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Abstract

We deal with centralized and distributed rate-constrained estimation of random signal
vectors using a network of wireless sensors communicating with a fusion center. Specifi-
cally, we determine lower and upper bounds for the Distortion-Rate (D-R) function. The
lower bound is obtained by considering centralized estimation with a single-sensor setup,
for which we determine the D-R function in closed-form, and specify an estimator that
achieves it. Furthermore, we derive a novel alternating scheme that numerically deter-
mines an achievable upper bound of the D-R function for general distributed estimation
using multiple sensors. Numerical examples confirm that the algorithm performs well and
yields D-R upper bounds which are tight.
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1 Introduction
Stringent bandwidth and energy constraints that wireless sensor networks (WSNs) must adhere
to motivate efficient compression and encoding schemes when estimating random signals or
parameter vectors of interest. In such networks, it is of paramount importance to determine
bounds on the minimum achievable distortion between the signal of interest and its estimate
formed at the fusion center (FC) using the encoded information transmitted by the sensors
subject to rate constraints.

In the reconstruction scenario, the FC wishes to accurately estimate the sensor observa-
tions. In the estimation scenario, the FC is interested in accurately estimating an underlying
random vector which is correlated with, but not equal to, the sensor observations. In the single
sensor setting, single-letter characterizations of the D-R function for both scenarios are known:
the reconstruction scenario is the standard distortion-rate problem [4, p. 336], and the estima-
tion problem, which is also referred to as rate-distortion with a remote source, has also been
determined [1, p. 78]. In the distributed scenario, where there are multiple sensors with cor-
related observations, neither problem is well understood. The best analytical inner and outer
bounds for the D-R function for reconstruction can be found in [2]. An iterative scheme has
been developed in [5], which numerically determines an achievable upper bound for distributed
reconstruction but not for signal estimation.
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For the general problem of estimating a parameter vector which has continuous-valued
entries and is correlated with sensor observations, most of the existing literature examines
Gaussian data and Gaussian parameters. Specifically, when each sensor observes a common
scalar random parameter contaminated with Gaussian noise, the D-R function for estimating
this parameter has been determined in [3,7,11] to solve the so called CEO problem; see also [6].
Additionally, D-R bounds for a linear-Gaussian data model have been derived in [8] when
the number of parameters equals the number of all sensor observations. In this paper, we
pursue D-R analysis for distributed estimation with WSNs without constraining the number of
observations and/or the number of random parameters we want to estimate.

We first determine the D-R function for estimating a vector parameter when applying rate-
constrained encoding to the observation data, in closed form for the single-sensor case (Section
3). Without assuming that the number of parameters equals the number of observations, we
prove that the optimal scheme achieving the D-R function amounts to first computing the min-
imum mean square error (MMSE) estimate at the sensor, and then optimally compressing the
estimate via reverse water-filling (rwf). The D-R function for the single-sensor setup serves as
a non-achievable lower D-R bound for rate constrained estimation in the multi-sensor setup.
Next, we develop an alternating scheme that numerically determines an achievable D-R upper
bound for the multi-sensor scenario (Section 4). Different from [5], which deals with WSN-
based distributed reconstruction, our approach aims for general estimation problems. Combin-
ing the lower bound of Section 3 with the numerically determined upper bound of Section 4,
we specify a region where the D-R function for distributed estimation lies in.

2 Problem Statement
With reference to Fig. 1 (Left), consider a WSN comprising L sensors that communicate with
an FC. Each sensor, say the ith, observes an Ni × 1 vector xi(t) which is correlated with a
p× 1 random signal (parameter vector) of interest s(t), where t denotes discrete time. Similar
to [7, 8, 11], we assume that:
(a1) No information is exchanged among sensors and the links with the FC are noise-free.
(a2) The random vector s(t) is generated by a stationary Gaussian vector memoryless source
with s(t) ∼ N (0,Σss); the sensor data {xi(t)}L

i=1 adhere to the linear-Gaussian model
xi(t) = His(t) + ni(t), where ni(t) denotes additive white Gaussian noise (AWGN); i.e.,
ni(t) ∼ N (0, σ2I); noise ni(t) is uncorrelated across sensors, time and with s; and Hi as
well as (cross-) covariance matrices Σss, Σsxi

and Σxixj
are known ∀i, j ∈ {1, . . . , L}.

