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Abstract—A delay-constrained scheduling problem for point-
to-point communication is considered: a packet of B bits must
be transmitted by a hard deadline of T slots over a time-varying
channel. The transmitter/scheduler determines how many bits
to transmit, or equivalently how much energy to transmit with,
during each time slot based on the current channel quality and
the number of unserved bits, with the objective of minimizing
expected total energy. Assuming transmission at capacity of the
underlying Gaussian noise channel, a closed-form expression for
the optimal scheduling policy is obtained for the case T = 2
via dynamic programming; for T > 2, the optimal policy can
only be numerically determined. Thus, the focus of the work
is on derivation of simple, near-optimal policies. The proposed
bit-allocation policies consist of a linear combination of a delay-
associated term and an opportunistic (channel-aware) term. In
addition, a variation of the problem in which the entire packet
must be transmitted in a single slot is studied.

I. INTRODUCTION

This paper considers a scheduling problem of transmitting
B bits over T time slots, where the channel fades inde-
pendently from slot to slot. During each slot, the scheduler
determines how many of the B bits to transmit on the basis
of the current channel quality and the number of unserved
bits remaining. The scheduler must balance the desire to be
opportunistic, i.e., serve many bits when the channel is good,
with the hard deadline. As might be expected in multimedia
transmission, this setup can be used to model deterministic
traffic (e.g., in VoIP systems packets arrive regularly in time
and generally have hard deadlines of approximately 50 msec).

Fu et al. [1] considered the same problem and showed it
can be formulated as a dynamic program. However, an explicit
analytical solution is given only for the case where the energy
cost is a linear function of the number of transmitted bits.
We consider the case where the cost function is given by the
AWGN capacity expression, in which case the cost is not linear
in the number of bits. In an earlier work, Negi and Cioffi [2]
studied the dual problem, but they did not described in closed-
form. Berry et al. [3] and Rajan et al. [4] considered “average”
delay for constantly arriving packets. This is rather different
from the hard deadline case considered here.

In this paper we develop low-complexity and near-optimal
policies for delay-constrained causal scheduling. Our main
result is that the proposed schedulers can be cast into a
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Fig. 1: Single-user delay constrained scheduling

single framework: a time-dependent weighted sum of a delay
associated term and an opportunistic term as

bt =
1
t
βt

︸︷︷︸
delay associated

+
t− 1

t
log

gt

ηt︸ ︷︷ ︸
opportunistic

, (1)

where bt is the number of bits to serve (from remaining βt

bits) at time slot t (t denotes the number of remaining slots),
gt denotes the current channel state, and ηt denotes a threshold
level. If the current channel quality is equal to the threshold
level, then a fraction 1

t of the remaining bits are transmitted. If
the channel quality is better/worse than expected (intuitively
represented by the threshold level ηt), then additional/fewer
bits are transmitted. As one might intuitively expect, the
scheduler acts very opportunistically when the deadline is far
away (t large) but less so as the deadline approaches.

In addition, we consider the case of one-shot allocation.
When the number of bits to transmit is small, it may desirable
to transmit the entire packet in one time slot rather than over
multiple time slots because of potential overhead associated
with multiple slot transmission.

II. PROBLEM FORMULATION

As illustrated in Fig. 1, a packet of B bits must be trans-
mitted within T time slots through a fading channel, in which
T is referred to as the delay-limit or deadline. The purpose of
the scheduler is to determine the energy, or equivalently the
number of bits, to be served during each time slot, such that
the expected energy is minimized and the bits are served by
the deadline T (no outage is allowed).

Time is indexed in descending order, i.e., t = T is the
initial slot, t = T − 1 is the 2nd slot, . . ., and t = 1 is
the final slot before the deadline. The channel state, in power
units, is denoted as gt. We assume that the channel states
{gt}T

t=1 are i.i.d. and the scheduler has causal knowledge of
these channel states (i.e., at time t, gT , gT−1, · · · , gt are known



but gt−1, · · · , g1 are unknown). In this context, we refer to
this type of scheduler as a causal scheduler that exploits the
statistical quantities of the future channel state instead of actual
realizations. Specifically, it utilizes the fractional moments that
are defined as

νm =

(
E

[(
1
g

) 1
m

])m

, m = 1, 2, . . . . (2)

