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Abstract - This paper compares performance of finite im-
pulse response (FIR) adaptive lincar equalizers based on
the recursive least-squares (RLS) and least mean square
(LMS) algorithms in nonstationary uncomrelated scattering
wireless channels. Simulation results, in terms of steady-state
mean-square estimation error {(MSE) and average bit-error
rate (BER) metrics, are found for the frequency-selective
Rayleigh fading wireless channel experienced in a mobile ad
hoc network where nodes are lognormally shadowed from
each other. For the nonstationary channel models considered,
RLS is always found to outperform LMS.

Keywords - filtering, adaptive equalizers, least mean square
methods, least squares methods, Rayleigh channels, simula-
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I. INTRODUCTION

Nonstationary environments arise when the random pro-
cess supplying the tap inputs of an adaptive filter (see Fig. 1)
is nonstationary itself {1]. One instance in which this condi-
tion occurs is when the filter is employed to equalize time-
varying channels, a unique phenomenon found in wireless
communication environments [2]. A nonstationary process is
a stochastic process whose statistics are time-varying [3]. In
this paper, we consider the channel itself to not just be time-
varying but nonstationary too. Nonstationary implies time-
varying, and equalizing a nonstationary channel also involves
a nonstationary environment. We consider for simplicity first-
order nonstationarity, the mean of the random process being
time-varying. This is a good model for the wireless propa-
gation environment where a received signal experiences barge
fuctuations (multipath or smali-scale fading) and is nonsta-
tionary for distances much larger than a wavelength since the
local mean of the fading signal changes significantly as dif-
ferent objects become reflectors [4].
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Fig. 1. Adaptive Equalizer. u is the input taps applied to
the equalizer, y is the output of the equalizer, d is the desired
response, and e = d — y is the estimation error.
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Two of the most prominent families of adaptive filtering al-
gorithms are the LMS and RLS families. Not much: literature
exists on comparing I MS and RLS in realistic environments.
Herein we compare the performance of linear transversal, or
FIR, adaptive digital filters based on LMS and RLS, when
the optimal (Wiener) filtering vector is randomly time-varying
due to the nonstationary channel, in which case the algorithms
must track the minimum point of the emror-performance sur-
face, as with the time-varying channel case. In this paper,
the focus is on adaptive linear equalization of nonstationary
uncorrelated scattering wireless channels. The speed and sta-
bility with which adaptation takes place is regulated by the
LMS step-size parameter p and the RLS forgetting factor 3,
where faster adaptation corresponds to larger p and smaller
3, respectively [1]. Ability to adapt is affected by the ability
to track the signal as well as the inherent noisiness of the en-
vironment and of the algorithm itself. Simulation results are
based on the performance metrics of steady-staie MSE and
average BER after adaptive equalization in the practical non-
staticnary wircless scenario of frequency-selective Rayleigh
fading and lognormal shadowing (large-scale fading) in the
context of a mobile ad hoc network.

Without requiring pre-existing infrastructure or centralized
administration, a mobile wireless ad hoc network often con-
sists of transceiver nodes communicating over multiple hops
in an arbitrary topology [5], [6]. Focusing on physical layer
issues, this study explores a fundamental building block of an
ad hoc network, the point-to-point radio link, and exiends {7]
and [8] im its investigation of link performance in channels,
now with delay spread and intersymbol interference (ISI).
Since all nodes can move in ad hoc networks, a link can suffer
from double mobility (both sender and receiver mobile with
speeds v; and v;, respectively), leading to Doppler effects
that depend on degree of double mobility o = Zizullva)
where o = 1 for full double mobility and o« = 0 for sin-
gle mobility (like a cellular link) [9]. Fig. 2 shows how the
Doppler power specttum changes with «, and [9] contains
analytical expressions showing that the rms Doppler spread
changes by as much as 1.5 dB with «. [10] and [11} con-
tain actual Doppler spectrum measurements for setups (fixed
podes with moving scatterers in a partiatly shadowed environ-
ment and inter-vehicle mobile communication in highway and
other envircnments, respectively) that, since only somewhat
related, at best suggest a heuristic experimental verification
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Fig. 2. Rayleigh Doppler Specurum: Ad hoc Case, Fixed f,,

This paper is organized as follows. Section If summarizes
the system and channel models, and section 1T discusses re-
sults and concludes the paper.