Notice that (a1) assumes that sufficiently strong channel codes are used; while whiteness
of ni(t) and the zero-mean assumptions in (a2) are made without loss of generality. The lin-
ear model in (a2) is commonly encountered in estimation and in a number of cases it even
accurately approximates non-linear mappings; e.g., via a first-order Taylor expansion in target
tracking applications. Although confining ourselves to Gaussian vectors xi(t) is of interest on
its own, following arguments similar to those in [1, p. 134] we can show that the D-R functions
obtained in this paper bound from above their counterparts for non-Gaussian sensor data xi(t).

Blocks x
(n)
i := {xi(t)}n

t=1, comprising n consecutive time instantiations of the vector
xi(t), are encoded per sensor to yield each encoder’s output u

(n)
i = f

(n)
i (x

(n)
i ), i = 1, . . . , L.

These outputs are communicated through ideal orthogonal channels to the FC. There, u
(n)
i ’s

are decoded to obtain an estimate of s(n) := {s(t)}n
t=1 denoted as ŝ

(n)
R (u

(n)
1 , . . . ,u

(n)
L ) =

g
(n)
R (x

(n)
1 , . . . ,x

(n)
L ), since u

(n)
i is a function of x

(n)
i . The rate constraint is imposed through

a bound on the cardinality of the range of the sensor encoding functions, i.e., the cardinality of



Figure 1: Left: Distributed setup.; Right: Test channel for x Gaussian in a point-to-point link.

the range of f
(n)
i must be no larger than 2nRi , where Ri is the available rate at the encoder of the

ith sensor. The sum rate satisfies the constraint
∑L

i=1 Ri ≤ R, where R is the total available
rate shared by the L sensors. Under this rate constraint, we want to determine the minimum
possible MSE distortion (1/n)

∑n
t=1 E[‖s(t)− ŝR(t)‖2] for estimating s in the limit of infinite

block-length n. When L = 1, a single-letter information theoretic characterization is known
for the latter, but no simplification is known for the distributed multi-sensor scenario.

3 Distortion-Rate for Centralized Estimation
We will first determine the D-R function for estimating s(t) in a single-sensor setup. The single-
letter characterization of the D-R function in this setup allow us to drop the time index. Here,
all {xi}L

i=1 := x are available to a single sensor, and x = Hs+n. We let ρ := rank(H) denote
the rank of matrix H. The D-R function in such a scenario provides a lower (non-achievable)
bound on the MMSE that can be achieved in a multi-sensor distributed setup, where each xi is
observed by a different sensor. Existing works treat the case N = p [9, 12], but here we look
for the D-R function regardless of N, p, in the linear-Gaussian model framework.

3.1 Background on D-R analysis for Reconstruction
The D-R function for encoding x, which has probability density function (pdf) p(x), with rate
R at an individual sensor, and reconstructing it (in the MMSE sense) as x̂ at the FC, is given
by [4, p. 342]

Dx(R) = min
p(x̂|x)

I(x;x̂)≤R

Ep(x̂,x)[‖x− x̂‖2], x ∈ RN , x̂ ∈ RN , (1)

where the minimization is w.r.t. the conditional pdf p(x̂|x). Let Σxx = QxΛxQ
T
x denote the

eigenvalue decomposition of Σxx, where Λx = diag(λx,1 · · ·λx,N) and λx,1 ≥ · · · ≥ λx,N > 0.
For x Gaussian, Dx(R) can be determined by applying rwf to the pre-whitened vector

xw := QT
x x [4, p. 348]. For a prescribed rate R, it turns out that ∃ k such that the first k

entries {xw(i)}k
i=1 of xw, are encoded and reconstructed independently from each other using

rate {Ri = 0.5 log2 (λx,i/d(k,R))}k
i=1, where d(k, R) =

(∏k
i=1 λx,i

)1/k

2−2R/k with R =
∑k

i=1 Ri; and the last N − k entries of xw are assigned no rate; i.e., {Ri = 0}N
i=k+1. The

corresponding MMSE for encoding xw(i), the ith entry of xw, under a rate constraint Ri, is
Di = E[‖xw(i)− x̂w(i)‖2] = d(k, R) when i = 1, . . . , k and Di = λx,i when i = k+1 . . . , N .
The resultant MMSE (D-R function) is