(See [5] for properties of the sequence {νm}.) We also assume
that the additive noise nt is Gaussian with zero mean and
unit variance. Let bt(∈ R) be the number of bits allocated
at time slot t and βt be the remaining bits at time t; thus
recursively as βt = βt+1 − bt+1. Assuming transmission at
capacity, the number of transmitted bits at slot t is given by
bt = log2(1 + gtEt), where Et is the energy of transmission
during the time slot. By solving for Et, we have

Et(bt, gt) =
2bt − 1

gt
. (3)

Given this setup, a scheduler is a sequence of functions
{bt}T

t=1 that maps from the remaining bits and the current
channel state to the number of bits served, i.e., bt(βt, gt) ∈
[0, βt], t = T, · · · , 1. Then, the optimal energy-efficient
scheduler is the set of scheduling functions {bopt

t (·, ·)}T
t=1 that

minimizes the total expected energy cost: i.e.,

min
bT ,··· ,b1

E

[
T∑

t=1

Et(bt, gt)

]
(4)

subject to
∑T

t=1 bt = B and bt ≥ 0 for all t.
The optimization (4) can be formulated sequentially (via

dynamic programming) with the remaining bits βt as a state
variable that summarizes the bit allocation up until the previ-
ous time step:

bopt
t (βt, gt) = arg min

0≤bt≤βt

{
Et(bt, gt) + E

[
t−1∑
s=1

Es(bs, gs)

∣∣∣∣∣bt

]}
,

(5)
for t = T, . . . , 2. At the last time slot t = 1, bopt

1 (β1, g1) = β1

for all g1 trivially since no optimization is required. Note that
the optimization (5) should be performed for all possible pairs
(βt, gt). In fact, finding a general solution for (5) is not easy
in the context of optimization theory.

III. OPTIMAL SCHEDULING

In this section we derive the optimal causal scheduler for
T = 2 and discuss the difficulty in obtaining an analytical
form of the optimal causal scheduler for T > 2. We also
derive a scheduler assuming the channel states are known non-
causally. From the derived schedulers, we interpret how the
delay constraint and the channel state affect the scheduling
process, which will also turn out be the case for suboptimal
schedulers later.

A. Causal Scheduling

Under perfect causal CSI, we derive the optimal scheduler
using the conventional dynamic programming technique [6].

1) T = 2: In the last time slot (t = 1), the scheduler is
required to transmit β1 unserved bits regardless of the channel
state g1. Thus, E1(β1, g1) = (2β1 − 1)/g1 for all g1. At t =
2, g2 is known but g1 is unknown. The scheduler needs to
determine b2, which should be a function of g2 and B, while
balancing between the current energy cost and the expected
future cost, i.e., minimizing the sum:

bopt
2 (B, g2) = arg min

0≤b2≤B

(
2b2 − 1

g2
+ E [E1(B − b2, g1)]

)

(6)
The solution to (6) can be easily found since the expected
future cost has a simple form in this case:

bopt
2 (B, g2) =

〈
1
2
B +

1
2

log2 (g2ν1)
〉B

0

, (7)

where 〈·〉B0 denotes truncation from below at 0 and truncation
from above at B. Note that this policy is only meaningful
when ν1 (= E [1/g]) is finite; this rules out Rayleigh fading,
in which case g is exponentially distributed and thus E [1/g]
is not finite.

Notice that the optimal scheduling function (7) has two
additive terms: (a) 1

2B corresponds to an equal distribution
to time slots t = 1 and t = 2, and (b) 1

2 log2 (g2ν1) associated
with a measure of the channel quality at t = 2. That is, if the
channel quality g2 is bigger than a threshold 1/ν1, then more
bits are allocated than 1

2B; if g2 is smaller than the threshold
then fewer bits are allocated and more bits are deferred to the
final slot.

2) T > 2: The optimization that the scheduler solves at
each time step t is:

Jt(βt, gt) =

{
min0≤bt≤βt

(
2bt−1

gt
+ J̄t−1(βt − bt)

)
, t ≥ 2

E1(β1, g1), t = 1
(8)

where J̄t−1(βt−1) = Egt−1 [Jt−1(βt−1, gt−1)]. This is simply
a one-dimensional optimization over bt, but it does not seem
feasible to derive an analytic solution (see [5] for discussion).
When the energy cost is a linear function of the control bt,
obtaining an analytic form is possible and is given in [1].