[1. MODELS
A. System Model
The RLS and LMS filter tap update algorithms are imple-
mented as in [1] and [12], with the replica of the desired re-
sponse generated locally in the receiver using training (as op-
posed to the decision-directed method). For convenience, we

use “LMS” to refer to the slightly modified normalifet{ BR#SPlacements ?

algorithm [1]. Training is used on a continuous basis to min-
imize error propagation and allow us to study the inherent
nature of the update algorithms more closely. The input sig-
nal is delayed so the filter is centered on the finite-duration
changel response.

B. Channel Model

We consider the frequency-selective Rayleigh (worst-case)
fading channel in an ad hoc mobile wireless network, encoun-
tered when two communicating terminals are heavily shad-
owed from each other (no dominant path, see Fig. 3) and
signal energy arrives equally divided in angles uniformly dis-
tributed in the horizontal plane. Rayleigh fading can be ac-
curately simulated using the Line Spectrum (LS) simulation
model, defined in [7]. In order to simulate frequency-selective
fading for a specific « (see Fig. 2), we generaic via LS an in-
dependent Rayleigh fading gain for each channel tap. We con-
sider two extremes, the fastest fading environment (o = 0,
hardest to track) and the slowest fading (o = 1, easiest to
track). We use a channel with 5 taps, each set initially to val-
ues given by the normalized expopential power-delay profile
(see Fig. 4):

e"s, T>0,
P(T)::{ 0 ' otherwise

where the rms delay spread S = 5 s, typical of urban outdoor

environments, and close to the symbol rate, Ty = 4- = 10

ps, necessitating the use of equalization to mitigate the ISL.

Fig. 3. A Rayleigh fading and lognormally shadowed link
within a mobile ad hoc network.
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Fig. 4. Exponential power-delay profile (5 taps).

Qur Rayleigh fading process is first-order nonstationary by
nature since its mean is time-varying and follows a lognor-
mal shadowing process with correlation distance of x. = 10
m, assuming the “ad hoc” long-range model described in
[7] and [8]. User mobility maps the spatial signal variation
into a temporal variation. Thus, the extent of nonstationar-
ity of the channel can be captured by the shadowing corre-
lation/coherence time T, the interval over which statistics
are roughly invariant. For the remainder of the paper, we re-
fer to T.. as simply the “coherence time,” not to be confused
with the coherence time associated with small-scale fading.
When converted to seconds, T = %=, where the effective
speed v = v; + v2 and is linearly proportional to maximam
Doppler shift f,,,. We simulate four different outdoor scenar-
ios as shown in Table 1. For fixed f,,, the nonstationarity of
the environment decreases as ¢ increases, since the “small-
scale fading coherence time” (inversely propertional to rms
Doppler spread) increases [9]. Varying « does not change the
nonstationarity of the channel but rather that of the environ-
ment, and, in the end, the statistics of the input and desired
response for the adaptive filter is what matters.

We assume the distance between users is always d = 1
km in our shadowed urban scenario with path loss exponent
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Table 1
Outdoor modes of transportation

l Mode l v {(mph) I T (symbols) |
Pedestrian 4 560000
Bicycle 15 149333
Car (slow) 40 56000
Car (fast) 90 24889

of v = 4. BPSK is the assumed modulation, and, assum-
ing proper pulse shaping for the binary signaling, bandwidth
W (kHz) equals bit rate R; = 100 kbps. Transmit power
P; = 100 mW, and the noise samples are uncorrelated Gaus-
sian with power N = NyW = 10718 W taking into account
a typical 4 dB loss due to receiver noise figure and non-ideat
carrier recovery phase noise.

III. D1sCUSSION AND CONCLUSION

Figs. 5-6 show sample realizations for the nonstationary
channel models. The channel taps vary more rapidly for
smaller o, or higher Doppler spread, as expected [9]. The
shape of the initial channel tap profile did not have much of
an effect on results, however. BER and MSE performance of
LMS and RLS over the four different coherence times (see Ta-
ble 1) for different adaptive parameters (1 and 3, respectively)
were evaluated, and the minimum possible BER or MSE for a

given value of T, was extracted from the bowl-shaped curves .

of Figs. 7-10 1o end up with Figs. 11-12.