Dx(R) = E[‖x− x̂‖2] = E[‖xw − x̂w‖2] = kd(k, R) +
N∑

i=k+1

λx,i. (2)



Figure 2: Left: Test channel for the CE scheme.; Right: Test channel for the EC scheme.

Especially for d(k, R), it holds that max({λx,i}N
i=k+1) ≤ d(k,R) < min({λx,i}k

i=1). Intu-
itively, d(k, R) is a threshold distortion determining which entries of xw are assigned with
nonzero rate. The first k entries of xw with variance λx,i > d(k, R) are encoded with non-zero
rate, but the last N − k ones are discarded in the encoding procedure (are set to zero).

Associated with the rwf principle is the so called test channel; see e.g., [4, p. 345]. The
encoder’s MSE optimal output is u = QT

x,kx + ζ, where Qx,k is formed by the first k columns
of Qx, and ζ models the distortion noise that results due to the rate-constrained encoding of
x. The zero-mean AWGN ζ is uncorrelated with x and its diagonal covariance matrix Σζζ has
entries [Σζζ ]ii = λx,iDi/(λx,i − Di). The part of the test channel that takes as input u and
outputs x̂, models the decoder. The reconstruction x̂ of x at the decoder output is

x̂ = Qx,kΘku = Qx,kΘkQ
T
x,kx + Qx,kΘkζ, (3)

where Θk is a diagonal matrix with non-zero entries [Θk]ii = (λx,i −Di)/λx,i, i = 1, . . . , k.

3.2 D-R analysis for Estimation
The D-R function for estimating source s given observation x (where the source and observa-
tion are probabilistically drawn from the joint pdf p(x, s)) with rate R at an individual sensor,
and reconstructing it (in the MMSE sense) as x̂ at the FC is given by [1, p. 79]

Ds(R) = min
p(ŝR|x)

I(x;ŝR)≤R

Ep(ŝR,s)[‖s− ŝR‖2], s ∈ RN , ŝR ∈ RN , (4)

where the minimization is w.r.t. the conditional pdf p(ŝR|x). In order to achieve the D-R
function, one might be tempted to first compress x by applying rwf at the sensor, without
taking into account the data model relating s with x, and subsequently use the reconstructed
x̂ to form the MMSE estimate ŝce = E[s|x̂] at the FC. An alternative option would be to
first form the MMSE estimate ŝ = E[s|x], encode the latter using rwf at the sensor, and after
decoding at the FC, obtain the reconstructed estimate ŝec. Referring to the former option as
Compress-Estimate (CE), and to the latter as Estimate-Compress (EC), we are interested in
determining which one yields the smallest MSE under a rate constraint R. Another interesting
question is whether any of the CE and EC schemes enjoys MMSE optimality (i.e., achieves
(4)). With subscripts ce and ec corresponding to these two options, let us also define the errors
s̃ce := s− ŝce and s̃ec := s− ŝec.

