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Abstract— We consider a MIMO fading broadcast channel
where channel state information is acquired at user terminals via
downlink training and explicit analog feedback is used to provide
transmitter channel state information (CSIT) to the base station.
The feedback channel (the corresponding uplink) is modeled as a
MIMO multiple access channel. Under the assumption that data
transmission, downlink training, and feedback are performed
within the same channel coherence interval of length T symbols,
the optimization of a lower bound on the achievable ergodic rate
sum yields a non-trivial resource allocation tradeoff. We solve this
tradeoff and provide the optimal training and feedback resource
allocation for the case of zero-forcing beamforming. When the
same power level is used during all stages, it is found that the
optimal length of the training + feedback phases increases as
O(
√

T ) for large T . On the other hand, when different power
levels can be used for different stages, for sufficiently large T it
is optimal to use the minimum number of symbols for training
+ feedback but to use power of order O(

√
T ).

I. INTRODUCTION

We consider a MIMO Gaussian broadcast channel modeling
the downlink of a system where a Base Station (BS) has M
antennas and serves K single-antenna User Terminals (UTs).
A channel use of such system is described by

yk = hH
k x + zk, k = 1, . . . , K (1)

where yk is the channel output at UT k, zk ∼ CN(0, N0) is the
corresponding Additive White Gaussian Noise (AWGN), hk ∈
CM is the vector of channel coefficients from the BS antenna
array to the k-th UT antenna and x is the vector of channel
input symbols transmitted by the BS, subject to the average
power constraint E[|x|2] ≤ P . We assume a block fading
model, i.e., the channel remains constant over a coherence
interval of T channel uses. Albeit suboptimal, we focus on
zero-forcing (ZF) beamforming with K = M users for its
analytical tractability.

As commonly done in existing wireless communications
systems, each UT learns its own downlink channel from a
training phase. Furthermore, we assume frequency-division
duplexing (FDD), requiring explicit (closed-loop) CSIT feed-
back from the UTs to the BS. CSIT feedback is performed by
transmitting the estimated unquantized channel coefficients on
the uplink by suitable quadrature-amplitude modulation, as in
[1], [2]. The feedback link (uplink) is a faded MIMO multiple
access channel with M users and M receiving antennas,
since we assume that the BS can use its antenna array for
both downlink and uplink. Moreover, we assume that data

transmission, downlink training, and feedback are performed
within the same coherence interval of duration T . We shall
refer to T as the “frame length” and let Tt denote the total
number of training and feedback symbols.

In [2] it is shown that the achievable ergodic sum rate of
ZF beamforming with Gaussian inputs and CSI training and
feedback (to be specified in Section II) is lower bounded by

Rk ≥
(

1− Tt

T

) (
RZF −∆R

)
(2)

where the factor Tt/T is the multiplexing gain loss due to
the fact that only T − Tt symbols are used for actual data
transmission, RZF denotes the achievable per-user rate of ZF
beamforming with ideal CSI, and the upper bound of the
rate gap ∆R represents the degradation in rate due to the
imperfect CSI. The optimization of the sum-rate (2) stems
from the tension between two issues: on one hand, the upper
bound of the rate gap ∆R decreases with Tt [2]; on the
other hand, the multiplexing gain loss Tt/T becomes non-
negligible as Tt increases. This yields a non-trivial tradeoff,
the characterization of which is the subject of this paper.

We start by considering the setting where the same (per-
symbol) power is used during the training/feedback and data
transmission stages. In this case, we show that the optimal
number T ?

t of training and feedback symbols that maximizes
(2) increases as O(

√
T ) for T → ∞. Next an average

power constraint across the training/feedback and data stages is
considered, in which case we must optimize over the number
of symbols as well as the power allocated to the training,
feedback and data phases. It is shown that for sufficiently
large frame length, it is optimal to allocate the minimum
number of symbols to training/feedback but to increase the
training/feedback power as O(

√
T ) as T → ∞; these results

agree to some extent with [3], [4].
In order to put this work in the context of relevant literature,

we note here that similar questions have been addressed in [3],
[4], [5], [6], [7]. In [3], point-to-point MIMO communication
is considered and only downlink training is addressed (imper-
fect CSIR, no CSIT). On the other hand, in [5] perfect CSIR
is assumed and the resources to be used for channel feedback
are investigated. In [6], [7] the model of [3] is extended to
also incorporate quantized channel feedback and transmitter
beamforming. Although the setup is quite similar to ours,
the emphasis of [6], [7] on the asymptotic regime where the
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Fig. 1. Channel state estimation and feedback model.