:
as

Fig. 5. A specific realization of random process defined by
five Rayleigh fading channel taps (o = 0).

We initialized the adaptive filter taps with the Wiener solu-
tion, ran the filters in training mode for 1000 BPSK symbols,
and tracked the channel over 10 coherence times. Due to the
large variation in the taps, the filters have to adapt signifi-
cantly to keep up with the channel and avoid errors from the
neisy filter taps and noisy environment. We see in Figs. 7-
10 that as the channel statistics vary faster, LMS and RLS
perform increasingly betier for filters that can adapt more
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Fig. 6. A specific realization of random process defined by
five Rayleigh fading channel taps (o = 1).
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Fig. 7. Average BER vs. u (o = 0).

quickly, up to some optimal point. As the filters adapt more
quickly, the lag between the filiers taps and the optimal taps
lessen, but the filter taps become quite noisy as they depend
so heavily on the most recent symbol. For very slow filters,
the lag of the filter weights causes significant errors, and for
very fast filters, the lag error is negligible, but the taps only
noisily approximate the optimal filters, resulting in many er-
rors. The optimum point balances the error due to lag and to
noisy tap updates.

We see in Figs. 11-12 that both LMS and RLS perform bet-
ter in channels with higher T,.. For smaller T, each algorithm
needs to adapt faster at the expense of misadjustment. For
larger T, RLS outperforms LMS noticeably, and the perfor-
mance gap closes somewhat as T is decreased, agreeing with
intuition. We found that faster filters are generally required to
track faster channels (with respect to rate of change of statis-
tics) and expected to find that LMS could outperform RLS for
very quickly changing channels since RLS is required to up-
date an entire matrix of parameters whereas LMS only has to
update the vector taps. With fast changing statistics, we pre-
viously assumed RLS could not accurately update the auto-
correlation matrix, but it was seen, for small values of 7., that
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Fig. 8. MSE vs. p(a = 0).
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Fig. 9. Average BER vs. 3 (o = 0).

neither algorithm effectively tracked the nonstationary chan-
nel, and they both essentially “gave up,” thus LMS never out-
performed RLS. We also found the performance gap between
LMS and RLS to decrease as filter size increases. We postu-
late this is due to the same effect that we previously thought
would lecad LMS to outperform RLS, that RLS has to update
a matrix with number of entries equal to the square of the
number of filter taps so the complexity of keeping an accurate
autocorrelation matrix increases as the square of the number
of taps.

In Figs. 11-12, we observe that now BER (as well as MSE)
is dependent on « whereas, for the no ISI case, BER is inde-
pendent of < and T,.. As expected, the o = 1, less nonsta-
tionary environment resulted in fower BER. The relationship
between MSE and BER is clear from these results, in which
it appears they are strongly correlated. Because almost all
analytical results on adaptive filtering in the literature are in
terms of MSE and not BER, being able to correlate the two
metrics helps us apply much of the intuition available in cur-
rent literature on adaptive filtering, providing much insight in
comparing the two algorithms.

It has been proven that for stationary channels, RLS will
always outperform LMS [1]. For realistic nonstationary chan-
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Fig. 10. MSE vs. 3 (a = 0).
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Fig. 11. BER vs. T,.

nels, such as those of the mebile wireless ad hoc network, we
have shown RLS outperforms LMS noticeably and by greater
margin as T, increases. However, because the gains are not
enormous, LMS might still be preferred in some applications
because of its simplicity. We note that results were found
to be similar with and without lognormal shadowing, the lat-
ter scenario assuming T is defined as the small-scale coher-
ence time. Thus, the same conclusions are reached for both
the time-varying channel and the more specific nonstationary
channel, showing that the more highly nonstationary environ-
ment induced by the latter doesn’t have much of an impact
on results. For nonstationary channels with large coherence
times, RLS outperforms LMS since RLS is a more accurate
and intricate algorithm. One would think that LMS should
outperform RLS for small coherence times since RLS is so
complex that it cannot keep up with accurately updating its
matrix of parameters while LMS can easily update its vector
taps. However, with our unique assumptions and simulation
parameters, we found the RLS algorithm to always outper-
form the LMS algorithm, until the chanpel changes so fast it
is better off not adapting at all.
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