For CE, we depict in Fig. 2 (Left) the test channel for encoding x via rwf, followed by
MMSE estimation of s based on x̂. Suppose that when applying rwf to x with prescribed rate
R, the first kce components of xw are assigned with non-zero rate and the rest are discarded. The
MMSE optimal encoder’s output for encoding x is given, as in Section 3.1, by uce = QT

x,kce
x+

ζce. The covariance matrix of ζce has diagonal entries [Σζceζce ]ii = λx,iD
ce
i /(λx,i−Dce

i ) for i =

1, . . . , kce, where Dce
i := E[(xw(i)− x̂w(i))2]. Recalling that Dce

i =
(∏kce

i=1 λx,i

)1/kce

2−2R/kce

when i = 1, . . . , kce and Dce
i = λx,i, when i = kce + 1, . . . , N , the reconstructed x̂ in CE is

[c.f. (3)]
x̂ = Qx,kceΘceQ

T
x,kce

x + Qx,kceΘceζce, (5)



where [Θce]ii = (λx,i −Dce
i )/λx,i, for i = 1, . . . , kce. Letting x̌ := QT

x x̂ = [x̌T
1 01×(N−kce)]

T ,
with x̌1 := ΘceQ

T
x,kce

x + Θceζce, we have for the MMSE estimate

ŝce = E[s|x̂] = E[s|QT
x x̂] = E[s|x̌1] = Σsx̌1Σ

−1
x̌1x̌1

x̌1, (6)

since QT
x is unitary and the last N − kce entries of x̌ are useless for estimating s. We have

shown in [10] that the covariance matrix Σs̃ces̃ce := E[(s− ŝce)(s− ŝce)
T ] of s̃ce is

Σs̃ces̃ce = Σss −Σsx̌1Σ
−1
x̌1x̌1

Σx̌1s = Σss −ΣsxΣ
−1
xxΣxs + ΣsxQx∆ceQ

T
x Σxs, (7)

where ∆ce := diag
(
Dce

1 λ−2
x,1 · · ·Dce

N λ−2
x,N

)
.

In Fig. 2 (Right) we depict the test channel for the EC scheme. The MMSE estimate ŝ =
E[s|x] is followed by the test channel that results when applying rwf to a pre-whitened version
of ŝ, with rate R. Let Σŝŝ = QŝΛŝQ

T
ŝ be the eigenvalue decomposition for the covariance

matrix of ŝ, where Λŝ = diag(λŝ,1 · · ·λŝ,p) and λŝ,1 ≥ · · · ≥ λŝ,p. Suppose now that the first
kec entries of ŝw = QT

ŝ ŝ are assigned with non-zero rate and the rest are discarded. The MSE
optimal encoder’s output is given by uec = QT

ŝ,kec
ŝ + ζec, and the estimate ŝec is

ŝec = Qŝ,kecΘecQ
T
ŝ,kec

ŝ + Qŝ,kecΘecζec, (8)

where Qŝ,kec is formed by the first kec columns of Qŝ. For the kec × kec diagonal matri-
ces Θec and Σζecζec we have [Θec]ii = (λŝ,i −Dec

i )/λŝ,i and [Σζecζec ]ii = λŝ,iD
ec
i /(λŝ,i −

Dec
i ), where Dec

i := E[(ŝw(i) − ŝec,w(i))2], and ŝec,w := QT
ŝ ŝec. Recall also that Dec

i =(∏kec

i=1 λŝ,i

)1/kec

2−2R/kec when i = 1, . . . , kec and Dec
i = λŝ,i, for i = kec + 1, . . . , p. Upon

defining ∆ec := diag
(
Dec

1 · · ·Dec
p

)
, the covariance matrix of s̃ec is given by [10]

Σs̃ecs̃ec = Σss −ΣsxΣ
−1
xxΣxs + Qŝ∆ecQ

T
ŝ . (9)

The MMSE associated with CE and EC is given, respectively, by [c.f. (7) and (9)]

Dce(R) := trace(Σs̃ces̃ce) = Jo + εce(R), and Dec(R) := trace(Σs̃ecs̃ec) = Jo + εec(R),
(10)

where εce(R) := trace(ΣsxQx∆ceQ
T
x Σxs), εec(R) := trace(Qŝ∆ecQ

T
ŝ ), and Jo := trace(Σss−

ΣsxΣ
−1
xxΣxs) is the MMSE achieved when estimating s based on x, without source encoding

(R → ∞). Since Jo is common to both EC and CE it is important to compare εce(R) with
εec(R) in order to determine which estimation scheme achieves the smallest MSE. The follow-
ing theorem provides such an asymptotic comparison:

Theorem 1: If R > Rth := 0.5 max {log2 ((
∏ρ

i=1 λx,i) /σ2ρ) , log2 ((
∏ρ

i=1 λŝ,i) /(λŝ,ρ)
ρ)},

then εce(R) = γ12
−2R/N and εec(R) = γ22

−2R/ρ, where γ1 and γ2 are constants.

