr@.
sume (24) holds foi. We will show it holds for: + 1 as well.
. APPENDIX C
Z w( ) T Z 7(4) PROOF THAT EXCESSPOWER TO EFFECTIVE POWER
isi g<i TRANSFORMATION IS ONE-TO-ONE
— eEM R () f’ﬂ(i)(n) _ (6R2<7> — 1) In this appendix, we show that every set of honnegadiive
fectivepowers(Py (n), ..., Py (n)) corresponds (uniquely) to
. a valid (i.e., powers that meet or exceed all minimum-rate con-
> Prgy(n) straints) set of excess powet# (n),..., Px(n)), andvice
J<i versa This property is required so that the maximization over
J>1 ) Z Py nonnegati\_/e effective powers in (17_) is equivalent to the original
< maximization over excess powers in (13).

First, by the definition of effective power given in (15) it is
D DI 1P (f’m)(n) _ (BR% _ 1) easy to see that any set of excess powWéign), ..., Px(n)) _
that meet the constraints of (13) map to nonnegative effective
powers. Note also that the transformation preserves sum power
) in each fading state (Appendix A), and thus preserves average
power as well.

Y Pry(m) + &0 Y Py

1<t 1<t

> B Z P To show equivalence in the other direction, first note that the

¢ —~ () effective power transformation in (15) can be written in matrix
= form asP¢(n) = AP(n) whereA is aK x K matrix with

—e J>1+1 J) Z Pﬂ_(J) i
J<i+l A(iyi) = 2o 6) 5
Notice that fori = K + 1, this implies and _
A(i,j) = _62j>q‘ Rwu)(@R;r(i) -1)<0
Z - ZPW( ) . . . IR
(5) J for all j < 4. Thus,A is lower-triangular with strictly positive

diagonal entries (which ensures invertibility) and nonnegative
or that the sum of effective powers equals the sum of excemstries below the diagonal. It is straightforward to show that the
powers. inverse of such a matrix is lower-triangular with all nonnegative
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entries. Thus, by using_l,

2909

we can map (uniquely) from non- In matrix terms, we can write the effective noisersis= Bn

negative effective powers to nonnegative excess powers. Fnhere B is a lower-triangulark x K matrix defined by the
thermore, since the powers satisfy (15) by definition, foriall coefficients given in (26). Notice that

andn we have
_ Pryn)
Zj>i R:r(j)

>0

0 —1) ZP J)

j<t

B(i,i) = 22 26 5

which implies that the matriB is invertible and thus the trans-
formation is one-to-one.
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(1]
[2]
APPENDIX D
PROOF THAT NOISE TO EFFECTIVE NOISE TRANSFORMATION [3]
IS ONE-TO-ONE
_ ) [4]
Here, we show that the transformation from noise siate
to effective noise stata® is a one-to-one transformation by 5]
showing that the map from to n° is an invertible linear trans-
formation fromRX to RX . The effective noise is defined in (14)
as (6]
S m (7]
e A i>i (s
Moy 2 | ey + D Pry(m) | e 0
i<i [8]
One can inductively show that o]
> Pip(®) Z”r(m e — 1)edaimin 0 (25) o)
i<t
- . o . _ .11
Substituting this expression into the definition of effective noise,
we get
[12]
n:_(l) = ng)e _7>7 J) +Zn k) e R A) _ 1) Z7>A w(5) [13]

(26)
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