number of antennas and T are simultaneously taken to infinity
leads to rather different conclusions as compared to the present
work. In [4] a MIMO broadcast with downlink training and
perfect channel feedback (i.e., the BS is also able to view the
received training symbols) is considered. It is shown that the
sum rate achievable with a dirty paper coding-based strategy
has a form very similar to the achievable rate expressions in
[3], and thus many of the conclusions from [3] directly carry
over. On the other hand, we consider the more practical case
where there is imperfect feedback from each UT to the BS
and also study achievable rates with ZF beamforming, which
has lower complexity than dirty-paper coding.

II. CHANNEL STATE ESTIMATION AND FEEDBACK

The training and feedback scheme that allows all UTs to
estimate their channel, feedback CSIT to the BS and eventually
perform coherent detection is illustrated in Fig. 1 and it is
formed by the following phases (see [2] for further details):

1) Common training: T1 shared pilot symbols (essentially
T1
M pilots are sent per BS antenna, and thus we require T1 ≥
M ) are sent to all UTs to estimate their downlink channel
vectors {hk} based on the observation

sk =

√
T1P

M
hk + zk (3)

where zk ∼ CN(0, N0I). Each UT performs linear MMSE of
hk from the observation sk.
2) CSI feedback: in this paper we treat only the case of
“analog” channel state feedback [1], [2] where each UT sends
a scaled version of its channel MMSE estimate using unquan-
tized quadrature-amplitude modulation over the uplink. The
uplink is modeled as a MIMO MAC with a common SNR Pfb

N0
for all M users. Uplink transmission is organized as follows.
The M UTs are partitioned into groups of size L (such that
M/L is an integer). The UTs in the same group simultaneously
transmit their feedback signal over LTfb/M channel uses
(each UT transmits each of its M channel coefficient estimates
LTfb/M2 times), and the BS performs MMSE estimation
on the received vectors to acquire imperfect CSIT. Different
groups access the feedback channel in time-division, such that
the feedback spans a total of Tfb uplink symbols. In [2] we
have shown that the choice L = M/2 minimizes the rate gap
for this type of feedback; thus we consider only this choice of
L and furthermore have the requirement Tfb ≥ 2M because
each of the two groups requires at least M uplink symbols. The
uplink and downlink channels are assumed to be identically
distributed (i.i.d. coefficients ∼ CN(0, 1)) and independent,
due to the assumption that in FDD the uplink and downlink

are separated in frequency by much more than the channel
coherence bandwidth.
3) Beamformer selection: the BS selects the beamforming
vectors by treating its available CSIT Ĥ = [ĥ1, . . . , ĥM ] as
if it was the true channel and computes the transmit vector
x = V̂u, where V̂ = [v̂1, . . . , v̂M ] is the beamforming
matrix, such that v̂k is a unit-norm vector orthogonal to the
subspace Sk = span{ĥj : j 6= k} and u ∈ CN(0, P

M I) con-
tains the symbols from M independently generated Gaussian
codewords.
4) Dedicated training: because V̂ is a function of a noisy
version of all UT channels, it is not known by any UT. In order
to enable coherent detection, a dedicated downlink training
sequence is inserted in each beam so that each UT k can
estimate its useful signal coefficient ak = hH

k v̂k using linear
MMSE estimation. The total dedicated training phase length
is T2 (essentially T2

M pilots are sent per beam, and thus we
require T2 ≥ M ), so that each UT k observes

rk =

√
T2P

M
ak + zk

5) Data transmission: after the dedicated training, the BS sends
the coded data symbols for the rest of the frame. Inspired by
the setting of [3], we assume that the overall procedure of
training and feedback occurs in the same downlink frame of
duration T , over which the channels are constant. Hence, we
let Tt = T1 + T2 + Tfb to denote the total length of common
training, dedicated training, and feedback and Td = T −Tt to
denote the length of downlink data symbols1.