An immediate consequence of Theorem 1 is that the MSE for EC converges as R → ∞
to Jo with rate O(2−2R/ρ). The MSE of CE converges likewise, but with rate O(2−2R/N). For
the typical case N > ρ, EC approaches the lower bound Jo faster than CE, implying corre-
spondingly a more efficient usage of the available rate R. This is intuitively reasonable since
CE compresses x, which contains the noise n. Since the last N − ρ eigenvalues of Σxx equal
the noise variance σ2, part of the available rate is consumed to compress the noise. On the
contrary, the MMSE estimator ŝ in EC suppresses significant part of the noise.
Let us examine now some special cases to gain more insight about Theorem 1.



Scalar model (p = 1, N = 1): Let x = hs + n, where h is fixed, while s, n are uncorre-
lated with s ∼ N (0, σ2

s), n ∼ N (0, σ2
n), and σ2

x = h2σ2
s +σ2

n. With σ2
s̃ce

and σ2
s̃ec

denoting the
variances of s̃ce and s̃ec, respectively, we have shown in [10] that:

Proposition 1: For N = p = 1, it holds that σ2
s̃ce

= σ2
s̃ec

and hence the D-R functions for
EC and CE are identical; i.e., Dec(R) = Dce(R).

Vector model (p = 1, N > 1): With x = hs + n and Rth := 0.5 log2 (1 + σ2
s‖h‖2/σ2),

we have established that [10]:

Proposition 2: For R ≤ Rth it holds that εce(R) = εec(R) and thus Dec(R) = Dce(R).
For R > Rth, we have εce(R) > εec(R) and thus EC uses more efficiently the available rate.

Matrix-vector model (N > 1, p > 1 and Σss = σ2
sIp): For this setup, we have Σsx = σ2

sH
T

and Σxx = σ2
sHHT + σ2I. Letting H = UhΣhV

T
h be the SVD of H, where Σh is an N × p

diagonal matrix Σh = diag(σh,1 · · · σh,p), we have proved that [10]

Proposition 3: If either N > ρ, or, N = ρ and ∃ i, j ∈ [1, ρ] with i 6= j such that σh,i 6= σh,j

and R > Rth, with

Rth :=
1
2

max

{
log2

(
ρ∏

i=1

(
1 +

σ2
sσ

2
h,i

σ2

))
, log2

(∏ρ
i=1 σ2

h,i/(σ2
h,iσ

2
s + σ2)

(σ2ρ
h,ρ/(σ2

h,ρσ
2
s + σ2)ρ)

)}
, (11)

then it holds that εce(R) > εec(R), implying that the EC is more rate efficient than CE. If N = ρ
and σh,1 = . . . = σh,ρ, then εce(R) = εec(R) and consequently Dec(R) = Dce(R).

We define the signal-to-noise ratio (SNR) as SNR = trace(HΣssH
T )/(Nσ2), and compare

in Fig. 3 the MMSE when estimating s using the CE and EC schemes. With Σss = σ2
sIp,

p = 4 and N = 40, we observe that beyond a threshold rate, the distortion of EC converges to
Jo faster than that of CE, which corroborates Theorem 1. Notice also that the gap between the
EC and CE curves for SNR = 2 is larger than the gap for SNR = 4. This is true because as
the noise power increases, the portion of the rate allocated to noise terms in CE increases ac-
cordingly. However, thanks to the MMSE estimator, EC cancels part of the noise and utilizes
more efficiently the available rate.