Alternately, we can numerically find the optimal scheduler
by the discretization method [7]. Having sufficiently fine
discretization is computationally burden and requires large
memory size, however. Furthermore, this discretization gives
little insight on how the delay constraint and channel state
affect the scheduling function.

B. Non-causal Scheduling

If the channel states are known non-causally, i.e., gT , . . . , g1

are known at t = T , the optimal scheduling/allocation is
determined by waterfilling because each channel at each
time slot serves as a parallel channel. While conventional
waterfilling maximizes rate subject to a power constraint,
this is rather the dual of minimizing power/energy subject
to a rate/bit constraint. This will be referred to as inverse-
waterfilling and the solution is obtained through the standard



Lagrangian method as:

bIWF
t =

1
t′

βt +
t′ − 1

t′
log2

gt

ηIWF
t

, if gt ≥ gth (9)

where t′ =
∑t

i=1 1{gi≥gth} denotes the number of active time
slots that participate in the waterfilling up to t,

ηIWF
t =

(
t−1∏

i=1

g
1{gi≥gth}
i

)1/(t′−1)

, (10)

and gth =
(∏T

i=1 g
1{gi≥gth}
t

)1/T ′

/2B/T ′ [5]. Note that
gt−1, · · · , g1 are relatively future quantities at slot t.

In (9), the bit allocation process is described in two stages:
first the βt bits are divided equally amongst the active slots at t
(i.e., βt/t′ term) and then bits are added/subtracted depending
on the channel state (i.e., gt/ηIWF

t term). We will soon see
that a very similar interpretation can be given to the proposed
suboptimal causal scheduling policies.

IV. SUBOPTIMAL SCHEDULING ALGORITHMS

A. Suboptimal I Algorithm

If we compare the optimal causal scheduler for T = 2
(Section III-A) to the non-causal scheduler (Section III-B), we
can immediately notice that the optimal scheduler determines
bopt
2 by inverse-waterfilling over channels g2 and 1/ν1. This is

because of the particularly simple form of the expected future
cost. Although the expected future cost does not take on such
a simple form for T > 2, we can get a suboptimal scheduler
by simply applying this inverse-waterfilling at every time slot
t. In other words, at time step t, perform inverse-waterfilling
over the following t channels:

gt,
1
ν1

, . . . ,
1
ν1︸ ︷︷ ︸

t−1

.

Since t−1 of the t channels are equal, performing this inverse-
waterfilling is extremely simple and the solution is given by

b(I)
t (βt, gt) =

〈
1
t
βt +

t− 1
t

log2

gt

η(I)
t

〉βt

0

, (11)

where η(I)
t = 1/ν1 serves as the channel threshold.

When the deadline is far away (large t), the first term in
(11) is negligible and the bit allocation is nearly completely
dependent on the channel measure. As the deadline approaches
(t decreases toward 1), the weight of the channel-dependent
second term decreases and the weight of the delay-associated
first term increases.

B. Suboptimal II Algorithm

The inability to find a general closed-form solution to the
original optimization (8) is due to complications induced by
the boundary constraints 0 ≤ bt ≤ βt for every t in dynamic
programming. However, if we relax this constraint in (8), we
can in fact find a simple analytical solution.

From the relaxation, we can show the expected future cost
is given by [5]

J̄ (II)
t−1(βt−1) = (t− 1)2

βt−1
t−1 G(νt−1, . . . , ν1)−(t−1)ν1 (12)

where G(νt−1, . . . , ν1) denotes the geometric mean of
νt−1, . . . , ν1. Since we relax the constraint “0 ≤ bt ≤ βt”
in (8), the solution can be found by solving an unconstrained
optimization. Then by truncating both from below and above,
we obtain a scheduling policy and we refer this to as the
suboptimal II scheduler:

b
(II)
t =

〈
1
t
βt +

t− 1
t

log2

gt

η
(II)
t

〉βt

0

, (13)

where η
(II)
t = 1/G (νt−1, νt−2, · · · , ν1) denotes a threshold

that depends only on the statistics not the realizations.
Notice that the only difference between suboptimal I and

II is in the threshold values. For suboptimal I, the threshold
η(I)

t is constant for all t. On the other hand, the threshold for
suboptimal II η

(II)
t actually decreases as t → 1 (see [5]). That

is, suboptimal II has a higher threshold in the beginning time
steps and the level of threshold get smaller as time goes.