III. OPTIMIZING TRAINING AND FEEDBACK

A. Equal Training/Feedback and Data Power

In [2, Section VIII] it is shown that the rate gap with analog
feedback over MIMO-MAC with the optimal group size choice
L = M/2 is upper bounded by

∆R = log
(

1 +
M − 1

T1
+

1
T2

+
4(M − 1)

MTfb

)
. (4)

Our objective is to find T1, T2, Tfb such that the achievable rate
of ZF (RHS of (2)) is maximized. This leads to the following
optimization problem:

maximize
(

1− Tt

T

)
[RZF − log(1 + g(T1, T2, Tfb))]

subject to T1 + T2 + Tfb ≤ Tt (5)
Ti ≥ Tmin

i , i = 1, 2, fb

where Tmin
1 = Tmin

2 = M,Tmin
fb = 2M , and where we define

g(T1, T2, Tfb) =
w1

T1
+

w2

T2
+

w3

Tfb
(6)

with w1 = M − 1, w2 = 1, w3 = 4(M−1)
M . Although the

objective is neither concave nor convex, it is possible to solve

1In settings where uplink and downlink symbols are valued differently, it is
straightforward to extend our analysis to the case where Tt = T1+T2+ΓTfb

for some constant Γ.



through a two-step optimization: we first optimize T1, T2, Tfb

for a fixed Tt, and then optimize with respect to Tt.
When Tt is fixed, the original optimization problem (5)

reduces to the minimization of g(T1, T2, Tfb). This is readily
seen to be a convex optimization, and can be solved by forming
the Lagrangian with respect to the constraint (5)

L(T1, T2, Tfb, µ) = g(T1, T2, Tfb) +
1
µ2

(T1 + T2 + Tfb)

where µ > 0 is the Lagrangian multiplier. The KKT condition
yields the following solution

T ?
i = max

{
Tmin

i ,
√

wiµ
}

(7)

which is simply a linear function of µ with a slope
√

wi for
µ ≥ Tmin

i√
wi

. Assuming µ ≥ maxi
Tmin

i√
wi

such that Ti ≥ Tmin
i for

all i (or equivalently, Tt ≥
√

K
wi

Tmin
i for all i), we have

T ?
i =

√
wi

K
Tt (8)

where we let K = (
∑3

i=1

√
wi)2 and the objective value is

given by

g(Tt) =
K

Tt
(9)

It is clear that Tt is shared between common/dedicated training
and feedback proportional to the square root of the weight wi.

Using (9) in (5), the original problem can be characterized
in terms of a single variable Tt. Namely the second step of
the proposed optimization corresponds to maximizing

f(Tt) =
(

1− Tt

T

)[
RZF − log

(
1 +

K

Tt

)]
(10)

Although this f is concave in Tt, the optimal T ?
t cannot be

given in closed form. However, it can be easily obtained by
numerically solving for ∂f

∂Tt
= 0. This amounts to a simple

line search. For later use, the derivative is calculated as

∂f

∂Tt
=

K
(
1− Tt

T

)

T 2
t

(
1 + K

Tt

) − 1
T

[
RZF − log

(
1 +

K

Tt

)]
(11)

It should be noted that this approach can be applied to other
scenarios by appropriately choosing the weights w1, w2, w3.
In fact, several cases of training and feedback analyzed in
[2], including the unfaded AWGN feedback channel and TDD
systems that exploit channel reciprocity, differ from (4) only in
the value of the weights. Furthermore, the same basic approach
can also be used to analyze quantized channel feedback.

B. Asymptotic Analysis

We examine how the optimal length of the feedback and
training phase T ?

t scales with the coherence interval T and
with the SNR. From (11), the optimal T ?

t satisfies the follow-
ing equality

K(T − Tt)

T 2
t

(
1 + K

Tt

) = RZF
k − log

(
1 +

K

Tt

)
(12)

It is easy to see that the derivative (11) is upperbounded by
1
T f̃(Tt), where

f̃(Tt) =
K (T − Tt)

T 2
t

−
[
RZF − K

Tt

]
(13)

Since f is concave, it follows that the solution T̃t of the
equation f̃(Tt) = 0 is an upper bound to the optimal value
T ?

t , solution of ∂f
∂Tt

= 0. Explicitly, we find

T ?
t ≤ T̃t =

√
KT

RZF
(14)

Furthermore, when the rate gap is small such that
log

(
1 + K

Tt

)
≈ K

Tt
(which becomes accurate for large T ),

the upperbound becomes also a very good approximation.
The upperbound (14) yields two interesting behaviors: 1)

for a fixed SNR (i.e., constant RZF) T ?
t increases as O(

√
T )

as T →∞; 2) for a fixed coherence interval T , T ?
t decreases

as O(1/
√

RZF) for large SNR, or equivalently, it decreases as
O(1/

√
log(SNR)) since RZF = log(SNR) + O(1) for large

SNR.
Although not explicitly stated in [3], it can be confirmed

that the optimal number of training symbols also scales as
O(
√

T ) for a point-to-point MIMO channel. With respect to
the scaling of T ?

t with SNR, recall the requirement Tt ≥ 4M ;
thus, for sufficiently large SNR the value of T ?

t converges to
this minimum.