Our analysis so far raises the question whether EC is MSE optimal. We have shown that
this is the case when estimating s with a given rate R and without forcing any assumption about
N and p. A related claim has been reported in [9,12] for N = p, but the extension to N 6= p is
not obvious. We have established that [10]:
Theorem 2: The D-R function when estimating s based on x can be expressed as

Ds(R) = min
p(ŝR|x)

I(x;ŝR)≤R

E[‖s− ŝR‖2] = E[‖s̃‖2] + min
p(ŝR|ŝ)

I(ŝ;ŝR)≤R

E[‖ŝ− ŝR‖2], (12)

where ŝ = ΣsxΣ
−1
xxx is the MMSE estimator, and s̃ is the corresponding MMSE.

Theorem 2 reveals that the optimal means of estimating s is to first form the optimal MMSE
estimate ŝ and then apply optimal rate-distortion encoding to this estimate. The lower bound
on this distortion when R → ∞, is Jo = E[‖s̃‖2], which is intuitively appealing. The D-R
function in (12) is achievable, because the rightmost term in (12) corresponds to the D-R func-
tion for reconstructing the MMSE estimate ŝ which is known to be achievable using random
coding; see e.g., [1, p. 66].
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Figure 3: D-R region for EC and CE at SNR = 2 (Left) and SNR = 4 (Right).

4 Distortion-Rate for Distributed Estimation
Let us now consider the D-R function for estimating s in a multi-sensor setup, under a total
available rate R which has to be shared among all sensors. Because analytical specification of
the D-R function in this case remains intractable, we will develop an alternating algorithm that
numerically determines an achievable upper bound for it. Combining this upper bound with the
non-achievable lower bound corresponding to an equivalent single-sensor setup, and applying
the MMSE optimal EC scheme, will provide a (hopefully tight) region where the D-R function
lies in. For simplicity in exposition, we confine ourselves to a two-sensor setup, but our results
apply to any finite L > 2.

To this end, we consider the following single-letter characterization of the upper bound on
the D-R function:

D̄(R) = min
p(u1|x1),p(u2|x2),ŝR

I(x;u1,u2)≤R

Ep(s,u1,u2)[‖s− ŝR(u1,u2)‖2], (13)

where the minimization is w.r.t. {p(ui|xi)}2
i=1 and ŝR := ŝR(u1,u2). Achievability of D̄(R)

can be established by readily extending to the vector case the scalar results in [3]. To carry out
the minimization in (13), we develop an alternating scheme whereby u2 is treated as side in-
formation that is available at the decoder when optimizing (13) w.r.t. p(u1|x1) and ŝR(u1,u2).
The side information u2 is considered as the output of an optimal rate-distortion encoder ap-
plied to x2 for estimating s, without taking into account x1. Since x2 is Gaussian, the side
information will have the form (c.f. Section 3.2) u2 = Q2x2 + ζ2, where Q2 ∈ Rk2×N2 and
k2 ≤ N2, due to the rate constrained encoding of x2. Recall that the k2 × 1 vector ζ2 is
uncorrelated with x2 and Gaussian; i.e., ζ2 ∼ N (0,Σζ2ζ2).

Based on ψ := [xT
1 uT

2 ]T , the optimal estimator for s is the MMSE one: ŝ = E[s|x1,u2] =
ΣsψΣ−1

ψψψ = L1x1 +L2u2, where L1, L2 are p×N1 and p×k2 matrices such that ΣsψΣ−1
ψψ =

[L1 L2]. If s̃ is the corresponding MSE, then s = ŝ + s̃, where s̃ is uncorrelated with ψ due to
the orthogonality principle. Noticing also that ŝR(u1,u2) is uncorrelated with s̃ because it is a
function of x1 and u2, we have E[‖s− ŝR(u1,u2)‖2] = E[‖ŝ− ŝR(u1,u2)‖2] + E[‖s̃‖2], or,

E[‖s− ŝR(u1,u2)‖2] = E[‖L1x1 − (ŝR(u1,u2)− L2u2)‖2] + E[‖s̃‖2]. (14)