C. General Framework

The algorithms thus far considered can be cast into a single
framework:

bt(βt, gt) =
〈

1
t
βt +

t− 1
t

log2

gt

ηt

〉βt

0

, (14)

where ηt is a threshold determined by the individual algo-
rithms. This simple allocation strategy reveals how the delay
constraint works on the scheduling algorithms: at time step
t serve a fraction 1/t of the remaining bits plus/minus a
quantity that depends on the strength of the current channel
compared to a channel threshold. If the current channel is good
(i.e., gt is bigger than the threshold ηt), additional bits are
served (up to βt), while fewer bits are served when the current
channel is poor. Furthermore, note that when t is large (i.e.,
far from the deadline), the first term βt/t is very small and the
number of bits served is almost completely determined by the
current channel conditions. This agrees with intuition that we
should make aggressive, almost completely channel dependent
(and deadline independent) decisions when the deadline is
far away, while we should make more conservative (more
deadline dependent, less channel dependent) decisions when
the deadline is approaching (small t).

The behavior among the algorithms is characterized by
the channel thresholds. Comparing the threshold-associated
terms of the suboptimal I and II, we have E

[
log2(gt/η(I)

t )
]

=

E [log2 (gtν1)] > 0 for all t and limt→∞ E
[
log2(gt/η(II)

t )
]

=
0, respectively. This implies that the bit allocation for the
suboptimal I is overly aggressive and thus the bit allocation
may finish early.



V. ASYMPTOTIC ANALYSIS & NUMERICAL RESULTS

We compare the performance between the causal and the
non-causal schedulers as well as between the causal and the
equal-bit schedulers. The comparison analysis is performed
asymptotically for two extreme cases: B → 0 and B →∞.

A. T = 2
From (7), we can see that the packet is split over both time

slots (i.e., b2 > 0 and b1 > 0) if 2−B/ν1 < g2 < 2B/ν1. As
B → 0, the probability of this event clearly goes to zero: if
g2 < 1/ν1 then all bits are deferred to the final slot, while
if g2 > 1/ν1 all bits are served at t = 2. As a result, the
expected energy cost takes on a rather simple form as B →
0. A very similar statement can be made about non-causal
inverse-waterfilling (both slots are used if 2−Bg1 ≤ g2 ≤
2Bg1).

J̄ eq
2 (B) = 2(2

B
2 − 1)E

[
1
g

]
(15)

J̄opt
2 (B) ∼= (2B − 1)E

[
min

(
1
g2

, ν1

)]
, (16)

J̄ IWF
2 (B) ∼= (2B − 1)E

[
min

(
1
g2

,
1
g1

)]
, (17)

where ∼= represents equivalence in the limit (i.e., the difference
between both sides converges to 0 as B → 0). The corre-
sponding effective channel of the causal and the non-causal is
given as max(g2, 1/ν1) and max(g2, g1), respectively. Thus,
the performance offsets as B → 0 are quantified by the
following theorem:

Theorem 1: If g is a continuous random variable, the ratio
of the expected energy costs for T = 2 schedulers as B → 0
are given by:

lim
B→0

J̄ eq
2 (B)

J̄opt
2 (B)

=
E

[
1
g

]

E
[
min

(
1
g2

, ν1

)] (18)

lim
B→0

J̄opt
2 (B)

J̄ IWF
2 (B)

=
E

[
min

(
1
g2

, ν1

)]

E
[
min

(
1
g2

, 1
g1

)] . (19)

Similarly at the other extreme, when B →∞:
Theorem 2: If g is a continuous random variable. the ratio

of the expected energy costs for T = 2 schedulers as B →∞
are given by:

lim
B→∞

J̄ eq
2 (B)

J̄opt
2 (B)

=
√

ν1

ν2
(20)

lim
B→∞

J̄opt
2 (B)

J̄ IWF
2 (B)

=
√

ν1

ν2
(21)

Proof: See [5].

B. T > 2
We extend the asymptotic results for any finite T with the

suboptimal II scheduler instead of the optimal scheduler be-
cause no analytical form for the optimal scheduler is available
when T > 2.