Next, we examine the impact of T ?
t on the achievable rate.

Using the upperbound (14) into (10), the objective value can
be approximated as

f(T̃t) =

(
1−

√
K

RZFT

)[
RZF − log

(
1 +

√
KRZF

T

)]

After some manipulation, it can be shown that the resulting
effective rate gap with respect to RZF is given by

RZF − f(T ?
t ) ≤ RZF − f(T̃t) ≈ 2

√
KRZF

T
(15)

The effective gap decreases roughly as O(1/
√

T ) as T in-
creases. We would like to remark that these scaling laws
hold even if downlink training is the only source of CSI
imperfection (i.e., even when channel feedback and dedicated
training are perfect), and thus apply to all of the feedback
schemes considered in [2].

C. Optimized Training/Feedback and Data Power

We now consider the case where power can be optimized
over the data and training/feedback phases along the lines of
[3], [4]. Although it is possible to assign different powers to
the two training phases and the feedback phase, it is readily
verified that it is optimal to use only two (per-symbol) power
levels: power Pt for training (common and dedicated) and
feedback, and Pd for data. Again using the results of [2], the
achievable rate maximization can be stated as



maximize
„

1− Tt

T

«
[RZF(Pd)− log (1 + g({Ti}, Pd, Pt))]

subject to Tt + Td ≤ T

TtPt + TdPd ≤ PT (16)

where the last inequality corresponds to the average power
constraint, RZF(Pd) denotes the ergodic rate of ZF beamform-
ing with ideal CSI at SNR Pd/N0, and where we define

g({Ti}, Pd, Pt) =
Pd

Pt

(
w1

T1
+

w2

T2
+

w3

Tfb

)

We solve this using a three-step optimization: 1) optimize
T1, T2, Tfb with Tt, Pt, Pd fixed; 2) optimize Pt, Pd with Tt

fixed; 3) optimize Tt. The first step is identical to what was
done before. By using the solution (9), the second step reduces
to maximizing

RZF(Pd)− log
(

1 +
Pd

Pt

K

Tt

)
(17)

subject to the energy constraint (16) for fixed Tt, Td. If we use
the high SNR approximation RZF(Pd) ≈ log(Pd/N0M) + γ
where γ ≈ 0.5772 is the Euler-Mascheroni constant [8] and
rearrange terms, maximizing (17) is equivalent to minimizing
1

Pd
+ K/Tt

Pt
, which is clearly convex in Pd, Pt. We form the

Lagrangian

L(Pd, Pt, µ) =
1
Pd

+
K/Tt

Pt
+

1
µ2

(TtPt + TdPd)

and the KKT conditions yield the following solution

P ?
d =

TP√
Td(

√
Td +

√
K)

(18)

P ?
t =

√
KTP

Tt(
√

Td +
√

K)
(19)

Finally, by using the above solution and replacing Td = T−Tt,
the third step (again using the approximation for RZF(Pd))
reduces to the maximization of

f(Tt) =
(

1− Tt

T

)
log

(
TP

N0Mγ

1
(
√

T − Tt +
√

K)2

)
.

Since the above objective function is concave in Tt, the
optimal length T ?

t can be again found by a simple line search
(e.g., using the bisection method). Perhaps surprisingly, T ?

t

depends on the operating SNR P/N0 and on T and M , and is
not always equal to the minimum possible length 4M , contrary
to the observations made in [3], [4]. The condition for which
the achievable rate with power allocation is maximized by
T ?

t = Tmin
t = 4M , is given by ∂f

∂Tt
(Tmin

t ) < 0, i.e.

exp
( √

T − Tmin√
T − Tmin +

√
K

)
<

PT

MN0γ

(√
T − Tmin +

√
K

)−2

For T À Tmin, we let T − Tmin ≈ T , approximate the expo-
nential with its second-order Taylor expansion, and perform a
further approximation to get the approximated condition

1 +

√
K

T
<

2P/(MN0γ)− 1
1 +

√
4P/(MN0)− 1

≈ 1
2

√
P

MN0γ
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Fig. 2. The optimal T ?
t with power allocation.

which is satisfied for sufficiently large P/M and/or large
T . From (19) we see that P ?

t , the per-symbol SNR during
training/feedback, increases as O(

√
T ) when T ?

t = Tmin
t .