Clearly, it holds that I(x;u1,u2) = R2 + I(x1;u1) − I(u2;u1), where R2 := I(x;u2) is
the rate consumed to form the side information u2 and the rate constraint in (13) becomes



I(x;u1,u2) ≤ R ⇔ I(x1;u1)− I(u2;u1) ≤ R−R2 := R1. The new signal of interest in (14)
is L1x1; thus, u1 has to be a function of L1x1. Then, x1 → L1x1 → u1, constitutes a Markov
chain, which implies that I(x1;u1) ≤ I(L1x1;u1). Using the latter, we obtain

I(x1;u1)− I(u2;u1) ≤ I(L1x1;u1)− I(u2;u1). (15)

From the RHS of (15), we deduce the stricter constraint I(L1x1;u1)− I(u2;u1) ≤ R1. Com-
bining the latter with (14) and (13), we arrive at the D-R upper bound

¯̄D(R1) = min
p(u1|L1x1),ŝR

I(L1x1;u1)−I(u1;u2)≤R1

E[‖L1x1 − (ŝR(u1,u2)− L2u2)‖2] + E[‖s̃‖2], (16)

through which we can determine an achievable D-R region, having available rate R1 at the
encoder and side information u2 at the decoder. Since x1 and u2 are jointly Gaussian, we can
apply the Wyner-Ziv result [13], which allows us to consider that u2 is available both at the
decoder and the encoder. This, in turn, permits re-writing the first expectation in (16) as:

min
p(ŝR|L1x1,u2)

I(L1x1;ŝR|u2)≤R1

E[‖L1x1 − [ŝR(u1,u2)− L2u2]‖2]. (17)

If ŝ1 := E[L1x1|u2] = L1Σx1u2Σ
−1
u2u2

u2 and s̃1 is the corresponding MSE, then we can write
L1x1 = ŝ1 + s̃1. For the rate constraint in (17), we have

I(L1x1; ŝR|u2) = I(L1x1 − ŝ1; ŝR − L2u2 − ŝ1|u2) = I(s̃1; ŝR − L2u2 − ŝ1), (18)

where the first equality is true because u2 is known; while the second one holds since u2 is
uncorrelated with s̃1, due to the orthogonality principle, and likewise u2 is uncorrelated with
ŝR,12(u1,u2) := ŝR(u1,u2)− L2u2 − ŝ1. Utilizing (17) and (18), we arrive at:

¯̄D(R1) = min
p(ŝR,12|s̃1)

I(s̃1;ŝR,12)≤R1

E[‖s̃1 − ŝR,12(u1,u2)‖2] + E[‖s̃‖2]. (19)

Notice that (19) is the D-R function for reconstructing the MSE s̃1 with rate R1. Since s̃1

is Gaussian, we can readily apply rwf to the pre-whitened QT
s̃1
s̃1 for determining ¯̄D(R1) and

the corresponding test channel that achieves ¯̄D(R1). Through the latter, and considering the
eigenvalue decomposition Σs̃1s̃1 = Qs̃1diag(λs̃1,1 · · ·λs̃1,p)Q

T
s̃1

, we find that the first encoder’s
output that minimizes (13) has the form

u1 = QT
s̃1,k1

L1x1 + ζ1 = Q1x1 + ζ1, (20)

where Qs̃1,k1 denotes the first k1 columns of Qs̃1 , k1 is the number of QT
s̃1
s̃1 entries that are

assigned with non-zero rate, and Q1 := QT
s̃1,k1

L1. The k1 × 1 AWGN ζ1 ∼ N (0,Σζ1ζ1) is
uncorrelated with x1. Additionally, we have [Σζ1ζ1 ]ii = λs̃1,iD

1
i /(λs̃1,i − D1

i ), where D1
i =(∏k1

i=1 λs̃1,i

)1/k1

2−2R1/k1 , for i = 1, . . . , k1, and D1
i = λs̃1,i when i = k1 +1, . . . , p. This way,

we are able to determine also p(u1|x1). The reconstruction function has the form

ŝR(u1,u2) = Qs̃1,k1Θ1u1−Qs̃1,k1Θ1Q
T
s̃1,k1

L1Σx1u2Σ
−1
u2u2

u2+L1Σx1u2Σ
−1
u2u2

u2+L2u2, (21)

where [Θ1]ii = λs̃1,iD
1
i /(λs̃1,i −D1

i ), and the MMSE is ¯̄D(R1) =
∑p

j=1 D1
j + E[‖s̃‖2].