Theorem 3: The ratio of the two expected energy costs for
finite T converges for small B and large B respectively as

lim
B→0

J̄
(II)
T

J̄ IWF
T

= (22)

E
[
min

(
1

gT
,Emin

(
1

gT−1
, · · ·Emin

(
1
g2

, ν1

)))]

E
[
min

(
1

gT
, 1

gT−1
, · · · , 1

g1

)] ,

lim
B→∞

J̄
(II)
T

J̄ IWF
T

=
GT

νT
, (23)

where Gt = G(νt, νt−1 · · · , ν1).
Proof: The result is a straightforward extension of the

proof for the T = 2 case.
In (23) we can see that the average energy of the suboptimal II
scheduler approaches the energy used by (non-causal) inverse-
waterfilling due to the property limT→∞ νT = limT→∞GT

under B/T = R fixed with large R [5].

C. Additional Numerical Results
So far we have investigated the asymptotic performance in

two extremes. In this subsection, we examine the performances
in mild conditions by simulations. Throughout the simulations,
we assume that the distribution of the channel state gt is a
truncated exponential with parameter λ = 1 and threshold
γ0 = 0.001.

From Fig. 2a we see that both suboptimal I and II perform
nearly as well as the optimal scheduler, although suboptimal II
performs slightly better than I for small values of B. There are
significant differences between the equal-bit, optimal causal,
and non-causal schedulers, which is to be expected given the
time diversity available over the five time slots. In Fig. 2b we
see even larger differences between equal-bit, optimal causal,
and optimal non-causal, which can be explained by the even
larger degree of time diversity (T = 50). Furthermore, sub-
optimal II significantly outperforms suboptimal I for T = 50
due to the over-aggressive nature of suboptimal I as discussed
in Section IV-C. Suboptimal II performs nearly as well as the
optimal scheduler when B is approximately 50 or larger (i.e.,
B/T ≥ 1), but is sub-optimal for smaller values of B. It is
also interesting to note that the there is only a very slight
difference between optimal causal and non-causal scheduling
when T = 50; intuitively, the large amount of time diversity
reduces the advantage of having non-causal CSI.

VI. ONE-SHOT ALLOCATION

When the number of bits B to allocate during T time slots
is small, splitting bit allocation across multiple time slots may
not be wanted. In this setting, it is desirable to find only one
time slot among the T slots for the transmission of B bits.

The dynamic program in this setting can be written as an
optimal stopping problem [6]:

J1(β1) =
2β1 − 1

g1
, (24)

Jt(βt) = min
{

2βt − 1
gt

,E[Jt−1(βt)]
}

, t = 2, · · · , T, (25)
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Fig. 2: Average total energy consumption

Thus, the optimal policy can be stated:

bt =

{
B, t = max {s : gs > 1/ωs} ,

0, elsewhere.
(26)

The threshold can be calculated recursively as follows (See
[5] for derivation):

ωt =

E
[
1
g

∣∣∣ 1
gt

< ωt−1

]
Pr

{
1
gt

< ωt−1

}
+ωt−1 Pr

{
1
gt
≥ ωt−1

}

(27)

It is obvious that no threshold is required at the last time
t = 1 (ω1 = ∞). Notice that the threshold 1/ωt depends only
on the channel statistics and does not depend on B. From
the update formula of ωt, we can see that ωt ≤ ωt−1 (i.e.,
1/ωt ≥ 1/ωt−1). Intuitively, this makes sense; the threshold
get smaller as getting closer to the deadline.
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Fig. 3: Performance of the optimal one-shot allocation

Figure 3 illustrates the energy performance.When B is rela-
tively small, the power (energy/time) of the one-shot allocation
is nearly the same as the optimal causal policy that allows for
multiple slots to be used. (The performance of the inverse-
waterfilling yields the theoretical bound). However, this one-
shot allocation is not appropriate when B is relatively large
because the required energy grows exponentially with B.

VII. CONCLUSION

In this paper we considered a bit allocation over finite time
horizon, assuming perfect instantaneous channel state infor-
mation is available. The proposed schedulers have a simple
and intuitive form that gives insight into the optimal balance
between channel-awareness (i.e., opportunism) and deadline-
awareness in a delay-limited setting. We also considered the
same problem under the additional constraint that only a single
of the available time slots can be used, and in this case found
the optimal threshold-based policy.
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