When power allocation is not allowed, the same order SNR is
achieved by allocating O(

√
T ) symbols to training/feedback.

Interestingly, one would think that for very large T some
Tt > Tmin

t could be used, in order to improve channel
estimation and feedback without any appreciable penalty in
multiplexing gain. In contrast the above result contradicts this
intuition. The key issue is the possibility of power allocation:
for very large T , we can allocate a very large symbol power
Pt to the training and feedback phases, and yet impact very
little the energy allocated to the data.

Fig. 2 plots the optimal number T ?
t of feedback and training

symbols under power allocation as a function of P/N0 for
T = 1000. It is observed that for sufficiently large SNR the
optimal T ?

t coincides with the minimum 4M .

IV. NUMERICAL EXAMPLES

This section provides some numerical examples to illustrate
the analysis of the previous section. We let M = 4 and
consider equal power over data, training, and feedback phases.

a) Performance vs. SNR: Fig. 3 plots the optimized
lengths T1, T2, Tfb versus SNR for T = 2000 along with
the corresponding analytical values obtained from (14). The
length of common training T1 and feedback Tfb coincide since
they have the same weight w1 = w2 = 3 when M = 4. As
expected, the optimal amount of training/feedback decreases
towards the minimum value of 4M = 16, although rather
slowly. Fig 4 shows the corresponding achievable sum rate
versus SNR for T = 2000, along with those for T = 500 and
T = 100, computed by numerical search and the analytical
expression (15), along with the sum rate of ZF with CSI.

b) Performance vs. coherence interval T : Fig. 5 shows
T1, T2, Tfb as a function of the coherence interval T for a fixed
SNR of 10 dB. Note that T ?

t grows as the square root of T ,
as expected from (14). The corresponding achievable rates are
shown at 10 dB and 20 dB in Fig. 6, and the gap to ideal
CSI is seen to decrease rather slowly with T . Also shown in
this figure are the achievable rates for a system in which the
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uplink SNR is 10 dB smaller than the downlink SNR; this
very practical consideration reduces w3 by a factor of 10 and
has a significant effect on performance.

V. CONCLUSIONS

We addressed the optimization of training and feedback in a
MIMO downlink system that makes use of explicit downlink
training and CSI feedback. One of the key findings is that
it is optimal to scale the resources dedicated to training and
feedback per coherence time according to the square root
of the coherence time via allocation of either power and/or
symbols. For example, if the coherence time is doubled, it is
advantageous to increase the training/feedback by a factor of√

2 rather than using the same resources per coherence time;
this corresponds to decreasing the total fraction of resources
devoted to training and feedback by only a factor of

√
2

rather than the factor of 2 suggested by conventional wisdom.
This result appears to apply quite generally and may have
interesting implications on wireless system design.
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multiantenna communication,” IEEE Trans. on Inform. Theory, vol. 51,
no. 12, pp. 4134–4151, Dec. 2005.

5 10 15 20 25 30 35 40
0

10

20

30

40

MIMO−MAC M=4 L=2

SNR [dB]

A
ch

ie
va

bl
e 

ra
te

 [b
it/

ch
.u

se
]

ZF 

T=2000
T=500
T=100

search
analysis

Fig. 4. Achievable sum rate vs. SNR.

1000 2000 3000 4000
0

20

40

60

80

100

120

MIMO−MAC M=4 L=2 

Frame size T [symbols]

nu
m

be
r 

of
 s

ym
bo

ls

Tfb

T1

T2

(feedback)

(common training)

(dedicated training)

SNR=10dB

analysis
search

Fig. 5. Number of feedback/training symbols vs. T (M = 4).

1000 2000 3000 4000
0

4

8

12

16

MIMO−MAC M=4 L=2

Frame size T [symbols]

A
ch

ie
va

bl
e 

ra
te

 [b
it/

ch
.u

se
]

ZF 
P/N0=20dB search

analysis

P/N0=10dB Pfb=P/10
Pfb=P

Fig. 6. Achievable sum rate vs. T under asymmetric SNR.