The approach in this subsection can be applied in an alternating fashion from sensor to sen-
sor in order to determine appropriate p(ui|xi), for i = 1, 2, and ŝR(u1,u2) that at best globally
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Figure 4: Distortion-rate bounds for estimating s in a two-sensor setup.

minimize (16). The conditional pdfs can be determined by finding the appropriate covariances
Σζiζi

. Furthermore, by specifying the optimal Q1 and Q2, we have a complete characterization
of the encoders’ structure. The resultant algorithm is summarized next:
Initialize Q(0)

1 ,Q(0)
2 ,Σ(0)

ζ1ζ1
,Σ(0)

ζ2ζ2
by applying optimal D-R encoding to each sensor’s test channel in-

dependently. For a total rate R, generate M random increments {r(m)}M
m=0, such that 0 ≤ r(m) ≤ R

and
∑M

m=0 r(m) = R. Set R1(0) = R2(0) = 0, and for j = 1, . . . , M , set R(j) =
∑j

l=0 r(l)
for i = 1, 2

ī = mod (i, 2) + 1 %The complementary index
R0(j) = I(x;u(j)

ī
)

We use Q(j−1)

ī
,Σ(j−1)

ζīζī
, R(j), R0(j) to determine Q(j)

i , Σ(j)
ζiζi

and distortion ¯̄D(Ri(j))
end

Update matrices Q(j)
l ,Σ(j)

ζlζl
that result the smallest distortion ¯̄D(Rl(j)), with l ∈ [1, 2]

Set Rl(j) = R(j)− I(x;u(j)

l̄
) and Rl̄(j) = I(x;u(j)

l̄
).

In Fig. 4, we plot the non-achievable lower bound which corresponds to one sensor having
available the entire x and using the optimal EC scheme. Moreover, we plot an achievable D-R
upper bound determined by letting the i-th sensor form its local estimate ŝi = E[s|xi], and then
apply optimal rate-distortion encoding to ŝi. If ŝR,1 and ŝR,2 are the reconstructed versions of
ŝ1 and ŝ2, respectively, then the decoder at the FC forms the final estimate ŝR = E[s|ŝR,1, ŝR,2].
We also plot the achievable D-R region determined numerically by the alternating algorithm.
For each rate, we keep the smallest distortion returned after 500 executions of the algorithm
simulated with Σss = Ip, p = 4, and N1 = N2 = 20, at SNR = 2. We observe that
the algorithm provides a tight upper bound for the achievable D-R region. Using also the non-
achievable lower bound (solid line), we have effectively reduced the ‘uncertainty region’ where
the D-R function lies.

5 Conclusions
We determined the D-R function for estimating a random vector in a single-sensor setup and
established the optimality of the estimate-first compress-afterwards (EC) approach along with
the suboptimality of a compress-first estimate-afterwards (CE) alternative. When it comes to
estimation using multiple sensors, the corresponding D-R function can be bounded from below
using the single-sensor D-R function achieved using the EC scheme. An alternating algorithm
was also derived for determining numerically an achievable D-R upper bound in the distributed



multi-sensor setup. Simulations demonstrated that the numerically determined upper bound is
more tight than analytically found alternatives. Using this upper bound in combination with
the non-achievable lower bound we have obtained a tight region, where the D-R function for
distributed estimation lies in.

Issues of interest not accounted by our analysis include the incorporation of fading channels
with additive noise at the FC, and general (possibly non-linear) dynamical data models where
the distribution of the observation data is no longer stationary or Gaussian.1
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